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ABSTRACT
The aim of this work is to couple vortex methods with the

penalization methods in order to take advantage from both of
them. This immersed boundary approach maintains the effi-
ciency of vortex methods for high Reynolds numbers focusing
the computational task on the rotational zones and avoids their
lack on the no-slip boundary conditions replacing the vortex
sheet method by the penalization of obstacles. This method that
is very appropriate for bluff-body flows is validated for the flow
around a circular cylinder on a wide range of Reynolds numbers.

NOMENCLATURE
u = (u,v), p velocity field and pressure
Re Reynolds number
St Strouhal number
D computational domain
F , S fluid domain and solid domain

ū body rigid motion
u∞ free stream velocity
CL lift coefficient
CD drag coefficient
d non-dimensional diameter
h reference mesh size
f vortex shedding frequency
λ penalization parameter
ω vorticity field
ν kinematic viscosity
ψ stream function
χ characteristic function
∆t time step

INTRODUCTION
Vortex methods (see [Cottet and Koumoutsakos 00] and

[Mortazavi and Giovannini 01]) and penalization methods (see
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[Angot et al. 1999] and [Bruneau et al. 2008]) have been sep-
arately used to compute incompressible high Reynolds number
flows around obstacles. In this work, a novel hybrid particle-
penalization technique is proposed to achieve efficient compu-
tations of bluff-body flows designing a more efficient technique
that covers the advantages of both approaches. In this approach,
the vortex method is used to approximate the penalized Vortic-
ity Transport Equations (VTE). This technique that permits to
solve the flow equations in a fast lagrangian way, overcomes the
difficulty of the vortex methods to satisfy accurately the no-slip
boundary conditions, introducing the penalization term in the
Vorticity Transport Equations. Here, the idea is to extend the
fluid velocity inside the solid body and to solve the flow equa-
tions with a penalization term to enforce rigid motion inside the
solid, using a vorticity formulation. The main interest of the pe-
nalized vorticity formulation is that it replaces the usual vortic-
ity creation algorithm in order to satisfy the no-slip boundary
condition for vortex methods. This new technique avoids the
convergence difficulties due to the creation of the particles on
the solid boundaries. This approach is also able to take into ac-
count the moving obstacles and boundaries in the flow thanks
to an immersed boundary algorithm that is used to complement
this hybrid technique as shown in [Coquerelle et al 06] and [Co-
querelle and Cottet 08]. Then, the method is validated for two-
dimensional flows around a circular cylinder for a wide range of
Reynolds numbers.

1 PENALIZATION METHOD FOR VELOCITY FORMU-
LATION
Before all, we show how the penalization method can be

used successfully to model the flow of an incompressible fluid
around an obstacle [Angot et al. 1999]. In the penalization tech-
nique the system is considered as a single flow, subject to the
Navier-Stokes equation with a penalization term that enforces
continuity at the solid-fluid interface and rigid motion inside the
solid. We solve simultaneously the Brinkman equations in the
solid and the Navier-Stokes equations in the fluid, considering
whole the domain as a porous medium with zero (solid) or infi-
nite permeabilities (fluid). The main advantage of this method is
that it needs neither the mesh to fit the boundaries nor to specify
no-slip boundary conditions. In addition it allows to compute the
pressure as a continuous field on the whole domain including the
solids, and the lift and drag coefficients by integrating the penal-
ization term inside the solid bodies [Bruneau et al. 2008].
The zone variation is realized changing the penalization coeffi-
cient that defines the permeability of each region. Numerically,
the fluid is considered as a porous medium with a very high per-
meability (K = 1016) and the bodies are considered as porous
media with a very small permeability (K = 10−8) . Let us de-
fine a penalization parameter λ≈ 1/K, that is λ→ 0 in the fluid
region F and λ >> 1 in the solid region S. The full domain in-

cluding the solid body is defined as D = F ∪S. By means of the
λ, the velocity term is penalized for a solid in Brinkman equa-
tions. That means that Navier-Stokes equations are replaced by
the following equations:

∂tu+(u ·∇)u−ν∆u+λu+∇p = 0 in D (1)
div u = 0 in D (2)

where λ is the penalization parameter with the dimension [s−1].

2 PENALIZATION METHOD FOR VORTICITY FORMU-
LATION
In this section, the idea is to extend the fluid velocity inside

the solid body and to solve the flow equations with a penaliza-
tion term to enforce rigid motion inside the solid, using a vor-
ticity formulation. The main interest of the penalized vorticity
formulation is that it replaces the usual vorticity creation algo-
rithm in order to satisfy the no-slip boundary condition for vortex
methods. This new technique avoids the convergence difficul-
ties due to the particle creation on the solid boundaries (see [Co-
querelle and Cottet 08] and [Cottet and Maitre 04]). Defining
the Reynolds number as Re = ure f lre f /ν, the non-dimensional
penalized vorticity equation reads

∂ω

∂t
+(u.∇)ω = (ω ·∇)u+

1
Re

∆ω+λ∇× [χS(ū−u)], (3)

where χS is the characteristic function that yields 0 in the fluid
and 1 in the solid and ū indicates the velocity of the solid body.

To discretize the penalized vorticity equation (3) in a vortex
method, the equation is split in three substeps. At each time step,
one successively solves the following equations:

∂ω

∂t
= λ∇×(χS(u−u)) (4)

∂ω

∂t
+(u ·∇)ω = (ω ·∇)u+

1
Re

∆ω (5)

To solve (4) we use a an implicit scheme ( [Coquerelle and
Cottet 08]) and we set

ω̃
n+1 = ∇×

[
un +λ∆tχSun

1+λ∆tχS

]
. (6)

where ∆t is the time step. The right hand side above is evaluated
by centered finite differences.
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At this stage, grid vorticity above a certain cut-off is used to cre-
ate particle at grid point locations and equation (5) is solved by
a classical vortex-in-cell method [Cottet and Koumoutsakos 00].
The velocity field is obtained by solving

∆ψ =−ω (7)

with boundary conditions on the stream function ψ where u =
∇×ψ . Particles are pushed with a RK4 time-stepping. Particles
are then remeshed on the original grid using the following third
order interpolation kernel

Λ3(x) =


0 if |x|> 2
1
2 (2−|x|)2(1−|x|) if 1≤ |x| ≤ 2

1− 5x2

2 + 3|x|3
2 if |x| ≤ 1

(8)

Finally diffusion is solved through an implicit solver on the
grid, with a classical 7-points second order scheme. Note that
the same kernel is used to interpolate grid velocity values onto
particles in the RK4 particle pusher. Grid values for vorticity,
velocity and level set functions are now available for time
tn+1 and a new cycle of iterations can start. Moreover, the
no-slip boundary conditions are naturally satisfied penalizing
the vorticity transport equations.
In all the examples below we will consider bluff-body flows in
domains that can be put in a rectangular box.

3 VALIDATION FOR THE FLOW AROUND A CIRCU-
LAR CYLINDER
The literature about the classical benchmark of the 2D cir-

cular cylinder is wide. A deepened survey of this subject with
several physical remarks and references therein can be found
in [Williamson 96].

Here, we present some results of the numerical simulations
of an incompressible flow past a 2D circular cylinder performed
by the level set vortex method for different laminar and transi-
tional Reynolds numbers in the range of 13≤ Re≤ 9500.

The computational domain and the geometrical setup are
shown in figure 1, where D is a rectangle delimited by its bound-
aries ΓD. The non-dimensional diameter d of the circular cylin-
der and the free stream inlet velocity u∞ are equal to 1. The
Reynolds number is defined as Re = u∞d/ν. The whole compu-
tational domain is meshed by an equispaced Cartesian orthogonal
grid.

For the subsequent simulations of the wake past the circular
cylinder, the flow field is computed solving the Poisson equation
7 with a Neumann condition at downstream ΓD

DA and upstream
ΓD

BC and a Dirichlet condition of the streamfunction over ΓD
AB and

Figure 1: Computational domain D = F ∪S, where F is the fluid
region and S is the solid body region.

ΓD
CD. In particular, around the cylinder a potential flow condition

is considered and the value of the associated streamfunction is
enforced over ΓD

AB and ΓD
CD, that is

ψ = q∞y
(

1− (d/2)2

x2 + y2

)
. (9)

The uniform flow q∞ is used for initialization.

Figure 2: Convergence on grid test (left). Effect of the penaliza-
tion parameter λ (right).

First of all, the grid convergence of the hybrid penalization-
vortex code is verified, considering an impulsively started
cylinder flow with Re = 550. The figure 2 shows the l2-norms
of the instantaneous velocity values for different grid sizes and
penalization parameters at time t = 3. The first plot is performed
for a section at xs = 1.5 with λ = 1010 and the second one for a
section at the middle of the cylinder (xs = 0.0) with a mesh size
h = 0.005. As the figure shows the velocity profiles converge
towards a single curve increasing the grid refinement, Also,
we see that increasing the penalization coefficient the profiles
join the explicit result and confirm the previous analytical
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observations. Practically, the explicit penalization needs to use
λ ≤ 1/∆t, whereas the implicit penalization is unconditionally
stable.

Then, we focus on the low Reynolds number analysis where
the viscous effects are predominant and without the onset of 3D
instabilities the flow has a two-dimensional behavior. Follow-
ing [Ploumhans and Winckelmans 00] the non-dimensional time-
step ∆t is determined by the condition ∆t/(h2 Re)∼ O(1).

Various tests have been carried out by increasing the block-
age ratio d/(yD− yA), and a growth of the shedding frequency
has been noticed. The size of the computational domain is
chosen such that the effects of the boundaries on the shedding
frequencies are negligible. The subsequent simulations have
been performed on a flow region with dimensions [−7.5, 25]×
[−7.5, 7.5] with 3250× 1500 grid points (h = 0.01). The pe-
nalization is introduced using the implicit formulation 6 and the
penalization parameter is λ = 1010. Here, the flow regime is
laminar, the solution is steady and stable for Re < Recrit = 49
( [Williamson 96]). In figure 3, the streamlines for the steady
solution at Re = 13.05 are shown. On the left-hand side, a pic-
ture of an experimental visualization is reported (see [Van Dyke
82]) and the equivalent frame computed by the present method
is shown on the right-hand side. As the figure shows the steady
recirculation areas have the same size and shape.

Figure 3: Streamlines at Re = 13.05

Increasing the Reynolds number, the flow regime is still lam-
inar but the steady solution becomes unstable (Re > Recrit ). On
the left-hand side picture of the figure 4, the amplitude Aω of the
fluctuation of the vorticity on a monitoring point P = (2.5, 0.5) is
plotted for varying Re. For a flow regime close to the bifurcation
point Recrit (Re < 60) the wake instabilities grow very slowly,
so the oscillation study is started at Re = 60. Nevertheless, the
exact critical Reynolds number is obtained with a linear extrap-
olation of the amplification factor curve. Taking the Strouhal
number St = f d/u∞, where f is the vortex shedding frequency,
the numerical and the experimental ( [Williamson 96]) St versus

Figure 4: Amplification factor Aω curve (left). Strouhal-
Reynolds curve (right).

Re curve is plotted on the right-hand side of the figure 4. An es-
timation of the average relative error ε between the curves yields
ε≈ 0.6%.

The evaluation of forces has been carried out using the ’mo-
mentum equation’, as described in [Noca et al. 99]. Here, the
mean values and the amplitudes of the fluctuations of drag and
lift coefficients for flows at Re = 100 (CD = 1.40, ∆CD = 0.01,
∆CL = ±0.32) and Re = 200 (CD = 1.44, ∆CD = 0.05, ∆CL =
±0.75) are computed, where CD is the mean drag coefficient and
∆ corresponds to the amplitude of oscilations. These results are
very close to experimental and numerical data collected by [Rus-
sel and Wang 03]. In figure 5, the time history of CD and CL for
the flow past the circular cylinder at Re = 200 is shown that are
fitted to those obtained by Zdrakovich [Zdrakovich 97]. To take

Figure 5: Time evolution of the drag and lift coefficients at Re =
200.

into account a transitional case we focus now on an impulsively
started flow at Re = 550 and compare the results to [Ploumhans
and Winckelmans 00]. The time evolution of drag coefficients
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Figure 6: Time evolution of the drag coefficient for the impul-
sively started cylinder at Re = 550 (left) and at Re = 9500 (right).

are studied using the ’momentum equation’ ( [Noca et al. 99])
and the ’hydrodynamical impulse equation’ ( [Noca et al. 99])
methods, as shown on the left-hand side of the figure 6. It should
be outlined that the ’hydrodynamical impulse’ method needs a
zero farfield velocity. Here, a Galilean transformation is used
moving the body with a −u∞ velocity to achieve the correct
boundary and force computations. Moreover, in order to avoid
the reflecting effect of the outgoing vortices from the exit bound-
aries the computations are performed on a short time t = 6.

As the curve shows, the results have a very good coin-
cidence. Also, they correspond to the drag computations ob-
tained in [Ploumhans and Winckelmans 00]. The figure 7
shows the vorticity iso-contours which are very similar to the
vorticity field presented by Ploumhans & Winckelmans, intro-
ducing accurately the separation contours and the recirculation
area sizes. Here, the grid convergence in a computational do-
main [−3.75, 12.5]× [−3.75, 3.75] is achieved with parameters
h = 0.005 and λ = 109.

The last simulation is carried out for the flow around the
impulsively started cylinder at Re = 9500 and compared to nu-
merical results obtained by [Koumoutsakos and Leonard 95]. For
such a high Reynolds number, the flow is unstable and the shed-
ding generates complex vortex pairings (see [Williamson 96]).
Taking a domain [−1.5, 4.5]× [−2.5, 2.5], the grid convergence
is achieved for h = 0.0025 and λ = 109. Since at large Reynolds
numbers the flow is dominated by convection, the time-step is
not chosen by the condition ∆t/(Re h2) ∼ O(1), but its value is
reduced to ∆t = 0.005 in order to achieve the numerical accuracy.
According to [Williamson 96], the time is non-dimensionalized
and is based on the cylinder radius. On the right-hand side of fig-
ure 6 the evolution in time of the drag coefficient, computed us-
ing the ’momentum equation’, is reported. The result is very sim-
ilar to the corresponding curve in [Koumoutsakos and Leonard
95] . Finally, on figure 8, six snapshots (t = 1, 1.5, 2, 2.5, 3, 3.5)
of the of vorticty field are ploted and a good agreement with
Koumoutsakos & Leonard (1995) is observed.

Figure 7: Iso-contours of vorticity for t =
1, 3, 5 for the impulsively started cylinder
at Re = 550.

Figure 8: Iso-contours of vorticity for t =
1, 1.5, 2, 2.5, 3, 3.5 for the impulsively started
cylinder at Re = 9500.

5 Copyright c© 2010 by ASME



4 CONCLUSIONS
In the first part of this paper, A hybrid vortex-penalization

method was described in order to achieve an accuarte and fast ap-
proximation of incompressible vortex flows around bluff-bodies.
In this algorithm the penalization method replaces the classi-
cal sheet generation approach of vortex methods in order to
satisfy the no-slip boundary conditions. The new method not
only avoids a heuristic estimation of vorticity generation on solid
boundaries but also corresponds to an immersed boundary tech-
nique generating simplified body fitting trends with moving ob-
stacles. Then, the technique was validated to laminar, transitional
and turbulent flows around a circular cylinder achieving a good
agreement with former experimental and numerical studies.

REFERENCES
[Angot et al. 1999] Angot Ph., Bruneau Ch.-H., Fabrie P., A pe-

nalization method to take into account obstacles in incom-
pressible viscous flows, Numer. Math. 81, 1999.

[Bruneau et al. 2008] Bruneau Ch.-H., Mortazavi I., Gilliéron
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