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ABSTRACT 
  Predictions of turbulence intensity and continuous evolution of 
fluid flow characteristics in a combustor model are useful and 
essential for better and optimum design of gas turbine combustors.  
Many experimental techniques such as Laser Doppler Velocimetry 
(LDV) measurements provide only limited discrete information at 
given points; especially, for the cases of complex flows such as dump 
combustor swirling flows.  For this type of flow, usual numerical 
interpolating schemes appear to be unsuitable.  Neural Network 
Analysis (ANN) is proposed and the results are presented in this 
paper and are compared with the experimental data used for training 
purposes.  This pilot study  showed that artificial neural network is an 
appropriate method for predicting swirl flow characteristics in a 
model of a dump combustor. These techniques are proposed for 
better designs and optimization of dump combustors. 
Keywords: Swirl Flow, dump combustors and Neural Network.  
 
I.  INTRODUCTION 
 Turbulent swirling flows are encountered in many engineering 
applications. For example, swirl is commonly employed in 
combustion systems (i.e.; gas turbines and ram jet engines) and also 
many chemical processing plants, in order to increase fluid mixing, 
heat and mass transfer rates, and subsequently improve the efficiency 
or the degree of stability of a process. Turbulent swirling flows have 
highly complex flowfields which are three-dimensional, unsteady and 
have reverse flow regions. They are also the subject of many 
experimental, numerical and theoretical investigations and have been 
reviewed extensively in the literature during the last five decades 
(i.e., see references 1-12). 

Turbulent swirling flows remains a challenge in fluid mechanics 
and a large body of  literature has been published dealing with 
various flow configurations (confined and unconfined, reacting and 
non-reacting) and/or specific phenomena such as flow structure and 
instabilities, and/or vortex breakdown. A comprehensive treatment on 
swirl flows can be found in the book by Gupta et al. (1984).  
The axisymmetric sudden expansion geometry is relevant to many 
swirling applications, particularly swirl burners and combustors.  
Sudden expansion flows combine geometric simplicity with complex 
flow features such as separation and reattachment. They share many 
similarities with the flow past a backward facing step (i.e., the 
existence of three distinct flow regions: recirculation, reattachment 
and redevelopment). The reverse flow region size is an important 

feature of sudden expansion flows and it depends on swirl strength 
and type (i.e., free/forced vortex or constant angle), Reynolds 
number, expansion ratio, and free stream turbulence (i.e., see 
references 3-10). 

The structure of swirling flows is very sensitive to the way the 
swirl is introduced, i.e., the inlet conditions. The effects of inlet or 
initial swirl profile and expansion angle on the characteristics of the 
swirling flow were investigated by Nejad and Ahmed (1992).  Hallett 
and Toews (1987) showed that a lower velocity near the axis or a 
reduced radius of the solid body vortex core in the inlet will reduce 
the critical number required for central recirculation. An increase in 
the expansion ratio up to 1.5 will also reduce the critical swirl 
number. For expansion ratios greater than 1.5, either a reduction or an 
increase of the critical swirl number is reported, depending on inlet 
conditions. Nejad and Ahmed (1992) introduced swirl by three 
different types of swirlers: free vortex, forced vortex and constant 
angle, respectively. They showed that there are significant differences 
in the flowfield and turbulence characteristics when a different 
swirler is employed. In their study, for the same swirl number, a 
central recirculation was only observed in the case of free vortex type 
of swirling flow after the expansion. However, the centreline 
turbulence levels were the greatest for constant-angle swirling flow 
due to the large motion of the vortex centre precession.   
 The objective of the current study is to report detailed 
experimental database to help in the understanding of the behavior of 
axisymmetric, recirculating, and incompressible turbulent flows. 
There are two problems: (i) the obtained velocity-field is not 
continuous, (ii) the acquisition area remains limited and a complete 
investigation of the flowfield would request numerous measurement 
areas. Thus, an extensive experimental investigation would be 
expensive and require a very long time to obtain sufficient data. Since 
artificial neural networks (ANN) can deal with non-linear modeling, 
they seem to be an efficient tool for the reconstruction of data linked 
to multiple parameters, and thus an interesting alternative solution to 
common interpolation schemes. To evaluate the accuracy of this 
technique, a large set of data has first been measured using LDV 
technique. Next, the set has been divided into two parts: the first 
being used by the neural network in order to reconstruct the velocity-
field during the learning step, and the second to estimate the 
reconstruction efficiency by comparing values obtained using ANN 
to experimental measurements.  
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NOMENCLATURE 
H step height, mm 
M sample size  
R combustor radius, mm 
S swirl number 
U, V, W mean velocity components, in x, r, and 

θ directions, m/s 
u’, v’, w’  turbulence intensities of the velocity 

components, in x, r, and θ directions 
U

o
 mean axial reference velocity, upstream 

of the swirler, m/s 
x, r, θ   axial, radial, and azimuthal coordinates; 

respectively, mm, mm, degrees  
Greek Symbols 
ρ flow density, kg/m3 
∆U uncertainty in velocity U, m/s 
µ dynamic viscosity, Pa.s 
σu standard deviation of U, m/s 
 
II.  EXPERIMENTAL FACILITY AND INSTURMENTATION 
 
 2.1. Combustor Model 

 The experimental setup (Figure 1) consists of a movable swirler 
where the airflow enters the measurement section at ambient pressure 
and temperature (see Ahmed [10]). Special care was taken to ensure 
that the fabricated model satisfied the axisymmetric nature of the 
flowfield. The setup consisted of the inlet section and the combustion 
chamber. 

The inlet section is made of a 300 mm diameter settling chamber, a 
plexiglas inlet pipe, and a cylindrical teflon swirler housing. The 
plexiglas inlet pipe is 2850 mm long and of 101.6 mm internal 
diameter while the teflon swirler housing has inner and outer 
diameters of 104.5 mm and 152.4 mm; respectively. The swirler 
housing has the ability of being positioned relative to the 
measurement station in the combustion chamber. This entire inlet 
assembly is placed on a traversing mechanism controlled by a 
stepping motor. The inlet flow measurements proved the inlet flow 
across the pipe to be a simple plug one.  An average inlet velocity of 
16.0 + 0.4 m/s (large enough to ensure turbulent flow in the 
combustor, at a Reynolds number - based on the outer diameter of the 

swirler - of 1.5 x 10
5
) was maintained throughout all experiments. 

This value of the inlet average velocity was checked with a 
flowmeter, located far upstream of the swirler housing. 

The combustion chamber is made of a plexiglas tube, measuring 
152.4 mm in diameter and 1850 mm in length. This section terminates 
into an exhauster of a larger diameter. The design of the test section 
also incorporates a plug assembly at the combustor exit that may be 
employed to increase the pressure of the chamber while keeping the 
mass flow rate unchanged. A 40 % contraction nozzle was situated at 
the combustor exit as part of the components of the flow facility to 
model the gas turbine combustor. 

The swirler is a free vortex swirler which has 12 curved vanes. 
Swirler dimensions are 19 mm ID (central hub) and 101.6 mm OD. 
 
2.2. Instrumentation 
 The velocity measurements in this study were done using a TSI 
Inc. 9100-7 four beam, two color, back scatter laser Doppler 
velocimeter LDV system. The LDV system had two TSI 9180-3A 
frequency shifters to provide directional sensitivity. A chemical 
seeder was developed and used for the present study. This chemical 
seeder produced micron size Titanium dioxide particles. These 
particles were injected into the upstream settling chamber in order to 
ensure that the flow was uniformly seeded. 
 The photomultipliers signals were processed by two TSI burst 
counters - models 1990 B\C with low pass filters, set at 20 MHz, and 
high pass filters set at 100 MHz on each processor.  Calculations of 
statistical moments from standard formulae were done at each 
measurement location using double precision data (48 bit), see 
Ahmed [10]. The problem of velocity bias in LDV measurements 
was corrected in this study by the use of the time between individual 
realizations as a weighing factor (interarrival bias correction 
techniques), see Ahmed [10]. The uncertainty of the measured mean 
velocities was determined using the equation:  

MuU /96.1 σ+=∆   
The constant 1.96 is used for 95% confidence level, while M 
represents the sample size (i.e. 5000 for this study) and σu is the true 
standard deviation. The maximum uncertainties of the mean 
velocities U due to random errors were calculated and estimated to be 
2.0 % of the upstream velocity U

o
. 

 
 

 

Fig. 1. Schematic of the dump combustor model 
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2.3. ARTIFICAL NEURAL NETWORK 
Artificial neural networks (ANN) are computational systems that 

simulate the microstructure of a biological nervous system. The most 
basic components of ANNs are modeled after the structure of the 
brain for which the most basic element is a specific type of cell that 
provides us with the ability to remember, think and apply previous 
experience to our every action. These cells are known as neurons and 
each of these neurons can connect with hundreds of thousands of 
other neurons. The power of the brain comes from the number of 
these basic components and multiple connections between them. 

Inspired by biological neurons, ANNs are composed of simple 
elements or artificial neurons operating in parallel to form a cluster 
of artificial neurons. The clustering is formed by creating layers 
connected to one another. As in nature, some of the neurons interface 
with the real world to receive its input (input layer), while others 
provide the world with the network’s output (output layer). All 
remaining neurons are hidden (hidden layers). Each input to a neuron 
has a weight factor that determines the contribution of this neuron to 
the whole network.  

Artificial Neural Networks are one of the artificial intelligence 
concepts that have proved to be useful in various engineering 
applications [11-23]. Their greatest advantage is in their ability to 
model complex non-linear, multi-dimensional functional 
relationships without any prior assumptions about the nature of the 
relationships and the network is built directly from experimental data 
by its self-organizing capabilities. The system can be considered as a 
black box and it is unnecessary to know the details of the internal 
behavior. These nets therefore may offer an accurate and cost 
effective approach for modeling engineering problems. ANN have 
already been used in medical applications, image and speech 
recognition, classification and control of dynamic systems, 
prediction of mechanical properties of materials among others; but 
only recently have they been used in swirl flow velocity field 
reconstruction [11-12].  

The multilayered feed-forward neural network (FNN) is the most 
widely applied type of neural networks used by researchers so far. In 
general, feed-forward ANN consist of a layer of input neurons , a 
layer of output neurons and one or more layers of hidden neurons 
(Figure 2) [14, 15]. In the current work, the input parameters could 
be the x, r and θ positions within the combustor where the turbulence 
intensity component is required and the output parameters could be 
the turbulence intensity component (s) to be predicted by the ANN at 
that specified position. 

 
 

Fig. 2.   General configuration of an artificial neural network [14]  
 

A back-propagation algorithm can train the ANN with 
differentiable transfer functions. The term back propagation refers to 
the process by which derivatives of network error, with respect to 

network weights and biases, can be computed. The back-propagation 
training algorithm is commonly used to iteratively minimize the 
following cost function with respect to the interconnection weights 
and neurons thresholds:  

∑ ∑
=

−=
P N

i
ii OdE

1 1

2)(
2
1  

where P is the number of experimental data pairs used in training the 
network and N is the number of output parameters expected from the 
ANN. di and Oi could be one of the experimentally-measured 
turbulence intensity components of the flow and the ANN prediction 
of that component at a specific location i within the combustor, 
respectively.  

The training process is terminated either when the Mean-Square-
Error (MSE), Root-Mean-Square-Error (RMSE), or Normalized-
Mean-Square-Error (NMSE), between the actual experimental results 
and the ANN predictions obtained for all elements in the training set 
has reached a pre-specified threshold or after the completion of a 
pre-specified number of learning epochs [14].  

In mathematics and computing, the Levenberg-Marquardt (LM) 
algorithm is an iterative technique that locates the minimum of a 
multivariate function that is expressed as the sum of squares of non-
linear real-valued functions [19, 20]. It has become a standard 
technique for non-linear least-squares problems, widely adopted in a 
broad spectrum of disciplines. LM can be thought of as a 
combination of the steepest descent and the Gauss-Newton methods. 
When the current solution is far from the correct one, the algorithm 
behaves like a steepest descent method: slow, but guaranteed to 
converge. When the current solution is close to the correct solution, 
it becomes a Gauss-Newton method. In this work, the LM algorithm 
will be used to train the feed-forward neural network used [21]. 
 
III.  RESULTS AND DISCUSSION 
 
 A trained ANN can be thought of as an expert in the category of 
information it has been given to analyze.  This expert can then be 
used to provide predictions given new situations of interest. In this 
study, the suitability of ANN to predict experimental results obtained 
at different locations will be investigated. The coordinates x and r 
will be used as the input parameters to the ANN while the turbulence 
intensities will be the output from the network. For this initial work, 
rather than having one complex neural network predicting all 
turbulence intensity components, a simpler network will be used to 
separately predict each of the components.  

The Neurosolution-5 software [24] was used to construct, train 
and test the networks. In each case, the network was trained using all 
but one of the turbulence intensity distributions obtained 
experimentally at different values of the coordinate x. The network 
was then required to predict the profile it was not trained for. The 
predictions obtained were then compared to the experimental results 
at this coordinate. Once assured that the predictions obtained are 
reliable, the network could be used in the future to predict the 
turbulence intensity profile at any coordinate x for which 
experimental data do not exist. Since the ANN cannot be accurately 
used to predict results outside the area of training, predicting the 
profiles at x/H = 0.38 and x/H = 18 was not attempted. 

In this investigation, the effect of the ANN architecture was not 
considered. This is because the main goal of this study is to establish 
the feasibility of using ANN to predict the turbulence intensities. In 
future studies, the effect of using different ANN architectures (such 
as Radial Basis Function, Modular, Self-Organizing and Principal 
Component Analysis) could be examined. The number of hidden 
layers was kept at one and the number of training epochs was held  
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Fig. 3. Evolution of axial turbulence intensity profiles, 0’s indicate the 

origin for each profile.  Top graphs have near field results and 
bottom graphs have mid and far field results. 

(a) Experimental results; (b) ANN results  
 

constant at 1000 epochs. To evaluate the accuracy of the neural 
network, the correlation coefficient (cc) and the normalized mean 
square error (NMSE) were calculated. Table 1 shows the cc and 
NMSE obtained for each of the turbulence intensity profiles 
considered. These results show that ANN can be used to accurately 
predict the turbulence intensities distributions in dump combustors.  

The turbulence intensities distributions at various values of the 
distance x can be graphically represented. Figures 3 and 4 show the 
experimental and predicted turbulence intensities profiles in the axial 
and radial directions at x / H = 0.38, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15 and 
18; respectively. The predictions of the shear stresses are not shown 
here due to the paper’s size limitation. 

 
 
Fig. 4. Evolution of radial turbulence intensity profiles, 0’s indicate 

the origin for each profile.  Top graphs have near field results 
and bottom graphs have mid and far field results. 

(a) Experimental results; (b) ANN results  
 

 It is obvious that two peaks characterized the swirling flow 
around the inner and outer shear layers (i.e., the larger is seen in the 
boundaries of CTRZ, and the smaller occurred in the shear layer of 
CRZ). Turbulence activities are gradually reduced downstream of the 
reattachment point.  It is interesting to note that the peak value of 
axial turbulence intensities is observed to move towards the 
combustor wall as it decays in strength and grows in size, indicating 
a progressive development of the outer shear layer. Turbulence 
activity is seen to be more concentrated in the central shear layer and 
the centers of the maximum values, for the two regions are located 
approximately at x / H = 3.0 . 
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Table 1. Correlation coefficient (cc) and normalized mean square 
error (NMSE) as a function of x/H 

x/H u’ v’ w’ 
 cc NMSE cc NMSE cc NMSE 

1.0 0.9765 0.05820 0.9911 0.02940 0.9824 0.05915 
2.0 0.9846 0.05297 0.9789 0.05486 0.9750 0.09690 
3.0 0.9715 0.06285 0.9752 0.05439 0.9728 0.07211 
4.0 0.9785 0.04866 0.9835 0.07464 0.9532 0.11042 
5.0 0.9774 0.06406 0.9905 0.08305 0.9883 0.03645 
6.0 0.9855 0.05516 0.9874 0.03764 0.9680 0.06379 
8.0 0.9327 0.13788 0.9824 0.03885 0.9745 0.12272 
10.0 0.9745 0.07873 0.9806 0.04465 0.9717 0.26279 
12.0 0.9578 0.10975 0.9918 0.01707 0.9772 0.07506 
15.0 0.9789 0.07534 0.9918 0.05688 0.9635 0.30149 

 
Fig. 5. Evolution of tangential turbulence intensity profiles, 0’s 

indicate the origin for each profile.  Top graphs have near 
field results and bottom graphs have mid and far field results. 

(a) Experimental results; (b) ANN results  

The features of the tangential turbulence intensities (see Fig. 5) 
are similar to those described above for the axial turbulence 
intensities.  Near the core, the flow did not recover completely (due 
to the existence of CTRZ) as indicated by relatively higher values of 
stresses at each axial location, and downstream of x / H = 10.   
 
IV.  CONCLUSIONS  
 A two component LDV system was utilized to measure the 
turbulence intensities flowfield characteristics of a free vortex 
swirler.  As a result, a database of the flowfield characteristics was 
established over a fairly wide region, 0.38H to 18H downstream of 
the step including the regions of major interest (i.e., corner 
recirculation and central toroidal recirculation zones).  The swirler 
reduced the flow reattachment point considerably. As a result, 
turbulent flow recovers shortly after the reattachment point in a short 
distance enhancing combustion characteristics.  Furthermore, energy 
is distributed on both sides of the shear layer in the region close to 
the centerline of the combustor and flow separation areas. Thus, it is 
obvious that a swirler in the combustor will have important effects 
on the flow characteristics. This detailed information should be of 
value for further development of second order closure models. 

A comparison between the experimental data and the 
turbulence intensity predictions using ANN reveals high correlation. 
These observations are obvious from the results reported in Table 1 
as well as Figures 3-5. These encouraging results show the suitability 
of the ANN as a method for predicting the swirl flow turbulence 
characteristics reconstruction and warrant proceeding with the 
prediction of the normal and shear stresses of all velocity 
components. More work is underway to show the applicability to 
higher order turbulence statistics as well as the effect of the ANN 
architecture on the predicted values.  
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