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ABSTRACT 
The present study is conducted to investigate the details and 

characteristics of swirling submerged jets when transferred into 

a system of helical vortices downstream in a bathtub-like flow. 

Both analytical and numerical results are presented. In the 

analytical solution, upstream flow is considered to be two-

dimensional with piecewise-constant vorticity profile. The 

instability of such a flow leads to the formation of two-

dimensional dipolar or tripolar vortical structures. It is shown 

that the size of the vortexless annular area inside the initial 

vortex is a critical parameter in the two dipolar unstable or 

tripolar stable structure formations, and that such tripolar flow 

transforms downstream to a three-dimensional steady helical 

vortex system, which rotates as a whole and propagates in the 

downstream direction. The mechanism of screwing vortex 

filaments into a steady system of helical vortices is also 

presented. The numerical simulations also confirm the initiation 

and generation of dipolar vortex structures.  

 
INTRODUCTION 

Vortex instability changes the flow structure in swirling 

motions and can generate different vortical patterns such as 

helical vortex structures. This instability and its behavior are 

affected by different parameters such as the geometric 

characteristics and swirling speed. In some instances, multi-

vortex structures can contain axial flows in opposite directions, 

which add to the inherent complexity of the corresponding fluid 

dynamics. Natural vortex flows such as tornadoes are very good 

examples of this instability, which are formed and further 

developed into multi-vortex structures. Due to the inherent 

complexity of these instabilities, there is no explicit theoretical 

solution for swirling submerged jets. 

Experimental studies are conducted to investigate the decay 

of swirling vortices into intertwined and multi-vortex structures 

[1 and 2]. The converted vortical structures can also be in the 

form of dipolar or tripolar configurations. Van Heijt et al. [3] 

examined the formation of tripolar vortices. 

The vorticity profile and dynamics of uniform helical 

vortices were studied by some researchers [4-7]. However, the 

corresponding formation mechanism of these helical structures 

was not studied. Takaki and Hussain [8] showed that the straight 

and parallel vortex filaments cannot be screwed into a helix if 

their distance remains constant. 

The present study is conducted to investigate the 

transformation process of initially axisymmetric swirling 

submerged jet flow into a system of helical vortex cores. 

Analytical method is used to study the development of a 2D 

swirling flow into a stationary fluid downstream. The formation 

of a 2D tripolar vortex system is demonstrated using the method 

of discrete vortex particles. A Computational Fluid Dynamics 

(CFD) study is also conducted to observe the formation of the 

dipolar vortex structures. 

 

 PROBLEM DEFINITION AND EXPERIMENTAL 
OBSERVATIONS 

Figure 1 is the schematic of a chamber divided into two 

sections having a wall with a hole O (radius a = 10 mm) in the 

middle. The lower section is filled with an irrotational fluid, but 

the same fluid rotates in the upper section. Another hole O′ 
(radius 4 mm) in the bottom of the lower section is open to the 

atmosphere. Both holes are located on the same vertical axis of 
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symmetry. The horizontal size of each section (L = 860 mm) is 

much bigger than the radiuses of the holes. Both holes are 

opened at the same time, and consequently a vortex drain into 

the irrotational fluid is formed, which is called a swirl 

submerged jet. The axial flow velocity in the drain is kept 

approximately constant (
ozrv ≈ 0.5 m/sec), but the radial 

velocity of the vortex draining
or

vϕ
 into the hole O varies to 5 

m/sec. 

 
Fig. 1: Experimental set up. 

 

Visualization has shown that above hole O and to some 

extent below it, the flow is always axisymmetric. Let’s consider 

the flow above the hole. It is observed that the flow well outside 

the central area presumes a solid-body rotation at a low 

frequency (Ω). In most of the experiments, Ω has a value about 

0.1 rad/sec. The respective vorticity (ωo = 2Ω) is almost 

constant spatially as well as temporally. The azimuthal flow in 

the central drain area is complex, but for simplification we 

assume that it rotates like a solid body and has an average time 

dependent vorticity ω(t). Thus, in a rotational sense, the 

simplified flow model consists of two regions; a low rotational 

outer region and a high rotational central region. It is also 

assumed that the axial velocity in the outer region is negligible. 

Conversely, in the central region the flow is axial with no radial 

velocity. In the area between the outer and central regions, the 

flow makes a turn, which basically leads to stretching of the 

vortex lines. This leads to the so-called vorticity intensification. 

It can be shown that such a model satisfies the basic flow 

characteristics such as the viscosity effect. The influence of 

viscosity is significant in the boundary layer on the solid walls 

and in the area between the central and outer regions around 

which relative rotation exists. The thickness of the rotational 

boundary layer on the walls is in the order of Ων  or about 3 

mm, where ν is kinematic viscosity. The viscous central core 

radius can be estimated as aQh  ν  which is less than 1 mm, 

where Q is the volume flow rate and h is the liquid level in the 

upper section (Fig. 1). Hence, above 3 mm of sectional wall and 

out of a thin layer between the outer and central regions, the 

flow may be considered as inviscid. Vortex line stretching 

causes the vorticity intensification. The vorticity in the outer 

region ωout is constant, and the vorticity in the central region 

ωc(t) is spatially constant, but increases with time. 

Visualization is performed by inserting dye through a small 

square cross-sectional tube at point P. The tube axis is directed 

azimuthally. The process is shown schematically in Figure 2a, 

and the real experimental photo is represented in Figure 2b. The 

dye relative velocity is negligible, and the flow near the tube tip 

may be considered as a colored jet issuing with the same 

velocity as the liquid at the same location (Figure 2).  

 

 
Fig. 2: The spreading of dye along the vortex surface,  

(a) schematic, (b) experimental. 

 

The material elements of the flow are colorized when they 

pass through the cross-section of the tube tip. |The 

instantaneous set of such elements continuously passing through 

the tip point visually looks like a colored jet issuing from the 

orifice. For simplicity one may represent such an orifice as a 

square with size l0. One side of the square is directed axially 

and the other radially. It will be shown that such a jet transforms 

downstream to a thin tape coincident with the vortex surface. 

When a liquid element moves from its original location in the 

outer region to the central region, it stretches according to [9]. 

 

( ) ( )

0l

tlt

out

c =
ω

ω      (1) 

where l  is the length of the jet cross-section in the axial 

direction. 

The radial velocity is independent of the axial coordinate 

[10]. It means that the liquid particles located on cylindrical 

surfaces with certain radius R come to the central area at the 

same time. Taking into account the conservation of circulation: 
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The conservation of mass gives: 
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where hav = (h0+h)/2 is the average liquid level during which a 

cylindrical volume with radius R drains in the central area. 

Therefore: 
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Note that hav is a weakly time dependent parameter. From 

Equations 1-4 and h = h0 – Q/πR
2

0, in terms of the current liquid 

level h: 
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where P = 2R
2

0/a
2
. 

The thickness of the colored jet in the central area may be 

found by the conservation of mass. Taking into account that the 

two cross-sections of the jet are oriented in the azimuthal 

direction then: 

aldvvl ϕϕ =1
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where index 1 refers to the condition at the point where the tip 

of the dye tube is located. Using (6) and (7) one obtains: 
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Using Equations 5 and 8, it can be estimated that an initially 

tiny square shaped colored jet with 1 mm size in the outer 

region is deformed in the central area to a film of about 2 cm 

width and 1 micron thickness, while the liquid level decreases 

about 10%. Equation 1 is vectorial, i.e., the material and vortex 

lines stretch in the same direction. Therefore, the film spreads 

out along the vortex surface. 

Now, consider the flow below the hole O. The schematic of 

the flow near the hole O in the axial and azimutal planes are 

presented in Figures 3a and 3b, respectively. The central vortex 

with positive vorticity is concentrated in area A (Figure 3a), and 

the black spot (Figure 3b). A negative vorticity in the area C′ is 

formed from the downward boundary layer of the rotational 

motion above the middle wall (area B).  

 

 
Fig. 3: Schematic picture of the flow near the orifice. 

 

The negative vorticity is the white area shown in Figure 2b. 

The resultant circulation is zero around the circle that 

encompasses both areas. Further, we assume that in the A and C′ 
regions the vorticity is distributed uniformly. In general, there is 

some gap with zero vorticity between regions A and C′. This is 

a free vortex area and an example of the compensated Rankin 

vortex. The radius of the central vortex can be obtained 

approximately from the integral form of the continuity equation.  

 

00 2 rz hvvr ≈∆      (9) 

 

where vr0 is the radial velocity on the edge of the central vortex 

area and 

 

zz vv ≈∆      (10) 

 

The radial velocity increases from zero on the axis to the 

same order as the axial velocity outside the hole, but still it 

should be much less on the edge of the high vorticity central 

area vr0 << vz. Let’s assume that radial velocity on the edge is 

one order of magnitude less than the axial velocity vr0 = vz/10. 

At large radius, the radial velocity reaches the same order of 
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magnitude as the axial velocity. From (9) and (10) one may 

obtain: 

hr 2.00 ≈      (11) 

The observations show that the flow instability is developed 

downstream spatially. Thus, the disturbances grow downstream 

and form a new structure; while in each cross-section the flow is 

steady. 

When both holes are opened, the draining vortex begins to 

intensify slowly versus time and level h. For a wide range of 

parameters, it is observed that the primary axisymmetrical 

rotational flow (schematically shown in Figure 3) transforms 

into a secondary vortex structure of the double helix type. 

Two regimes have been investigated in detail for h= 5 cm 

and h=2.5 cm. The rotational velocity profile of the draining 

vortex is analyzed visually by looking at the shape of the free 

liquid surface in the upper section. For the h = 5 cm case, the 

inner solid-rotational core (black area in Figure 3) fills almost 

the entire hole O according to (11). This corresponds to a 

situation with no or a small gap (inner gray area) in Figure 3. In 

the second case, as follows from (11), the inner solid-rotational 

core has a radius sufficiently less than the size of the hole O. 

This corresponds to a situation with a large gap (inner gray 

area) in Figure 3.  

 

ANALYTICAL SIMULATION METHOD 
In the preceding section, we assumed that the vorticity 

above hole O is piece-wise constant. The characteristics of the 

vorticity under hole O is investigated in detail in the following 

section, assuming two-dimensional flow under hole O. 

The method of discrete vortex particles is employed here to 

study the development of the unstable annular shear flows with 

respect to two-dimensional disturbances. A two-dimensional 

instability mechanism is assumed here for this class of flows. 

Such an approximation can be justified by the fact that 

according to the Squire theorem most of the unstable 

disturbances are two-dimensional. Moreover, it is assumed that 

the fluid is ideal. 

Based on the two-dimensional assumption, the stability of 

the vortex flow can be analyzed through the analysis of 

properties of the flow cross sections. Selection of the cross 

sections depends on the problem. The development of 

instability for the swirl flow passing through irrotational fluid 

was presented in the former section, and it was shown that the 

irrotational outer fluid goes aside and surrounds the incoming 

rotational liquid (area C in Figure 3). The size of the potential 

part (between C′ and A) is zero, or is of the same order of 

magnitude as the size of vortex area (A). This flow may be 

modeled as a compensated Rankin vortex. The positive vorticity 

of the initial flow is uniformly distributed inside the circular 

core with radius r0 (dark spot in Figure 3b). The negative 

vorticity is uniformly distributed inside the annular layer with 

inner and outer radiuses δ and a, respectively (white ring in 

Figure 3b). The low vorticity liquid is located outside the vortex 

and inside the annular gap between the positive and negative 

regions (gray area in Figure 3b).The vorticity inside the gap is 

ignored. The early stage of instability of a similar flow was 

studied by Carton et al. [11]. However, they assumed a flow 

with smooth profile. The initiation of a tripolar vortex structure 

was observed at the first stage of instability development. The 

detailed analysis was provided for one vorticity profile. The 

calculations were made up to tripolar structure formation. The 

development of such tripoles over a greater period of time was 

studied by Kloosterziel and Carnevale [12]. They studied the 

development of instability for the smooth initial profiles, and 

showed that different types of multi-vortex structures are 

formed depending on the initial vorticity profile. They observed 

tripolar structure for certain type of profiles, and showed that 

the tripolar structure is conserved for time sufficiently longer 

than its formation period. However, no criteria were found for 

tripolar or two dipolar regimes. In the present study, a different 

analytical method is employed to investigate the instability of 

the compensated piecewise-uniform vorticity distribution. It is 

shown that the size of the vortexless area inside the complex 

vortex is a critical parameter for either tripolar or two dipolar 

regime realization. 

In this paper, the method of vortex dynamics [13] is used. 

The vorticity field is simulated by a set of discrete vortex 

particles with Gaussian distribution. The equations of motion of 

vortex particles are as the following: 
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where rα = (xα, yα) is the radius-vector determining the position 

of the vortex particle center α on the x, y plane; σ
2
α is the 

distribution of the vortex particle vorticity; Γα is the circulation 

of the particle vorticity. The dispersion of the vortex particle is 

determined subject to the condition of the best approximation of 

the initial vorticity field.  

The system described by Equations 12 is conservative. In 

this system as in the initial continual one, the laws of 

conservation of momentum, angular momentum, and energy are 

satisfied. In the calculations, the initial arrangement of vortices 

was specified in such a way that the grid formed by them on the 

plane had the identical area of the cells. In this case, the 

vorticity distribution is uniform. Thus, the initial problem of 

evolution in the disturbed field of vorticity is reduced to the 

solution of Eqs. 12, under the specified initial conditions. The 

equations were solved by the fourth-order Runge-Kutta method. 

The accuracy was controlled by the fulfillment of the 

conservation laws. Several thousands of elementary vortex 

particles were used in the calculations. The circulation of the 

central vortex is taken as 2Γ. The unit value of time T in this 

paper is the rotation time of the Rankin vortex with radius a and 
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circulation Γ. The rotational velocity on the vortex boundary is 

vR = Γ/4πa. Hence, T may be expressed by: 

 

Γ= /4 2aT π      (13) 

 

An analytical study of temporal instability is provided in 

Figure 4 for similar flow as in Figure 3. 

 

 
 

 

Fig. 4: Numerical results (black: positive vorticity, white: 

negative vorticity, grey: no vorticity). a) development of 

instability when there is no inside vortexless gap.   

(b) development of instability when inside vortexless gap is 

sufficiently wide. 

 

As mentioned before, the instability in the presented 

experiments is spatial. In the laboratory frame of reference the 

flow is steady. Thus, each liquid particle coming down from the 

orifice O reaches some location z at the same time t as any other 

particle. Further, it is assumed that the flow is flat on this phase 

of analysis, i.e. axial velocity is not dependent on the radial 

coordinate. In its own frame of reference the instability of each 

liquid particle develops temporally. It means that for each 

location along z one may introduce a corresponding moment of 

time in the calculation track.  Thus, each consequent series of 

the flow pictures in the experiment along z corresponds to some 

analytical set made in temporal analysis. This comparison is 

qualitative because the three-dimensionality becomes 

significant after a short distance downstream. It was found that 

if either no gap or a small enough gap between the two areas of 

vorticity exists, the central vortex is destroyed (Figure 4a) and 

two dipolar vortices are formed. They continue rotating as a 

whole around an axis of symmetry and move in opposite radial 

directions. Thus, the initial vortex breaks down. This analytical 

situation is in agreement with the experimental one where the 

vortex structure is short and expands quickly. If the gap is wide 

enough, the lateral vortices do not move from the central 

vortex, and the central vortex does not break down. Instead, 

they rotate around the central core for a period of time 

sufficiently longer than the formation period. The detailed 

analytical study shows that the steady tripolar structure is 

formed when the width of the gap is larger than approximately 

the radius of the central core.  Two-dipolar structures are 

formed for smaller gaps (δ−r0 < r0). This analytical situation 

qualitatively is in agreement with the experiment where the 

vortex structure is long and expands slowly. This shows 

qualitative correlation between analytical and experimental 

results. It is also shown that the existence of a wide enough gap 

in vorticity inside the complex vortex leads to the formation of 

a long and compact tripolar structure. The presence of the wide 

enough low vorticity area inside the vortex leads to similar 

results (Kloosterziel and Carnevale [12]) as in Figure 4b. Thus, 

one can conclude that the presence of a wide enough low 

vorticity annular area inside the compensated vortex leads to 

stable tripolar structure formation.  

  

 

NUMERICAL SIMULATION METHOD 
Three-dimensional Navier-Stokes equations are used, which 

are presented in the following non-dimensional form: 
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where u, v, w, and p are the non-dimensional velocities and 

pressure, respectively, t is the physical time, and Re stands for 

the Reynolds number. 

The existing numerical simulation is conducted to examine 

the early stages of vortex instability and generation of the 

dipolar vortical structures, discussed in the theory section. 

Hence, constant axial velocity (uz = 0.5 m/s) and rotational 

speed (Ω = 0.1 rad/s) with no radial velocity (ur = 0) are utilized 

at the inlet. Moreover, the inlet conditions are set to match the 

first case studied in the analytical part, no vortexless area. 

Figure 5 shows the schematic of the simulated 3D tank and the 

applied boundary conditions. The outlet is set to atmospheric 

pressure while its velocity is obtained using a zero-gradient 

boundary condition during the simulations. The tank side-walls 

are set to 43a (a is the radius of the inlet) from the centre line. 

Hence, the undesired effects from the tank walls on the vortex 

development are minimized.  

 
 

z 

r 

θ 

 
 

Figure 5: Schematic of the computational domain and the 

applied boundary conditions 

 

O-type mesh is used in the radial direction and the mesh is 

graded near the inlet boundary. Figs. 6a-c show the dipolar 

vortex formation at three different heights (at the same time) 

measured from the inlet (where z = 0). The figures are in 

qualitative agreement with the predictions of the analytical 

method shown above. It should be mentioned that the top view 

of the simulated tank is shown in Figs. 6a-c. The white area 

shows the outer rotational area which has a negative rotational 

speed with respect to the positive rotating fluid shown by the 

black area. 

The total number of cells was 50×10
3
 which was obtained 

after extensive grid-sensitivity analyses. The computations 

utilize a second order central differencing scheme for 

convective and diffusive terms using a steady state approach. 

The resulting linear system of equations is treated with 

Preconditioned Conjugate Gradient (PCG) solvers, and the 

Pressure Implicit and Splitting of Operators (PISO) algorithm is 

used for the pressure-velocity coupling. The computations are 

carried out in OpenFOAM [14]. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Early stages of the formation of dipolar vortex structures 

 

CONCLUSION 
Development of unstable swirl submerged jet into a 

downstream stationary fluid is investigated both analytically 

and numerically. The analytical study is based on two-

dimensional and piecewise constant vorticity profile, and the 

method of vortex dynamics is the utilized approach. It is shown 

that a system of two dipolar unstable or tripolar stable 

secondary vortices is formed as a result of the two-dimensional 

instability of the swirl axisymmetrical flow. It is also observed 

that the existence of the vortexless annular region is a critical 
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factor in obtaining dipolar or tripolar vortex structures. 

Different parameters, such as free liquid level, influence the size 

of the vortexless region. In the case of the tripolar structures, 

they can be transferred and converted into three-dimensional 

helical structures. The helical vortices are sufficiently longer, 

more compact, and uniform downstream than the developed 

structures downstream when dipolar vortices are formed. The 

numerical results also verify the early formation of the dipolar 

vortex structures. 
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