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ABSTRACT
We report in this work the evolution of a physically-based

drop size-distribution of atomized drops coupling the Maximum
Entropy Formalism (MEF) and the Monte Carlo method. The at-
omization is performed using a Spray On Demand (SOD) print-
head which exploits ultrasonic generation via a Faraday instabil-
ity. The physically-based distribution is a result of the coupling
of a MEF specific formulation and a general Gamma distribu-
tion. The prediction of the drop size distribution of the new de-
vice is performed. The dynamic model which prediction capabil-
ity is fairly good is shown to be sensitive to operating conditions,
design parameters and physico-chemical properties of the fluid.
In order to achieve the drop size-distribution evolution, we solve
the distribution equation, reformulated via the mass flow algo-
rithm, using a convergent Monte Carlo Method able to predict
coalescence of sprayed droplets.

NOMENCLATURE
a semi-major axis length of nozzle exit shape
b semi-minor axis length of nozzle exit shape
fp vibrating frequency of the piezoceramic disc
g gravity acceleration
N total number of drops
Ni number of drops in each class i
ρ f fluid density

∗Address all correspondence to this author.

µ f fluid viscosity
αb nozzle tip beveled angle
σ f fluid surface tension
θE equilibrium contact angle fluid/structure

INTRODUCTION
A general theory for predicting the drop-size distribution

of spray remains an unsolved problem although some distri-
butions (e.g Weibull and Rosin-Rammler distributions) follows
from physically grounded percolation model of chaotic atomiza-
tion [1]. It turns out at the end that the application of these the-
ories leads ultimately to curve fitting. The generated droplets re-
sult from the dynamics of ligaments and their fragmentation [2].
The analysis of ligament fragmentation presuming to be con-
sisted of sub-drops in different sub-layers have been performed
in [3] where the ligament breakup is found to be very well rep-
resented by gamma distributions. All these models ultimately
lead to distribution which are still to be fitted with experiment
and do not account for the effect of the atomizer. The significant
number of drops constituting a spray does not allow to precisely
determine the diameter or velocity of each drop. There is a pro-
fuse literature discussing the prediction of representative drop
diameter in spray. However, there are relatively few publications
dealing with drop size distribution prediction. One of the possi-
bility to describe quantitatively a spray is thus to adopt the tools
of statistical analysis. Following [4], there are three methods for
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FIGURE 1. Spray On Demand print-head and visualization of the
spray.

modeling drop size distribution: Empirical Method, Probability
Function Method and the Maximum Entropy Formalism (MEF),
the one adopted by us.

Despite of its enormous industrial application domain, spray
modeling remains a challenge for computational methods and ex-
perimental measurements, when one wants to predict the drop
size distribution. Droplet generation is an extremely complex
process that cannot be precisely determined. Current approaches
are either semi-empirical or need to be adjusted to each operating
conditions. Based on the ultrasonic atomization via a Faraday in-
stability of a new printhead termed as Spray On Demand(SOD)
(see Fig. 1), we propose a physically-based drop size distribu-
tion, sensitive to operating conditions. Such an approach is nec-
essary for obtaining a specific drop size distribution which may
be required in some applications. Extended the MEF drop-size
distribution for allowing a temporal evolution could be of great
interest for initializing sophisticated CFD spray modeling codes.
In traditional approaches precise drop size distribution is usu-
ally time-independent. Here we propose a modeling of the time-
dependent drop size distribution of the MEF. We derive the dis-
tribution evolution equation and we use the Mass Flow Algo-
rithm (MFA) for the simulation of the equation with a convergent
Monte Carlo method.

NEW PHYSICALLY BASED MEF
Following [2] three interpretations have been attributed to

the fragmentation process: (i) sequential cascade of breakups,
this interpretation originated from Kolmogorov leads to the log-
normal distribution; (ii) the aggregation scenarii which makes
use of the Smoluchowski kinetic aggregation process leading to
the fact that the drop-size distribution displays an exponential
tail; (iii) finally the Maximum Entropy Formalism(MEF) which
presentation by the author leads to a Poisson’s distribution. It is
worth adding to these interpretations the vision on the dynamics
of ligaments, assuming to be made up of blobs of different layers
[3].

Instead of being opposed, we show that these different in-
terpretations could be complementary in some extent. From two
visions of the MEF, we derive a new formulation for predicting

drop-size distribution. Our presentation will show that the MEF
could lead to the same result as the ligament dynamics which
are at the core of spray formation. The droplets coming from
the breakup of these ligaments is explained by the way the poly-
disperisity of the spray. Even though ultrasonics sprays are less
disperse compared to other techniques [5].

In order to establish a physically-based approach, we pro-
pose a coupling of what we distinguish as 2 complementers for-
mulations using MEF: we call them specific and general formula-
tions. A specific formulation is based on conservation laws; this
formulation is proven to give satisfactory results on the spray,
the drawback being for spray small drops. Its advantage is that it
takes into account the device operating parameters. Thus we pro-
pose to couple this approach with a general formulation leading
to the three-parameter generalized gamma distribution. Indeed
this distribution takes into account the general characteristics of
a spray but does not take into account the unique feature of at-
omization device.

Specific formulation
This formulation, sensitive to SOD operating conditions, is

based on spray conservation laws consisting of maximizing the
following shannon entropy:

S(hn(D) =−
∫

D
hn(D) lnhn(D)dD, (1)

where the integration is performed on all the permissible states
of the diameter

∫
D ≡

∫ Dmax→∞

Dmin→0
, with Dmin,Dmax respectively the

spray drops minimum and maximum diameters.
Normalization constraint

∫
D

hn(D)dD = 1, (2)

Conservation laws constraints

∫
D

hn(D)mk(D)dD = Hk , k = 1...M. (3)

The solution expresses in the continuous form as:

hn(D) = exp

(
λ

c
0 −∑

k
λ

c
k mk(D)

)
, (4)

where λ c
k being Lagrange multipliers in continuous form.
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Until recently this formulation of MEF were applied using
conservation laws of mass, momentum or energy. Its predictive
capability were quite satisfactory for the volume based distribu-
tion of the spray. In [7] is derived a distribution based only on
the constraint of mass conservation, and the volume based dis-
tribution deduced gives good results for a pressure swirl atom-
izer. They applied the MEF not on the number-based fraction but
on the volume-based fraction (which is not a probability as ex-
plained in [6]), and they end up by performing a change of vari-
able to deduce the number based drop-size distribution. Other
attempts have been made by exploiting this change of variable to
end up with an acceptable number based distribution. In fact the
problem of this specific formulation is to correctly predict the
number based distribution specially for small droplets popula-
tion which are mainly over predicted. To prevent this a ”change
of variable” has been used but this violates the MEF principle.
Since then, with the introduction of the general approach [10],
the previous formulation had some how been abandoned. Our
approach here is to revisit the abandoned specific formulation
and show its complementarity with the the general formulation
approach and its consistency with the MEF principle. In fact
how one can claim to predict a process as complicated as the
atomization without using as much information as possible in-
cluding the useful information of the specific formulation. Many
aspects have an influence both the generation mechanism of the
droplets, the atomizer itself as well as the fluid. In addition to
these constraints, a practical approach for spray modeling is to
use the minimum number of parameters in oder to allow effec-
tive computation. Our approach aims to meet these requirements
by coupling the presented specific formulation and the following
general formulation.

General formulation
As previously mentioned all atomization processes can be

seen as the break-up of a ligament. Therefore the ligament dy-
namics can be seen as general characteristic of a spray. Because
of the random liquid motions in the ligament, the sub-drops of a
layer overlap and merge. The solution of that evolution equation
leads to the following gamma function or gamma number-based
distribution [3]:

FLn(x = d/d0) =
β β

Γ(β )
xβ−1 exp[−βx], (5)

where d0 is the average blob or ligament diameter, and β the
gamma distribution parameter.

Considering that the ligament population at the SOD nozzle
is distributed as:

FL(d0)≈ δ (d0−dl) (6)

In fact unlike the case for high speed jet ligament, ligament
from the Faraday wave is less disperse and could be assume to
have nearly the same dimension noted here dl .

Therefore we can deduce the drop-size distribution of the
spray (FSn(D)) using convolution of FLn(D/d0) and FL(d0) as:

FSn(d) =
∫

FL(d0)FLn(d/d0)
d(d0)

dl
=

1
dl

FLn(d/dl) (7)

We finally deduce,

FSn(d) =
1
dl

β β

Γ(β )
(d/dl)

β−1 exp[−β (d/dl)], (8)

This gamma distribution could therefore represent the gen-
eral description of a spray for example that of the SOD spray.

An alternative description of a spray leading to the gamma
function as well could be made also by adopted the MEF formal-
ism. This distribution is formulated with a single constraint on
diameter expressing the definition of a mean drop diameter [10]:

∫
D

DqFn(D)dD = Dq
q0. (9)

where and q and Dq0 are two parameters of the distribution
function Fn(D).

To model the small drop limitation caused by the presence of
surface tension forces, a diameter-class probability distribution,
g(D), continuously increasing with the diameter, is introduced
[9]:

g(D) = ςDα−1, (10)

where ς is a constant and α is the third parameter of Fn(D).
Giving birth is the three-parameter generalized distribution

[9], [8],

Fn(D) =
q

Γ(α

q )
(

α

q
)

α
q

Dα−1

Dα
q0

exp[−α

q
(

D
Dq0

)q], (11)
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by maximizing the following relative entropy

SD =−
∫

D
Fn(D) ln

Fn(D)

µ(D)
dD, (12)

where µ(D) = g(D)α−1, the probability of reaching a diam-
eter D.

The specific approach allows determining some of the pa-
rameters of the general formulation as follows:

Dq0 =

{∫
D

Dqhn(D)dD
}1/q

, (13)

Hk =
∫

D
mk(D)Fn(D)dD , k = 1...M (14)

The constraints as relevant as possible, reflecting the physics
of atomization, should be chosen to determine the 3 parameters
(Dq0, α , q) of the generalized gamma function in addition to
Eqn. (13). Note that the specific formulation that we introduced
was able (alone) to predict drop-size distribution, although that
distribution poorly models distribution for small drops as previ-
ously mentioned [4].

APPLICATION TO THE SOD SPRAY
Predicting the drop size distribution of the new Spray On

Demand(SOD) print-head is an important issue for device opti-
mization and operation. In the following we apply the previous
approach to the SOD with the details of the specific formulation
constraints on mass and energy.

Mass conservation
Let Ms be the mass of fluid accumulated at nozzle tip and

which is ejected after an excitation time or operation of the SOD
and which will break-up into droplets (Fig. 2). It corresponds
to the total mass of fluid bursting at the nozzle tip interface due
to Faraday instability, a direct consequence of the acceleration.
The mass Ms of fluid is a reference quantity on which we will
make our argument on mass and energy conservation. Therefore
its precise value is not an issue. We assume Ms to be atomized
into spray droplets with the drop diameter space divided into nc
classes of constant width ∆D. Let Ni be the number of drops in
each class, it is possible to build the histogram of the frequency
of occurrences of a given class. We denote pi = Ni/N the fre-
quency of the number-based probability distribution whereas the

FIGURE 2. Drop hanging at the nozzle and atomization modeling.

continuous version is a probability density function, referred to
as the number-based drop-size distribution with notation hn(D).
We deduce the constraint upon mass conservation as :

nc

∑
i=1

pid3
i = 1 with di =

Di

D30
. (15)

Energy Conservation
The instability leading to droplet formation can be viewed as

the conversion of the surface energy, Esur f ace, and fluid film ki-
netic energy, Evib, of the hanging drop (of mass Ms) at the nozzle
exit, to the droplets surface energy, Edroplets generated in addition
to the dissipation due to fluid viscosity1:

nc

∑
i=1

pid2
i =

D30

Dc
. (16)

where Dc corresponds to a characteristic diameter of the pro-
cess equivalent to the Sauter Mean Diameter D32 for energy con-
straint.In fact, we can rewrite the energy constraint as:

nc

∑
i=1

piDi
2 =

nc
∑

i=1
piDi

2.
nc
∑

i=1
piDi

3

nc
∑

i=1
piDi

3
=

D30
3

D32
, (17)

and deducing by identification that Dc ≡ D32.

1Gravitational potential energy and dissipation are neglected.
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From the energy constraint, we can establish a relationship
for estimating the Sauter Mean Diameter of the SOD depending
on the physical mechanical and operating conditions of the print-
head [17]:

D32 =

[
ρ f

π

6

(
abg

2σ f sin(θE −αb)C
+

f 2
p

σ f

[
1
4
(

µ f σ f

ρ2
f f 3

p
)2/5 +B2

])]−1

,

(18)
where B corresponds to the vibrating amplitude of the SOD

nozzle depending on the tube proprieties.
From the unstable wavelength, we can express the volume

mean diameter (D30) with a proportional constant ζ1 as [17]:

D30 = ζ1(
µ f σ f

ρ2
f f 3

p
)1/5. (19)

where ζ1 could determined using experimental measurement.
Solving the MEF system leads to :

pi = exp(−λ0−λ1d2
i −λ2d3

i ). (20)

The following minimization allows determining the La-
grange multipliers to fully compute Eqn. (20),

min

{
ln[

nc

∑
i=1

exp(−λ1(d2
i − k)−λ2(d3

i −1))]

}
gives λ1,λ2,

(21)
and the multiplier λ0 is given from normalization constraint,

i.e ∑
nc
i=1 pi = 1, by

λ0 = ln[
nc

∑
i=1

exp(−λ1d2
i −λ2d3

i )]. (22)

Hence, as previously seen the number-based drop-size dis-
tribution of the specific formulation expresses as:

hn(Di) =
pi

∆D
. (23)

Predicting drop size distribution
The specific approach is limited by the fact that hn(D) gener-

ally over predicts small droplets population [4]. While the gen-
eralized gamma function found to be identical to a Nukiyama-
Tanasawa distribution [8] is in good agreement with most experi-
mental measurements both for number-based fn(D) and volume-
based fv(D) distributions [26]. For our modeling we thus ap-
ply our approach for the general formulation using the three-
parameter generalized gamma distribution:

Fn(D) =
q

Γ(α

q )
(

α

q
)

α
q

Dα−1

Dα
q0

exp[−α

q
(

D
Dq0

)q]. (24)

For the new approach we propose, we use the physically-based
approach of the specific formulation to compute the diameter Dq0
and parameter α respectively using the following relationship,

Dq0 =

{∫
D

Dqhn(D)dD
}1/q

and D32 =

∫
D D3Fn(D)dD∫
D D2Fn(D)dD

, (25)

where hn(D) is given using Eqn. (23).
We can express the Sauter Mean Diameter as:

D32 =
α
− 1

q Dq0 q
1
q Γ

(
3+α

q

)
Γ

(
2+α

q

) . (26)

The parameter q is fixed by using experimental measure-
ment; this parameter is mainly sensitive to atomization process
[26], it has a unique value for a given atomizer. Therefore it is
assumed for our modeling as a constant. This approach allows a
dynamic drop size distribution in contrast with the classical ap-
proach where the parameters have to be adjusted for each oper-
ating conditions. The coupling of the previous physical methods
allow our model to be sensitive to physical mechanical and oper-
ating conditions of the device.

Experimental measurements: shadow imaging tech-
nique setup

The spray is illuminated in a backlight configuration by a
non-coherent short flash source (15 ns in duration) to freeze the
movement of the droplets on the images. The detector of the
monochrome camera is composed of 1 008 x 1 018 square pixels
of 9 µm side. An objective composed of 2 lenses ( foc1=300mm
and foc2=100mm) and of lateral magnification G = 3.7 is used to
obtain high-resolution images. The field of view is 2.44 mm x
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FIGURE 3. Curve for droplet diameter evaluation.

2.46 mm and the resolution is 4130 pixels/cm. A 3-step image-
processing program developed in C++ is applied to the images
[19]. The first step consists of a normalization of the images to
enhance the contrast of the images and to correct non-uniform
background illumination. In a second step, images are bina-
rized using two thresholding techniques. A classical threshold
based on the range of grey levels in the image and a threshold
based on the wavelet transform (in order to detect the out-of-
focus droplets). This technique allows detection of local grey
level variations of low contrast images in order to localize the
maximum number of droplets and to associate to each of them a
surrounding mask. Then each droplet is separated from its neigh-
bors within the mask in order to be individually analyzed. The
sub-pixel contour of the droplet is computed. The diameter of
each droplet is defined as the equivalent surface radius (r61) of
the binarized image of the droplet at a level equal to 61% of the
local grey level amplitude. An imaging model has been devel-
oped in order to estimate correctly the diameter [20]. The ratio
of the real diameter (D) to the equivalent surface radius (r61) is
directly related to the contrast (C0) of the droplets, as shown in
Fig. 3. This curve is used to estimate the real diameter of the
drops. Moreover, the level of out-of-focus of each droplet is
determined in order to sort the droplets relatively to their spa-
tial position from the focus plane. This is achieved through the
calibration of the Point Spread Function (PSF) of the optical
setup. Indeed, the PSF gives information on the out of-focus
of droplets [20]. Droplets of low contrast (< 0.1) and of high
level of out-of-focus (PSF >0.1 mm) are so rejected.

Model constants determination
We experimentally determine the drop-size distribution of

our new print-head using high speed camera and imaging post-
processing treatment. An adjustment is made in order to deter-
mine the 2 constants of the model. Once these parameters are de-
termined, the model can predict the behavior of the device when
physical and operating conditions are changed. From compari-
son with experimental results in Fig. 4, and using fitting tools,

FIGURE 4. Physical model drop size distribution validation of a new
Spray On Demand print-head.

we deduce the 2 constants of our model (see Table 1). It is to
be noted that the model takes into account the different physi-
cal parameters such as the mean diameters, the micro-channel
motion, and also the voltage applied to the PZA and many other
parameters required for SOD operation [11, 12].

ζ1 q

2.98 0.21

TABLE 1. The constants of the model.

Design parameters: Model Prediction Capability
Our main goal is to test the model ability to predict qual-

itatively the drop-size distribution so that to have tools for the
SOD optimization. For a quantitative study further measure-
ments would be necessary which will require a reliable SOD,
with a qualitative study performed here. The device, described
in this paper together with the proposed modeling has been used
in a host of innovative microfluidic applications such as metal-
lization and fuel cell manufacture [17]. The results reported in
Fig. 5 are predictions of the model with respect to various operat-
ing conditions and physical properties of the fluid (see Fig. 5(a)),
by the way the curves show the more the surface tension is high
the more disperse is the drop size distribution. A decrease of the
surface tension leads to a finer spray droplets where the distribu-
tion shifts toward the small droplets population with an increase
of the main peak height. This trends is in good agreement with
the capillary instability, assuming the unstable wavelength is re-
lated to the spray droplet size [23]. These different results are in

6 Copyright c⃝ 2010 by ASME



FIGURE 5. Prediction of Physical model drop size distribution (a)
fluid proprieties (b) design constant with the tube Young Modulus
E=200 MPa.

good agreement with experimental results [25] for ultrasonic at-
omizer. The model capability is also tested on design parameter
as well in Fig. 5(b) through the SOD nozzle Young’s modulus .

DROP SIZE-DISTRIBUTION EVOLUTION EQUATION
We assume that the real physical drop size distribution varies

with time, for example under the effect of coalescence and
breakup. The MEF traditionally used ignores the temporal evolu-
tion on the distribution. In the following section we undertake an
analysis combining the physically based-MEF approach [11, 12]
with the balance population method allowing the evolution of the
drop size distribution.

The evolution of the distribution function is governed by a
Boltzmann-type equation [13]. We focus on the effect of coa-
lescence and we neglect the breakup, evaporation and nucleation
phenomena. Using the drop size distribution in a formulation
where it depends only on time t, and volume V (or diameter D),
the balance population equation for the distribution fn(V, t) can
be expressed as:

∂ [N(t) fn(V, t)]
∂ t

=
1
2

∫ V

Vmin

Kc(V −V ′,V ′)N(t) fn(V −V ′, t)N(t) fn(V ′, t)dV ′

−N(t) fn(V, t)
∫ Vmax

Vmin

Kc(V,V ′)N(t) fn(V ′, t)dV ′, (27)

where N(t) is the total number of particles at time t. The
right hand side (rhs) term represents source and sink effects due
to coalescence. In this work we consider only binary interactions
where broken droplets split into two smaller ones and where two
droplets can coalesce to form a bigger one (before impacting on
the substrate).

The probability of finding a drop with a volume comprised
between Vi and Vi +∆V is the same as the probability of finding
a drop with a diameter comprised between Di and Di +∆D. The
change between the volume and diameter formulation is carried
out using the following relationship

fn(D)dD = fn(V )dV. (28)

Then we deduce:

fn(V ) =
2

πD2 fn(D), (29)

fn(V, t) being the number-based drop-volume distribution to
be determined by our analysis. The equation relating the number
fn(D) and volume fv(D) based drop size distributions is given
by:

fv(D) = (
D

D30
)3 fn(D). (30)

The total number of droplets in the range V + dV at time t
expresses as:

n(V, t) = N(t) fn(V, t)dV. (31)

Then we deduce the discrete form of the equation verified
by the average number of droplets in class i, n(Vi, t) as :

∂n(i, t)
∂ t

=
1
2

i

∑
j=1

kc(i− j, j)n(i− j, t)n( j, t)

−n(i, t)
nc

∑
j=1

kc(i, j)n( j, t), (32)

where we set kc(i, j) = Kc(Vi,Vj) and n(Vi, t) = n(i, t).

Coalescence Kernel Determination
One difficulty in our approach is to correctly write down the

kernel, expressing the coalescence of drops. We express the coa-
lescence kernel as the product of the coalescence efficiency (Le)
and the collision frequency (H f ),
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Kc(V,V ) = KaLe(V,V ′)H f (V,V ′), (33)

where we have introduced Ka an adjustable constant depending
on the situation.

Coalescence efficiency
Following [14] we assume that the coalescence efficiency

could be expressed as :

Le(V,V ′) = exp[−tcoal(V,V ′)/tcont(V,V ′)], (34)

where tcoal(V,V ′), tcont(V,V ′) respectively are average coa-
lescence time and contact time of particles of volume V and V ′.
The time required for coalescence could be estimated [15] using

tcoal(V,V ′) =C1(
R3

V,V ′ρ f

σ f
)1/2. (35)

where C1 is a constant close to 2; σ f surface tension, ρ f is
the density. RV,V ′ is the equivalent radius of the radii of coalesc-
ing drops and is defined as :

RV,V ′ = (
1

D(V )
+

1
D(V ′)

)−1 (36)

with D = (6V/π)1/3.
The contact time is estimated in [16] for flowing fluid and

the contribution due to relative velocities between bubbles and
assumed here for droplets:

tcont(V,V ′) =
D(V )+D(V ′)

2ur(V,V ′)
. (37)

Here we have neglected the turbulence effect. We denote
u⃗r(V,V ′) the relative velocity between drops of volumes V and
V ′. The determination of this relative velocity is performed as
follows. The relative velocity can be expressed by estimating
the terminal velocity of falling particles. We assume in our
model that coalescence happens only after this regime is reached,
which is reasonable since the momentum velocity response time
(≈ D2ρa/µa) is small, considering the micro-metric size of the
spray droplets.

From Newton’s second law of falling particles, once the ter-
minal velocity is reached, we have:

R2
eaCD =

4
3

Ga, (38)

where Rea = ρaVlD/µa and Ga = D3g(ρ f −ρa)ρa/µa
2 are

respectively the Reynolds and Galileo (or Archimedes) numbers;
ρ f , µ f , (ρa ,µa) are respectively the density and viscosity of fluid
(resp. of the surrounding gas, i.e, air); g is the gravity accelera-
tion; Vl is the terminal velocity to be determined.

For a spherical fluid particle at low Reynolds number, the
Stokes flow analysis leads to the Hadamard-Rybczynski drag law
in which the shear stress on the surface induces an internal mo-
tion. The drag coefficient expresses :

CD =
8

Rea

2+3κ

1+κ
, (39)

with the viscosity ratio κ = µ f /µa. This result could be
compared to that for a solid particle, where CD = 24/Rea.

Combining Eqn. (38) and Eqn. (39) we deduce the termi-
nal velocity Vl(V ) (for a particle of volume V ) i.e the relative
velocity between the fluid particle and air.

Vl =
1
6

1+κ

2+3κ

D2g
µa

(ρ f −ρa). (40)

If we assume that spray droplets reach velocities close to
their terminal velocity before coalescing with arbitrary angles
(β ), the relative velocity between two particles could be ex-
pressed as:

u2
r =

∥∥Vl(V )−Vl(V ′)
∥∥2

=Vl(V )2 +Vl(V ′)2−2Vl(V )Vl(V ′)cosβ . (41)

Then we take the average velocity from velocity directions
0 to π/2, leading to < cosβ >0,π/2≈ 2/π with < ∙ >0,Θ=

(1/Θ)
∫

Θ

0 ∙dx.

Collision frequency
In order to assess the rate of collision or the collision fre-

quency, we consider two particles of diameters D and D′. When
we consider the frame related to particle D, then particle D′

evolves with the relative velocity u⃗r(V,V ′). The necessary con-
ditions to assure the collision between these particles are :

8 Copyright c⃝ 2010 by ASME



- Particle (D) is located in a cylinder which axis is parallel
to u⃗r(V,V ′) with a diameter of D+D′, which by the way defines
the cross-section Sc = π(D/2+D′/2)2;

- To have a collision between times t and t + dt, it is nec-
essary that the distance between the centers of the two particles,
measured parallel to u⃗r(V,V ′), is less than or equal to ur(V,V ′)dt.
In other words, the particle (D) must be located in the colli-
sion volume i.e the volume of cylindrical section Sc and length
ur(V,V ′)dt. Therefore we deduce that the number of collisions of
particles of type (D) with a particle of type (D′) during the time
interval dt is npScur(V,V ′)dt. If we extend this result to all the
particles of type (D′), the collision frequency could be expressed
in the following form:

H f (V,V ′) = Scnpn′pur(V,V ′)

= πnpn′pVT (D/2+D′/2)2ur(V,V ′), (42)

where np,n′p are the numbers of particles per unit volume of size
respectively V,V ′; Sc being the collision cross-section of the two
droplets. We approximate npn′p ≈ (n(V, t = 0))/VT )(n(V ′, t =
0))/VT ) using Eqn. (31). With VT =Vspray/αV , αV is a constant,
expressing the spray volume fraction(or dispersed phase volume
fraction) and Vspray the total volume of the spray droplets, see the
following subsection.

Combining Eqn. (33), Eqn. (34) and Eqn. (42), we obtain
the coalescence kernel:

Kc(V,V ′)≈ K̃aCN(D(V )/2+D′(V ′)/2)2

Vsprayur(V,V ′)exp[−tcoal(V,V ′)/tcont(V,V ′)]. (43)

where we set CN = π(n(V, t = 0))(n(V ′, t = 0))/V 2
spray), and

the constant of our model K̃a = KaαV .
We easily verify the following properties of the kernel :

kc(i, j) = kc( j, i) ≥ 0. Eqn. (43) can also be seen as a general
form for a coalescence kernel which takes into account mutual
particle cross section, relative velocity and a particle coalescence
efficiency.

REFORMULATION OF THE DROP-SIZE DISTRIBUTION
EQUATION

The method of moments and the size-binning method do
not describe the precise behavior of the drop size distribution.
Monte-Carlo method seems to be a more advantageous choice
and describes with precision the evolution of the drop size dis-
tribution [18, 21, 22]. In order to carry out a precise numerical
analysis, we reformulate the problem in terms of mass conserva-
tion and then develop a Mass Flow Algorithm (MFA).

Multiplying Eqn. (32) by the volume Vi and summing over
all i, leads us to the mass conversation equation (assuming that
the density of the fluid (ρ f ) is constant):

nc

∑
i=1

Vin(i, t) =
nc

∑
i=1

M(i, t) =
nc

∑
i=1

M(i,0) =
m0

ρ f
=Vspray. (44)

We can normalize the relation by dividing by Vspray the total
volume of spray droplets, and we obtain:

nc

∑
i=1

M(i, t)
Vspray

=
nc

∑
i=1

m(i, t) = 1, (45)

where we set m(i, t) = M(i, t)/Vspray. We then have of
course, due to mass conservation

d
dt

nc

∑
i=1

m(i, t) = 0. (46)

Multiplying by Vi and using the symmetry of kc(i, j), one
obtains the following equation,

∂m(i, t)
∂ t

=
i−1

∑
j=1

k̃c(i− j, j)m(i− j, t)m( j, t)

−m(i, t)
nc

∑
j=1

k̃c(i, j)m( j, t), (47)

where we denote k̃c(i, j) = Vspraykc(i, j)/Vj . We can show
that k̃c is bounded, knowing K ∝ Dα exp(−Dβ ). Thus we set
K∞

c = sup
i, j≥1

k̃c(i, j).

In the continuous form, we proceed by multiplying equation
Eqn. (27) by V and dividing by Vspray =

∫ Vmax
Vmin

V N(t) fn(V, t)dV
for normalization purpose, and by introducing the mass den-
sity function, M(V, t) = V N(t) f (V, t), we obtain, with g(V, t) =
M(V, t)/Vspray, the Mass Flow Formulation, using the symmetry
of Kc,

∂g
∂ t

(V, t) =
∫ V

Vmin

K̃c(V −V ′,V ′)g(V −V ′, t)g(V ′, t)dV ′

−g(V, t)
∫ Vmax

Vmin

K̃c(V,V ′)g(V ′, t)dV ′, (48)
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where K̃c(V,V ′) = VsprayKc(V,V ′)/V ′, Kc being given by
Eqn. (43).

The following condition being by definition assured:

∫ Vmax

Vmin

g(V, t)dV = 1 and
d
dt

∫ Vmax

Vmin

g(V, t)dV = 0. (49)

The Monte-Carlo scheme
Once the problem is well-formulated, we look for the drop-

size distribution evolution by using the Monte-Carlo scheme. We
choose a fixed time step ∆t such that ∆tK∞

c < 1. We set tn =
n∆t and mn(i) = m(i, tn). We discretize time by using an explicit
Euler scheme for i≥ 1,

mn+1(i)−mn(i)
∆t

=
i

∑
j=0

k̃c(i− j, j)mn(i− j)mn( j)

−mn(i)
nc

∑
j=1

k̃c(i, j)mn( j). (50)

Thus, we can compute mn+1(i):

mn+1(i) = ∆t
i

∑
j=1

k̃c(i− j, j)mn(i− j)mn( j)

− (1−∆t)
nc

∑
j=1

k̃c(i, j)mn( j))mn(i). (51)

Using mass conservation of Eqn. (45), we can rewrite
Eqn. (51) as:

mn+1(i) = ∆t
i

∑
j=1

k̃c(i− j, j)mn(i− j)mn( j)

−
N

∑
j=1

(1−∆tk̃c(i, j))mn( j)mn(i). (52)

We associate to {mn(i) : 1 ≤ i ≤ nc}, the probability Pn de-
fined on ℕ∗:

Pn =
nc

∑
i=1

mn(i)δ (i). (53)

We denote by (σA(i))i≥1 the following sequence for a set
A⊂ ℕ∗:

σA(i) :=

{
1 if i ∈ A
0 othervise

(54)

After some algebraic manipulations, we have

nc

∑
i=1

mn+1(i)σA(i)

=
nc

∑
k=1

nc

∑
j=1
{p(i, j)σA(i+ j)+(1− p(i, j))σA(i)}mn(i)mn( j).

(55)

Here we denote p(i, j) := ∆tk̃c(i, j). The convergent Monte-
Carlo scheme is then the following :

we choose N integers, and for all n ≥ 0, we approx-
imate the solution at time tn by N particles denoted by
iN,n(1), iN,n(2), . . . iN,n(N) ∈ ℕ∗ such that,

∀i 1
N

N

∑
k=1

σ{i}(iN,n(k))≈ mn(i). (56)

Initialization
To initiate the computation, we choose N numerical particles

iN,0(1), iN,0(2), . . . iN,0(N) ∈ ℕ∗ such that

1
N

N

∑
k=1

σ{i}(iN,0(k))≈ m0(i). (57)

Coalescence
We compute the sizes of particles at time tn+1 using the sizes

of particles at time tn. Let X1
N,n,X

2
N,n, . . . .,X

N
N,n be N indepen-

dent real random variables uniformly distributed in {1,2...N}
and Uk

N,n,1≤ k≤N be N independent real random variables uni-
formly distributed on [0,1]. Let us assume that all the random
variables Xk

N,n, 1≤ k ≤ N and Uk
N,n, 1≤ k ≤ N are independent.

The new sizes of particles iN,n+1(k),1≤ k ≤ N are defined as:

iN,n+1(k)

=

{
iN,n(k)+ iN,n(Xk

N,n) if Uk
N,n < p(iN,n(k), iN,n(Xk

N,n))

iN,n(k) otherwise
(58)
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It can be shown that this scheme is convergent [17]. It is also
to be noted that the approach developed in this paper could easily
be extended to other configurations like spray droplets break-up
or evaporation, for example.

Application to physically based drop size distribution
evolution

The coupling with the previous physical approach from the
Maximum Entropy Formalism(MEF) allows our model to be dy-
namic and sensitive to physical mechanical and operating con-
ditions of the atomizer. Finally, we can deduce a physically-
based drop size distribution evolution thanks to our Monte Carlo
scheme, using as initialization,

m0(i) = ∆V g(Vi,0) = i∆V NFn(i∆D)∆D/Vspray, (59)

with Vspray =
∫ Vmax

Vmin
V FndV .

Finally using Eqn. (59) and with the Monte Carlo scheme
Eqn. (58), we solve the evolution of the drop-size distribution of
our initial distribution submitted to coalescence effect using the
MFA.

MODELING RESULTS
Monte-Carlo scheme convergence and validation

We test the model convergence using k(i, j) = i+ j, since an
analytical solution is known with this kernel. As shown in Fig. 6,
a convergence is obtained for a sample of numerical particles of
N = 10000 and a number of time steps of P = 400. The initial
condition is

f (i)0 =

{
1 if i = 1
0 otherwise

(60)

the analytical expression is established in [24]; the second
moment is given by:

M2(t) =
N

∑
i=1

i2 f (i, t) = e2t . (61)

Spray Modeling
We carried out some tests on the evolution of the drop size

distribution. We observed that upon time, bigger drops appear in

FIGURE 6. Comparison between analytical and numerical solution
of second moment.

FIGURE 7. Number based drop size distribution, fn(D), and the coa-
lescence effect.

the spray, as shown in Fig. 7. The first effect of coalescence is
observed at the time of 5 ms. At longer times, we observe the co-
alescence effect, with the emergence of bigger drops shifting by
the way the drop size distribution in accordance with experimen-
tal measurements involving coalescence. The drop-size distribu-
tion presented is bi-modal such an observation has been made on
ultrasonic spray2, but so far no explanation has been advanced.
In [25] for the analysis of ultrasonic atomizer the presence of the
second peak near the main peak has been obtained but the second
peak is neglected for the MEF distribution fitting. Even though
the existence of this supplementary peak is not fully confirmed,
based on our model we can retrieve and explain via coalescence
such a bimodal distribution in a physical basis.

We show in Fig. 8, the sensitivity study to coalescence ef-
fect which leads to physically-based distribution (see Fig. 8(b)) .
Such a predictive capability and physically-based distribution as
in [27] of our model is out of range of classical approach. It is

2Preliminary measurement underway of the SOD shows the same trend far
from the nozzle tip.
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FIGURE 8. Number based drop size distribution, fn(D) sensitivity to
coalescence effect (a) K̃a = 0.5 and (b) K̃a = 5.

worth noting that the temporal evolution of the model drop-size
distribution could be interpreted as well as the distribution at a
spatial point zs such zs =Ust, with Us the spray mean velocity, t
being time. Our model could be used as well for CFD modeling
as initial condition with a bi-modal (or even multi-modal) distri-
bution in a more physical basis unlike traditional approaches. An
improvement of our scheme could be to adopt the Quasi-Monte-
Carlo method (QMC) [21].

CONCLUSION
In this paper, we have performed a theoretical study of in-

stantaneous drop size distribution and its temporal evolution ap-
plied to a new SOD device. From two visions of the MEF
what we call a specific and a general formulation, we derive
a new physically-based formulation for spray modeling. With
the use of the established Sauter Mean Diameter D32, Volume
Mean Diameter D30, and also SOD motion, we have established a
physically-based prediction model coupling the three-parameter
generalized gamma distribution and conservation laws of MEF.
The model parameters have been deduced using a limited set of
experimental measurements with the SOD. This new dynamic
model is capable of predicting drop size distribution for well
specified operating conditions, fluid and channel structure prop-
erties. This new approach avoids the traditional adjustment for
each operating condition and has better predictive capabilities.
The population balance equation, taking into account the inter-
actions between droplets is analyzed. Thus we have established
the evolution and resolution of the drop size distribution equation
submitted to the coalescence effect. In contrast to Direct Nu-
merical Simulation (DNS), the Mass Flow Algorithm (MFA) we
choose allows to preserve the total mass of particles. In this work
we consider only binary interactions where two droplets can coa-
lesce to form a bigger one, this before impacting on the substrate.
Based on physical hypothesis, we use our proposed coalescence
kernel and couple the model with our previous physically-based
approach. To solve the problem, a Monte-Carlo Method which is
shown to be convergent is developed highlighting the formation

of new drops due to coalescence, leading to a physically based
bi-modal distribution.

As future perspective, it is possible to improve the method
by adopting quasi-Monte-Carlo simulation method which con-
sists of replacing the (random) Monte-Carlo simulation algo-
rithm by a deterministic one.

REFERENCES
[1] A.L. Yarin, ”Free Liquid Jets and Films: Hydrodynamics

and Rheology”, Longman Scientific & Technical and Wiley
& Sons, Harlow, New York, 1993.

[2] E. Villermaux, ”Fragmentation”, Annual Review of Fluid
Mechanics 39, 419–446, 2007.

[3] E. Villermaux, P. Marmottant, and J. Duplat, ”Ligament-
Mediated Spray Formation”, Phys. Rev. Lett. 92, 074501,
2004.

[4] E. Babinski and P. E. Sojka, ”Modeling drop size distri-
butions”, Progress in Energy and Combustion Science, 28,
303–329, 2002.

[5] H. Liu, ”Science and Engineering of Droplets - Fundamen-
tals and Applications”, William Andrew Publishing-Noyes,
2000.

[6] C. Dumouchel ”The Maximum Entropy Formalism and the
Prediction of Liquid Spray Drop-Size Distribution” En-
tropy, 11, 713-747, 2009.

[7] X. Li and R.S Tankin , ”Derivation of droplet size distri-
bution in sprays by using information theory”, Comb. Sci.
Technol., 60, 345–357, 1988.

[8] C. Dumouchel, ”A New Formulation of the Maximum En-
tropy Formalism To Model Liquid Spray Drop-Size Distri-
bution”, Part. Part. Syst. Charact., 23, 468–479, 2006.

[9] J.H. Lienhard, P.L.Meyer, ”A physical basis for the general-
ized gamma distribution”, Quart. Applied Math., 25, 330–
334, 1967.

[10] J. Cousin, S. J. Yoon, C. Dumouchel, ”Coupling of Clas-
sical Linear Theory and Maximum Entropy Formalism for
Prediction of Drop-Size Distribution in Sprays: Applica-
tion to Pressure Swirl Atomizers”. Atomization and Sprays,
6, 601–622, 1996.
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