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ABSTRACT 
Forced convection heat transfer through a channel filled 

with a porous medium is investigated using perturbation 
method.  Two-energy equation model is utilized to represent 
the assumption of local thermal non-equilibrium which exists 
between the solid and fluid phases. The Brinkman- 
Forchheimer extension of the Darcy model is used to represent 
the fluid transport within the porous medium. Analytical 
solution is obtained for both fluid and solid temperature fields 
incorporating the effects of various pertinent parameters such 
as the Darcy number, the Biot number, the thermal 
conductivity and the pressure gradient. It is found that the 
Darcy number and the pressure gradient have significant 
effects on the local thermal equilibrium assumption. 
 
 
NOMENCLATURE 
a Interfacial area per unit volume 
Bi Biot number 
Da Darcy number 
F function 
h Heat transfer coefficient 
H one half of channel height 
K permeability 
k Thermal conductivity 
P pressure 
q′′  Heat flux 
T temperature 
u axial velocity 
x x- coordinate 
y y- coordinate 
  
Greek letters 
ε  porosity 
Λ  Inertia parameter 
µ viscosity 
ν  Kinematics viscosity 
θ Non-dimensional temperature 
ρ  density 
  
Subscripts 

sf Solid fluid 
f fluid 
s solid 
w wall 
eff effective 
  
Superscripts 
f fluid 
s solid 
* Non-dimensional 
 
 
INTRODUCTION 
     Forced convective heat transfer in porous media has been 
the subject of many recent studies due to numerous practical 
applications such as thermal insulation, packed bed heat 
exchangers, heat pipes, electronic cooling, drying technology, 
catalytic reactors, nuclear waste repository, energy storage 
units, petroleum technology and geothermal systems. The 
assumption of local thermal equilibrium is widely used in 
many of these applications .However, this assumption breaks 
down when a substantial temperature difference exists 
between the solid and fluid phases. More recently local 
thermal non-equilibrium has received considerable attention 
due to its pertinence in applications where such a differential 
exists between the solid and the fluid phases. 
Koh and Colony [1] used quite a restricted two-equation 
model which did not account for various important effects 
such as conduction through the fluid phase, dispersion and 
non-Darcian effects. Vafai and Sozen [2] investigated forced 
convective flow through porous media utilizing a rigorous 
formulation based on locally volume average two–equation 
model. They provided detailed insight relative to momentum 
transport and thermal characteristics within porous media. 
Later on Amiri and Vafai [3, 4] employed a general fluid flow 
model and a two-phase energy equation to investigate the 
forced convective heat transfer within the channel with 
constant wall temperature. They included the effect of variable 
porosity and thermal dispersion in their analysis and error 
maps for assessing the importance of various simplifying 
assumptions that are commonly used were established their 
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work. Some additional aspects of the local thermal equilibrium 
have been presented by Whitaker [5] and Sozen and Vafai[6]. 
The work of Vafai and Tien [7] was one of the early attempts 
to account for the boundary and inertia effects in the 
momentum equation for a porous media. They found that the 
momentum boundary layer thickness is of the order of 

/ .K ε  Vafai and Thiyagaraj [8] presented analytical 
solution for the velocity and temperature fields of the interface 
region using the Brinkman–Forchheimer extended Darcy 
equation. They considered three fundamental types of the 
interface namely, the interface between two porous media, the 
interface between a porous medium and a fluid layer and the 
interface between a porous medium and an impermeable 
medium. Lee and Vafai [9] employed the non thermal 
equilibrium model to investigate the forced convective flow 
through a channel filled with the porous medium subject to a 
constant heat flux. They obtained analytical solution for the 
fluid and solid phase temperature distributions. In their work, 
validity of one–equation model was presented considering a 
Darcian fluid flow. Kim et al. [10] presented an analytical 
solution for the two–equation model including the boundary 
effects for an equivalent micro channel application. They 
presented analytical solution for the fluid and solid phase 
temperature distribution based on the Brinkman-extended 
Darcy equation. They also analyzed the validity of the local 
thermal equilibrium assumption. 
In this work, the Brinkman–Forchheimer extended Darcy 
model is used to obtain an analytical solution for the fluid and 
solid phase temperature distributions in a channel under a 
constant wall heat flux. The two-equation model is used 
because of the local thermal non-equilibrium assumption.  
Errors characterizing validity of the thermal equilibrium are 
obtained for a range of Darcy and inertia numbers as well as 
non–Darcy effects on temperature differentials in porous 
media are established. 

 
 
 

Modeling and Formulation 
     Consider a fully developed flow in a plane duct filled with 
a porous medium subjected to a constant wall heat flux, 
(Fig.1). Due to the symmetrical flow about the center line, one 
half of the channel is considered. The momentum equation 
accounting for the inertia and boundary effects is: 
 

2

2 0f
u F Pu u u

K xy K
∂ ∂

− − − =
∂∂

µ µ ε ρ
ε

 
 
(1) 

The energy equations of the solid and fluid phases under non- 
thermal equilibrium condition are respectively as follows. 
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where u and T have been defined based on the local volume 
average velocity.   ( ) ( )1k ks seff ε= − and  ( )k kf feff ε=  

 

 
 
 

Fig.1. Schematic of one half of a parallel-plate duct filled with 
porous medium 

 
 
Boundary Conditions: The fluid boundary conditions  
for velocity and temperature fields are represented by: 
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If the following dimensionless variables are introduced,   
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the dimensional Eqs. (1-7) are respectively. 
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The above equation is obtained by using the fully developed 
condition and f p i f wc u T x q Hρ ′′∂ ∂ = for a control 

volume in Fig. (1). Tf is the local volume average. 
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(1) 0, (1) 0f sθ θ= =  

(12a-b) 
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ANALYSIS 
Velocity profile: Assuming * *dP dx = constant in Eq. (8) 
and invoking the singular perturbation method, we can find 
the velocity profile as. 
 

* * * 2 *
0 1 2u u u u= + +ε ε          (15) 

Utilizing Eq. (11), the velocity profile will be read as: 
 
        

( )
* *4 *2

* *2 2
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 (16) 

Appling the mass balance across the channel, one can simply 
obtain ( )* * 15 5 2 .dp dx Da Daε ε− = + Substituting the 
result into Eq. (16), the final result is:  
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Temperature profile: Combining the two coupled energy 
Eqs. Eqs. (9) and (10), the fluid differential equation will be. 
 

4 2 2 *
* * *
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θ θ
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(18) 

 
The solution of the above equation is sum of a particular 
integral of the non-homogeneous and complementary function 
of the corresponding homogeneous equation. After 
introducing  Eq. (17), the result is as follows.                                                                                            
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where ( )1 1 *i kλ β= +  

Two more sets of boundary conditions are required to solve 
the above fourth–order differential equations. These are 
obtained by applying the boundary conditions given by Eqs. 
(12) and (13) to Eq. (9). 
 

(1) 0fθ ′′ =  
 

(20) 

(0) 0 (21)fθ′′′ =  
 
Applying the boundary conditions given by Eqs. (21),               
(13a) and (12a), after a lengthy process we have: 
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Introducing the fluid temperature into Eq. (9), the solid 
temperature reads. 
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The temperature difference between the fluid and solid is 
obtained from: 
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RESULTS AND DISCUSSION 
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     Fig. 2 shows the temperature profiles of the solid and fluid 
phases across the channel flow from the center line towards 
the wall for 310* *dp dx ,−= -4Da=10 and * -3k =10 .  
Enhancement of the Biot number causes the solid phase 
temperature is close to the fluid temperature.  In other words, 
the assumption of local thermal equilibrium exits between the 
two phases.  As such, the temperature gradient at any location 
between the two phases is assumed to be negligible. On the 
other hand, when the Biot number is small, there is a big 
temperature difference between the two phases and the 
assumption of the local thermal equilibrium condition will 
break down. In addition, the local non-thermal equilibrium at 
the centre line of the porous channel is more prominent than 
the other locations.  In this case, heat transfer between the two  
phases should be included.    
 

 
Fig. 2 Temperature distribution of the solid and fluid across the 

channel for 310* *dp dx ,−=  -4Da=10 and * -3k =10  
 

 
Fig. 3 illustrates the same temperature distribution trend as the 
previous one except for *k =0.1 . The scale of the temperature 
profiles on the ordinate axis is increased by two orders of 
magnitude in comparison with Fig. 2. The solid phase 
temperatures start to be separated from each other for 

0 5Bi .= and 10  when *k =0.1 , whereas this case has not 
been occurred for * -3k =10 . Because of employing the 
boundary conditions, the difference between these two doted 
lines is zero at the wall and is a maximum on the centre line. 
Figs. 4 and 5 demonstrate the temperature difference profiles 
between the solid and fluid phases for 0 5* *dp dx .= ,  

-4Da=10 and different values of the controlling parameters 
such as Biot number and the ratio of the effective fluid 
conductivity to that of the solid, *k . The previous discussions 
are valid here too. As we can see, the trends of the profiles in 
Figs. 4 and 5 are similar to that of the Figs. 2 and 3. The scale 
of the temperature on the ordinate axis in Figs. 4 and 5 has 
been increased by three orders of magnitude relative to the 
Figs. 2 and 3. This is because of a large pressure gradient 
along the channel flow. As a result of increasing the pressure 
gradient, the mass flow rate increases too and causes the 

temperature difference rises.  Again, the temperature of the 
solid phase starts to be separated from each other for 

0 5Bi .=  and 10  when *k =0.1 . 
 

 

 
Fig. 3 Temperature distribution of the solid and fluid across the 

channel for 310* *dp dx ,−=  -4Da=10 and *k =0.1  

 
 

 
Fig. 4 Temperature distribution of the solid and fluid across the 

channel for 0 5* *dp dx . ,=  -4Da=10 and * -3k =10  

 
Fig. 5 Temperature distribution of the solid and fluid across the 

channel for 0 5* *dp dx . ,=  -4Da=10 and *k =0.1  
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Figs. 6 and 7 report the effect of the pressure gradient on the 
temperature profiles.  As it can be seen, the pressure gradient 
has an important role so that changing * *dp dx from 0.001 to 
0.5 causes the dimensionless fluid temperature jumps from 

800−  to 54 10− × at the channel centre line.     
 

 
Fig.6, Temperature distribution of the solid and fluid phases 
across the channel, 310* *dp dx −= , 810Da −= , 0 1*k .=  

 

   
 
Fig. 7, Temperature distribution of the solid and fluid phases 

across the channel for 0 5* *dp dx .= , 810Da −= and 

0 1*k .=  
 
 
CONCLUSIONS 
     Forced convective heat transfer through a channel filled 
with a porous medium was investigated analytically by the 
perturbation technique for the Brinkman Forchheimer 
extended Darcy model. The energy equations of the solid and 
fluid phases were used employing a non-thermal equilibrium 
model. The temperature field for both phases was obtained 
incorporating the effects of Biot number, Darcy number, 
pressure gradient and the conductivity ratio. The temperature 
difference between the two phases was found to decrease with 
an increase in the Biot number due to higher internal 

convection between the two phases. While an increase in the 
thermal conductivity ratio, *k , resulted in a relative increase 
in fluid conduction throughout instead of being confined near 
the channel center. It was also established that the Darcy 
number and the Pressure gradient have a significant role on 
the local thermal equilibrium.  
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