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ABSTRACT 
To date, eddy viscosity models are the most accepted and 

widely used RANS-based turbulence closures, attributable to 
their computational efficiency and relative robustness. One 
notable shortcoming of these models is their insensitivity to 
system rotation and streamline curvature. In this article, we 
present a variation of the SST k-ω model properly sensitized to 
system rotation and streamline curvature. The new model is 
based on a direct simplification of the Reynolds Stress Model 
under weak equilibrium conditions. To enhance stability and 
include history effects, an additional transport equation for a 
transverse turbulent velocity scale is added to the model. The 
new transport equation incorporates the physical effect of 
curvature and rotation on the turbulence structure.  The eddy 
viscosity is then redefined based on the new turbulent velocity 
scale. The model is calibrated based on rotating homogeneous 
shear flow and implemented for a number of test cases 
including rotating channel, U-duct, and hump model flow. 
Compared to popular two equation models, the new model 
shows improved performance in system rotation and/or 
streamline curvature dominated flows. 

 
INTRODUCTION 

Turbulent flows of engineering interest often have the 
effects of body forces induced by system rotation and 
curvature. Conventional eddy viscosity models (EVM) are not 
sensitized to these effects and thus fail to reproduce their effect 
in the flow. Although there are a number of Second Moment 
Closure (SMC) based algebraic stress models, and similarly 
non-linear eddy viscosity models (NLEVM), capable of 
resolving the rotation and curvature effects, their use is limited 
due to added computational cost and numerical stiffness. EVMs 
are still the most preferred turbulence closures in the industrial 

CFD community. In this paper, we present a variant of the SST 
k-ω model with one additional scalar transport equation, which 
is intended to capture the effects of system rotation and/or 
streamline curvature. The new transport equation is a 
compromise between robustness and computational efficiency. 
The new scalar variable scales with the transverse turbulent 
velocity and carries the turbulence structure information. The 
eddy viscosity is redefined using the new scaling argument in 
such a way that it embraces the effects of rotation and curvature 
(RC) on the turbulent flow, and yields results equivalent to the 
SST k- ω model when these effects are not significant. The 
imposed rotation rate or the rotational effect due to streamline 
curvature is included in the source term for the new scalar 
transport equation. The form of the proposed model is easily 
expandable to 3D flows. In the following sections, the 
turbulence model formulation and a number of test case results 
including rotating homogeneous shear, rotating turbulent 
channel flow, fully developed U-bend flow, and hump model 
flow are discussed.  
 
MODEL FORMULATION 

For purposes of modeling, the Reynolds stress tensor in 
incompressible flow may be expressed in terms of the turbulent 
kinetic energy, k, and the anisotropy tensor bij defined as: 
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The anisotropy tensor contains the relevant information on 
turbulence structure and must be evaluated as a function of 
available variables in the simulation.  Gatski and Speziale [1] 
proposed an explicit functional form for the anisotropy tensor 
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based on the weak equilibrium hypothesis, which forms the 
basis for their algebraic Reynolds stress model:
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Note that ijS  represents the rate-of-strain tensor and '
ijΩ  

represents the rotation rate tensor expressed in a reference 
frame rotating with angular velocity mω : 
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York et al. [2] linearized the explicit algebraic anisotropy tensor 
with respect to mean strain rate to develop a semi-implicit 
expression for eddy-viscosity coefficient and used it to redefine 
eddy viscosity and developed a curvature sensitive k-ε model: 
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where S is the strain rate magnitude, K1 – K8 are model 
constants, and ε is turbulence dissipation rate. In adopting this 
expression for the SST k-ω model, the dissipation rate is 
expressed as ωkε 09.0= . The effect of curvature and rotation 
is included in the term mω , and enters in the eddy-viscosity 
expression via the effective rotation rate magnitude term W: 
 
 ijijWWW 2= . (12)

   

Equation (7) can be alternately expressed: 
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where mmji

'
ijij e ω+Ω=Ω  is the absolute vorticity tensor, 

expressed in an inertial frame of reference, and mmji
r
ij e ω−=Ω  

is the coordinate system rotation rate tensor, also referred to as 
the vorticity modification tensor [3]. Although mathematically 
similar, the effect of a rotating reference frame modifies 
vorticity uniformly everywhere in the flow-field, whereas the 
influence due to curvature effects might change with both time 
and space throughout the domain. 

In order to be frame indifferent and include the effects of 
rotation/curvature on the eddy viscosity, the term mω  that 
appears in Eq. (11) is taken to be the local Lagrangian rotation 
rate of the principal axes of the mean strain rate tensor, similar 
to previous approaches in the literature [4-8].  In order to close 
the model, mω  must be computed from the mean velocity field. 
In the present model formulation, we make use of Wallin and 
Johansson’s [4] derivation for mω , which was also adopted by 
Spalart and Shur [8] and Gatski and Jongen [5] for curvature-
corrected versions of the Spalart-Allmaras model and an 
algebraic Reynolds stress model, respectively: 
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where .
S  is the material derivative of strain rate tensor and 

 
23

2
1

122

612

ss

kjiksijsijs
ij IIIII

SSIISIIIII
A

−

++
=− δ

.  (16) 

sII and sIII are second and third invariants of the mean strain 
rate tensor. For 2D mean flows, equation (15) reduces to 
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The transport equations used in the SST k- ω model are 
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where G represents generation of turbulent kinetic energy, k, or 
specific dissipation rate, ω, Y represents dissipation of k or ω, 

ωD  represents the cross-diffusion term, and Γ represents the 
effective diffusivity of k or ω. Further details regarding these 
equations are available in Ref. 9. 
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The turbulent viscosity for the k-ω SST model is 
evaluated using: 
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where y is distance from the nearest wall. The eddy viscosity 
can be rewritten as  
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The motivation to include a new scalar modeling variable 

comes from our previous work on rotation/curvature sensitive 
EVMs [10], in which we found that the direct implementation 
of a rotation/curvature sensitized eddy viscosity coefficient 
introduced instability in some test cases, and spatial filtering 
introduced for stability purposes significantly increased the 
computational cost. As an alternative, the current model 
includes a structure variable related to a fluctuating transverse 
velocity component.  As such, the new approach borrows from 
the k-ε-υ2 framework originally proposed by Durbin [11].  
Herein, the transport equation for the new scalar variable υ2 is 
based on the conceptual description: 
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The second term on the right hand side of equation (24) is 
intended to represent the changes in turbulence structure due to 
system rotation and curvature effects. The eddy viscosity is 
redefined in terms of the new scalar variable:  
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The RC effect enters the model via υ2. Under the condition 

of weak equilibrium, the new scalar υ2 approaches the 
turbulence kinetic energy k such that 
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where µC  is rotation-sensitive eddy viscosity coefficient 
similar to that derived by York et al. [2], the superscript rot 
stands for rotating systems and non-rot stands for non-rotating 
systems. Considering the model form used by York et al. [2], 
the transport equations for turbulent kinetic energy k  and 
dissipation rate ε  in homogeneous shear flow can be cast as: 
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Under weak equilibrium, with constants 4411 .C =ε , 9212 .C =ε : 
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Equation (29) along with York et al. eddy viscosity coefficient 
expression (Eq. 11) is solved for the weak equilibrium values of 

µC  for different ( )Smω  values. A functional relationship for 
the ratio of rotating and non-rotating eddy viscosity coefficient 
with ( )Smω  is then developed. Figure 1 shows the resulting 

variation of 
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The formulation in Eq. (11) captures the flow instability in the 
range of 2500 .S/m ≤≤ ω with maximum growth rate at

230.S/m =ω . Although most flows of engineering interest 
occur in this range, we extended our model’s range to

5000 .S/. m ≤≤ ω . This extension is based on the symmetric 
bifurcation diagram for rotating shear flow using the weak 
equilibrium analysis of the Speziale, Sarkar, and Gatski 
differential Reynolds stress model [12]. An explicit expression 
developed for the functional relationship between η and ωm/S is 
a fifth order polynomial: 
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with x = ( )Smω , and model coefficients: 
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When the value of ( )Smω  goes outside the working range of 
this formulation, η  is set to zero, which has the effect of 
relaminarizing the flow under the condition of stabilizing 
curvature. 

For the structural source term of the new scalar transport 
equation (Eq. 24), an assumption analogous to linear return to 
isotropy of the Reynolds stress tensor is made in such a way 
that the model will return back to the SST k-ω model in regions 
where the curvature and rotation effect in the flow is negligible. 
The following expression carries the structural information: 
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where 81.CR = , is from Rotta’s return-to-isotropy model [13] 

and 090.* =β  comes from the SST k-ω model.  The model 
transport equation for υ2 is therefore: 
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The scalar υ2 becomes identical to turbulent kinetic energy k, in 
the regions where curvature and rotational effects are negligible 
and the model returns SST k-ω results.  

 
MODEL VALIDATION 
The new variant of the SST k-omega model was implemented 
into the commercial flow solver FLUENT® 6.2.16. A pressure 
based segregated solver with SIMPLE pressure velocity 
coupling scheme was used for all test cases. Second order 
upwind discretization was used for all the convective variables. 
For the convergence evaluation and comparison purposes, a 
fully developed U bend test case was run in an identical 
environment using both SST k-ω and the new variant of SST k-
ω model. The new model requires approximately 17% more 
computation time per iteration, which is expected given the fact 
that it has one additional transport equation to solve. The 
convergence rate of new model compared to the SST k-ω was 
very much case dependent. It appears that the new scalar υ2, in 
some test cases (for example U bend, Hump model) reaches an 
equilibrium solution faster than the turbulent kinetic energy k 
and drives the solution towards convergence faster than the 
standard SST k-ω  model. 

 
Fig 1. Bifurcation diagram for the new variant of SST k-ω 
model. 
 
 
Homogeneous Shear Flow 

Homogeneous shear flow is widely used as a 
demonstration case for the study of effects of rotating reference 
frame on modeled turbulence production. Since the flow is 
homogeneous (i.e. no streamline curvature effects), the term

mω appearing in the model equations is simply equal to the 
reference frame rotation rate and there is no convective or 
diffusive transport. For the cases shown here, given an applied 
strain rate S, the initial value of specific dissipation rate was ω0 
= 3.3S, and the initial value of turbulent kinetic energy, k0, was 
arbitrary.  This matches the conditions used by Bardina et al. 
[12] for large-eddy simulations (LES) of this flow, the results of 
which were used for comparison purposes.  The initial value of 
υ2 was set equal to k0, which is the equilibrium result for non-
rotating flow. 

Three different frame rotation rates were considered, 
corresponding to no rotation (ωm/S = 0), stabilizing rotation 
(ωm/S = -0.5), and destabilizing rotation (ωm/S = 0.25). Figure 2 
shows the temporal evolution of turbulent kinetic energy for the 
non-rotating case, with dimensionless time denoted as t* = St. 
The model variant results are in good agreement with the LES 
results of Bardina et al. [14] and are identical to the k-ω SST 
model. Figure 3 shows stabilizing rotation in which turbulent 
kinetic energy exhibits temporal decay, and the new model 
successfully captures this behavior. Figure 4 shows the 
destabilizing rotation case that results in a significant increase 
in the production of turbulent kinetic energy in comparision to 
the non-rotating case. Although an eddy-viscosity model is 
unable to reproduce the initial decay, the new model does show 
a significant enhancement of turbulent production, similar to 
the LES results. 
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Fig 2. Temporal growth of turbulent kinetic energy for non-
rotating homogeneous turbulence in plane shear, ωm/S = 0. 
 

 
Fig 3. Temporal decay of turbulent kinetic energy for 
homogeneous turbulence in plane shear with stabilizing 
rotation, ωm/S = -0.5. 

 
Fig 4. Temporal growth of turbulent kinetic energy for 
homogeneous turbulence in plane shear with destabilizing 
rotation, ωm/S = 0.25. 
 

Rotating Channel Flow 
Figure 5 shows a schematic of rotating two-dimensional 

channel flow.  For the test cases here, Reynolds number based 
on friction velocity and channel half-height, τRe  = 194, was 
chosen to match the DNS data of Kristoffersen and Andersson 
[15]. Simulations were carried out for rotation numbers Ro = 0, 

0.05 and 0.5, where Ro = 
m

m
U

Hω , and Um is the average velocity 

through the channel. A Cartesian grid of size 10x200 
(streamwise x wall-normal) was used to simulate the fully 
developed turbulent rotating channel flow with periodic 
boundary conditions applied in the streamwise direction. The 
maximum wall y+ value for the channel was 0.14.  Results are 
presented in terms of the mean velocity and turbulent kinetic 
energy profiles, with velocity magnitude normalized using the 
average channel velocity and turbulent kinetic energy 
normalized by the square of the average wall friction velocity. 
 

 
 
Fig 5. Schematic diagram of fully developed rotating 
channel flow with channel height H. 
 

 
Figure 6 shows the velocity profile for the non-rotating 

channel. Both models produce results that closely match the 
reference DNS data, and produce results identical to one 
another.  

 

 
Fig 6. Velocity profile for non-rotating channel flow. 
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Fig 7. Velocity profile for rotating channel flow, Ro =0.05 
 

 
In Figures 7 and 8 at rotation numbers Ro = 0.05, 0.5, the 

new variant of the k-ω SST model captures the asymmetric 
velocity distribution indicated by the DNS data. The SST 
model, not being sensitized to system rotation, doesn’t respond 
to rotational effects. Figures 9 and 10 show the turbulent kinetic 
energy profiles for the respective rotation numbers, and the new 
variant of the SST model responds to the imposed rotation close 
to the DNS results.  Note that the new model indicates 
suppression of turbulent kinetic energy on the stabilizing side 
of the channel, and augmentation on the destabilizing side, in 
agreement with the DNS results and with previous experiments 
reported in the literature. 
 
 

 
 
Fig 8. Velocity profile for rotating channel flow, Ro = 0.5 

 

 
 
Fig 9. Turbulent kinetic energy profile for channel flow 
rotating at Ro = 0.05. 
 

 
 
Fig 10. Turbulent kinetic energy profile for rotating channel 
flow Ro = 0.5 
 
 
U-Bend flow 

U-bend flows are commonly used to test turbulence model 
performance for cases with strong streamline curvature effects 
followed by a flow separation. A computational domain based 
on the two-dimensional U-Duct experiment performed by 
Monson et al. [16] as shown in Fig. 11 was used for this test 
case. The Reynolds number based on average velocity and 
channel height was ReH = 106. A Cartesian grid 440x94 
(streamwise x wall-normal) cells with a maximum wall y+ 
value of 0.47 was used for the simulations. The inlet conditions, 
including velocity profile, turbulent kinetic energy profile and 
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specific dissipation rate profile were specified at the inlet to 
match the experimental values reported in Ref. 16. Results were 
compared to measured data at locations 90° and 180° through 
the bend, as indicated in Fig. 11, in terms of velocity and 
turbulent kinetic energy profiles.  The mean velocity was 
normalized using average velocity in the channel, Um, and the 
turbulent kinetic energy was normalized by 10002

mU . 
Figure 12 shows the mean velocity profile at the 90° 

location.  The new variant of the k-ω SST model successfully 
captures the velocity profile at the concave outer surface of the 
duct where turbulence augmentation occurs. In contrast, the 
standard k-ω SST model underpredicts the velocity magnitude 
in this region, similar to other results in the literature using 
eddy viscosity models (c.f. York et al. [2]). Figure 13 shows the 
turbulent kinetic energy profile at the 90° location. The new 
model predicts turbulence augmentation near the concave wall 
and turbulence suppression near the convex wall, while the 
standard model shows less sensitivity towards the streamline 
curvature effect. In terms of RC effects, the new model results 
are in better agreement with the experimental data. 

 Figures 14 and 15 show the velocity and turbulent kinetic 
energy profiles at the °= 180θ  location. The new variant 
successfully captures the characteristic profiles of velocity and 
turbulent kinetic energy on the outer wall of the duct. The 
experimental data shows a separation bubble at the inner wall at 

°= 180θ and a sudden increase in turbulent kinetic energy. 
Both models successfully capture the separation bubble and 
turbulence peak but fail to predict the correct turbulence spike 
and separation length. As pointed out in previous studies [17-
19], the separation and reattachment regions are typically not 
well captured by RANS models. It is likely that a hybrid 
RANS-LES approach would perform better in this region. 

 

 
Fig 11. Computational domain and mesh for 2-D U-bend 
test case. 
 
 

 
 
Fig 12. Velocity profile at °= 90θ in the U-bend 
 
 
 

 
 
 
Fig 13.  Turbulent kinetic energy profile at °= 90θ in the 
U-bend. 
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Fig 14. Velocity profile at °= 180θ  in the U-bend. 
 

 
Fig 15. Turbulent kinetic energy plot at °= 180θ  in the   U-
bend. 
 
 
Flow over Hump Model 

The hump model is an interesting test case of flow control 
application for steady and unsteady RANS models. It has a wall 
mounted Glauert-Goldschmied (having convex curvature over 
the front part and concave curvature over the rear part) type 
body. The body has a chord length c of 0.42 m and height of h 
= 0.0538 m. For the flow control, a slot is located at 0.65c as 
shown in Figure 16. The slot has a span of 0.5842 m and the 
suction rate is 0.01518 kg/s for the test case considered. 
Pressure at the suction slot was adjusted to achieve the desired 
mass flux. Reynolds number based on the chord length for this 
case is 936,000. The first cell-wall distance was carefully 
chosen to maintain wall  y+ value within 1. A 2D structured 
240x560 medium grid was generated for testing purposes as 
shown in Figure 17. Details of the experiment are available in 
Refs [20-22]. For the present model comparison, pressure 

coefficient and turbulent shear stress profiles were examined at 
certain locations of the hump. A two times refined grid in both 
directions was generated to study the grid convergence and grid 
refinement effect on the new model. Figure 18 shows the 
pressure coefficient plot for the medium and fine mesh using 
the new variant of the SST k-ω model. Results are almost 
identical for both mesh sizes. There was a minimal mean flow 
modification due to grid refinement. Other results presented 
here are based on the medium grid. Figure 19 shows the 
pressure coefficient profile on the hump surface. Both the SST 
and the new variant of SST produced almost identical results. 
Both models overpredicted the length of the separation bubble. 
These results are almost identical with the results reported by 
Rumsey and Swanson [22] for the SST model. Rumsey and 
Swanson’s result shows that the RANS based turbulence 
models, including some NLEVMs, tend to predict a large 
separation bubble.  The new model slightly improved the 
turbulent stress at the location x/c = 0.8 compared to the SST 
model as shown in Figure 20.  Similar to the U-Bend case 
above, it is surmised that substantial improvement in prediction 
of the separated flow region may require the use of a hybrid 
RANS-LES approach. 
 

 
 
Fig 16. Schematic of Hump model 

 
Fig 17. Hump grid used for steady suction flow control 
simulation. Expanded view of the mesh close to the suction 
slot region. 
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Fig 18. Effect of grid refinement on new variant of SST k-ω 
model. 
 
 
 

 
 
Fig 19.  Pressure coefficient profile of hump model flow 
with steady suction control using SST model, and curvature 
and/or rotation sensitive new variant of SST. 
 
 
 

 
 
Fig 20.  Turbulent shear stress profiles at x/c = 0.8. 
 
 CONCLUSION 

A modified version of the SST k-ω model capable of 
accounting for rotation/curvature effects has been developed 
and presented. A new transport equation was introduced to 
capture the rotation/curvature effects along with the turbulent 
kinetic energy and specific dissipation rate equations. The 
reference frame rotation rate and streamline curvature effect 
enters through the υ2 transport equation, which in turn, enters 
the model via a modified expression for eddy-viscosity. The 
added scalar equation increased the computation time per 
iteration by almost 17%, but reduced the number of iterations 
required to get a converged solution, at least for the cases 
considered here. A number of test cases were run to evaluate 
the performance of the model focusing on rotating reference 
frames and streamline curvature, and the results showed 
improved agreement with the experimental and/or DNS data, in 
comparison to the standard k-ω SST model. The new model 
showed a good agreement with the LES data in rotating 
homogeneous shear flow case. The new model successfully 
captured the effect of system rotation in the rotating channel 
flow case. In the fully developed U-bend flow case, the model 
successfully captured the turbulent kinetic energy suppression 
in the convex wall and augmentation in the concave wall. Both 
SST and the new variant of SST fail to correctly capture the 
sudden turbulence spike at °= 180θ  near the convex wall and 
the separation length. As for the hump model case, although the 
new model captured the turbulent kinetic energy augmentation 
due to concave curvature, it had the same deficiency in the 
separation region which happens to be an issue with EVMs. In 
contrast to prior efforts to include RC effects into the k-ω SST 
model [10], stability was not an issue for the present model in 
the test cases discussed here.  
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