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ABSTRACT
Residence time including mean residence time and residence

time distribution (RTD) is a very important parameter to charac-
terize a mixing system. In practice, tracer study has been widely
used in experiments to obtain residence time distribution. There
are several numerical approaches available to compute the av-
erage residence time and the residence time distribution of a
system. This paper attempts to summarize those available ap-
proaches through an example.

NOMENCLATURE
C(t) Species mass concentration function
Cl Time constant
D Diffusivity
E(t) Residence time distribution function
F(t) Cumulative residence time distribution function
I Integration of mass concentration
Q Volumetric flow rate
Sct Turbulent Schmidt number
V Vessel volume
Yi Mass fraction of speciesi~Xp Particle’s location vector~u Velocity vector
fi;gi RTD function
k Turbulent kinetic energy
m Mass of tracer species

r Uniformly distributed random number
t Time
ε Turbulent kinetic energy dissipation rate
µt Turbulent viscosity
ρ Density
τ Mean residence time
τe Turbulent eddy lifetime
ζ Normally distributed random number

INTRODUCTION
Mixing tanks have been widely used in various industries.

Whether a tank is used as a reactor or a simple mixing device for
two immiscible/miscible liquids, residence time is an important
global parameter to characterize the system. For example, in a
mixing tank reactor, if the reaction is isothermal and of first order,
the conversion of the reactants in the reactor is purely determined
by the residence time distribution. Even for a reaction system
with high order reactions, residence time distribution gives us
a knowledge of time window that reactions could occur. In an
emulsion system, droplet size distribution is highly dependent
on the shear history of droplet experimenting in the tank. In fact,
the performance of any device in which a kinetic process occurs
is highly dependent on the fluid residence time distribution.

Traditionally tracer study has been used successfully in ex-
periments to obtain the residence time distribution. In such an
experiment, inert chemicals, called tracer, is injected into the
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tank at time zero and then the tracer concentration at the outlet
is monitored as a function of time. The concentration is usually
measured by the conductivity of the fluid if the tracer is a solu-
tion or by spectrophotometry or colorimetry if a dye is used. The
tracer can be introduced at inlet by either a step or pulse mode.

During the last few decades, computational fluid dynamics
(CFD) has been increasingly used. At least three different ap-
proaches have been used to get the fluid residence time in a ves-
sel. In the first approach, the tracer is treated as a species and the
unsteady species transport equation is solved [1]. In the second
approach, Lagrangian particles are released from the inlet and
particles are tracked until they leave the domain [2]. The resi-
dence time can be obtained from the particle tracking. Another
less well known method is to solve the average residence time
equation directly [3–5]. Although it cannot get the time distribu-
tion, it provides the average residence time quickly at any point
of the vessel.

The residence time distribution experimentally and numeri-
cally is usually obtained for a single device. A real industrial sys-
tem usually consists of many devices which are interconnected
together. The performance of such a system may depend on the
total residence time of the fluid inside the system. Convolution
integral can be used to combine the residence time distribution
for individual device into the total fluid residence time distribu-
tion [6].

In this paper, we will review different numerical approaches
in the calculation of the fluid residence time. We start with its
definition, followed by different numerical choices to calculate it.
The advantages and disadvantages of each method are discussed
in the paper. We will also discuss the application of convolution
integral in the calculation of RTD for complex systems. Finally,
an example is shown to illustrate different methods. The paper
focuses on the method which uses the transport equation to solve
average residence time and on the application of convolution in-
tegral in combining individual RTD to a system’s RTD.

RESIDENCE TIME AND RESIDENCE TIME DISTRIBU-
TION

The residence time theory has been generalized and popu-
larized by the pioneering work by Danckwerts [7], Spalding [8]
and Zwietering [9]. Since then, the theory has been refined and
extended until it has become an important tool not only in chem-
ical engineering, but also in environmental and pharmaceutical
applications. Originally, residence time distribution was defined
at the outlet of a vessel. If we release a lot of particles into a
vessel, different particle takes different time to come out of the
vessel. The time the particle spent in the system is called the res-
idence time and the distribution of the various particles coming
out the vessel with respect to time is called the residence time dis-
tribution (RTD). According to the definition, the residence time

distribution can be written as

E(t) = C(t)R ∞
0 C(t)dt

(1)

whereC(t) is the measured tracer concentration at the outlet at
time t. The average residence time of all particles can be calcu-
lated as

τ = R ∞
0 C(t)tdtR ∞
0 C(t)dt

(2)

In a pulse experiment, the tracer is only released at inlet dur-
ing a short time period. The measured concentration as a function
of time is referred to as theC curve in the RTD analysis. It can be
seen thatE(t) is the normalizedC curve. In a step experiment, a
constant rate of tracer is added to the system from time zero con-
tinuously. The measured tracer concentration is monotonically
increasing with time. The normalized measured concentration
versus time profile is calledF curve. The relation betweenE(t)
andF(t) is

dF(t)
dt

= E(t) (3)

Here,F(t) is the cumulative probability function ofE(t).
Although traditionally the residence time and its distribution

function are defined only at the exit of a system, the concepts can
be generalized and be applied to any spatial point in a system. As
a result, residence time and its distribution are functions of space
as well. In this paper, we will use residence time and its distri-
bution in this general sense. Fluid residence time and its distri-
bution will be calculated from a numerical pulse experiment. So
C(~x; t), E(~x; t), andτ(~x) will be our interested variables. From
the tracer species transport equation, Danckwerts [7] and Spald-
ing [8] were able to show the following two important results in
a pulse experiment:Z ∞

0
C(~x; t)dt = constant everywhere in the domain= m=Q (4)

τ = V
Q

(5)

wherem is the total tracer species quantity,Q is the volumetric
flow rate andV is the vessel’s volume.

The first result shows that if a steady stream (train of equal
pulses) of tracer is injected at a vessel’s inlet, the concentration
of the tracer will be uniform throughout the vessel eventually.
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As a result of this, the residence time distribution,E(~x; t), at dif-
ferent point in a vessel is directly related to the tracer species
concentration,C(~x; t), at those points by a constant scaling fac-
tor through Eq. 1. The cumulative residence time distribution
function,F(~x; t), is related to the following function by the same
scaling factor:

I(~x; t) = Z t

0
C(~x; t)dt (6)

SinceI will approach to a constant value everywhere in the do-
main as time goes to infinity, it can be used to judge the conver-
gence of the RTD in the unsteady tracer simulation. For a multi-
ple inlet system, this still holds as long as the tracer mass injected
from each inlet is proportional to its volumetric flow rate [10].

The second result shows that the mean flow residence time is
always equal to the vessel volume divided by the volumetric flow
rate. This holds irrespective of the flow pattern in the vessel. The
flow pattern only affects the shape of the RTD. However, the first
moment of the RTD, the mean residence time, is always constant.
Theoretically, this result is valid only under the condition that the
tracer is prevented from diffusing upstream out of the injection
plane, which usually can be satisfied for convection dominated
flows. This constraint can be used to check the accuracy of any
numerical result regarding the RTD.

It should be noted that such a definition of the residence time
leads to a quantity that is independent of time and is therefore
applicable only to steady-state, incompressible flows. This limi-
tation is essentially linked to the experimental procedure, which
is based on recording a time-dependent tracer signal and assumes
that the underlying transport field does not change in time. For
a more general case of transient, compressible flows, residence
time needs to be redefined and generalized. The interested reader
can refer to [11–13]. In this paper, we will focus on the steady,
incompressible flows and the traditional definition still holds.

NUMERICAL APPROACHES
Transport Equation of Tracer Species

The tracer pulse or step experiment can be simulated in
terms of the traditional equations of transport. The tracer is
treated as a separate species, but with the same properties as the
original fluid. An unsteady species transport equation is solved
to get the tracer’s concentration along with the time, which is

∂ (ρYi)
∂ t

+∇ � (ρ~uYi) = ∇ ���ρD+ µt

Sct

�
∇Yi

�
(7)

whereYi is the mass fraction of the tracer species,~u is the velocity
field, ρ is the density of the fluid,D is the diffusivity of the tracer

in the fluid,µt is the turbulent viscosity, andSct is the turbulent
Schmidt number.

In an experiment, tracer particles are only injected after the
flow field is established. The same goes to the numerical sim-
ulation. Although the transport equation of the tracer species is
transient in nature, usually the flow field is solved first with the
steady state solver. Only after a converged solution is obtained,
the flow field is frozen, species transport is set and the solver is
switched into unsteady. As a result, only one equation is solved.

In an experiment a probe can, at least theoretically, be put
into any position of the system, so the flow residence time at any
point of the system can be measured. But installation issue of
the probe may restrict the access of certain area and the extru-
sion of the probe may disturb the flow field. However, there is no
such problems in a numerical experiment, and the concentration
of the tracer species at any position of the system can be moni-
tored along with the time. So this method gives a complete set of
information in the residence time distribution of the system.

Note that, due to the transient nature of the equation, the
equation has to be solved step by step in time. The time step
used in the calculation is usually a fraction of the minimum cell
residence time in the domain. The total time period usually needs
to be at least several times of the mean residence time due to the
usual long tail of a RTD curve. Therefore, the computational
time could be large especially for a problem with large number
of cells. That is the drawback of this method.

Lagrangian Particle Tracking Method
In most industrial applications, the complete information of

the fluid RTD over the entire flow field may be not needed since
the performance of a system can be estimated by the flow resi-
dence time distribution only at the exit point. For such cases, the
Lagrangian particle method provides a much quicker solution.
In this method, a lot of particles are released at inlet to mimic
the tracer particles after the flow filed is established. Instead of
solving an unsteady transport equation in the Eulerian reference
frame, each particle’s trajectory is traced in the Lagrangian ref-
erence frame. The particle’s trajectory can be obtained by inte-
grating the following equation:

d~Xp

dt
=~up =~u(x̄)+~u0(x̄) (8)

where the particle’s velocity is always equal to the continuous
phase local velocity, which includes the mean and the fluctuat-
ing part. The fluctuating part is used to consider the turbulent
dispersion. In this paper, the random walk dispersion model im-
plemented in ANSYS FLUENT [14] has been used, in which,

u0i = ζ
p

2k=3 (9)
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whereζ is a normally distributed random number andk is turbu-
lent kinetic energy. And it is assumed such a fluctuating velocity
lasts during the lifetime of an eddy. The characteristic lifetime of
the eddy is computed as

τe =CLk=ε ln(r) (10)

whereCL is a time constant,ε is the turbulent kinetic energy
dissipation rate andr is a uniform random number between 0 and
1. When the time is reached, a new value of the instantaneous
velocity is obtained by applying a new normal random number
in Eq. 9.

The residence time distribution can be easily obtained by
monitoring the particles coming out from the exit. To get mean-
ingful statistics, in general a large number of particles usually are
needed. In addition, special attention is needed if the inlet flow is
not uniform. The number of particles at any point at inlet should
be proportional to the local flow rate.

The advantage of this method is that it is very cpu effec-
tive. But the method only provides the residence time distribu-
tion where a large number of sampling particles can be collected
so that the statistics is meaningful. That is why the method is usu-
ally used to get a RTD at a flow outlet. Another salient feature
of this method is that the predicted RTD not only depends on the
number of particles, but also on the turbulent dispersion model.
As a result, the mean residence time at flow outlet computed from
this approach does not necessarily satisfy the constraint Eq. 5.

Transport Equation for Average Residence Time
The transport equation for the average residence time has

been derived initially by [3, 8] based on the definition of Eq. 1.
Subsequently it has been studied by [5, 11]. For steady state,
incompressible flow, the transport equation of the average resi-
dence time can be written:

∇ � (ρ~uτ) = ∇ ���ρD+ µt

Sct

�
∇τ
�+ρ (11)

whereτ is the mean fluid residence time,D+ µt
Sct

is an estimate
of the local actual diffusivity, where D is the self-diffusivity of
the fluid, which may be expressed by the ratioµ

Sc whereSc is the
laminar Schmidt number.

If we ignore the diffusion (both molecular and turbulent dif-
fusion) and add the unsteady term to Eq. 1, we obtain

Dτ
Dt

= 1 (12)

which is the expected result since the substantial derivative rep-
resents the variation of a variable following with an individual

fluid particle, and the increase in residence time of an individual
particle is, according to the definition of theτ, one unit residence
time per unit elapsed time. This is also the basis of tracking the
residence time using the particle tracking approach. Without dif-
fusion, residence time will go to infinity at the wall and inside a
recirculation zone. In reality, due to the molecular and turbulent
diffusion it is always bounded.

At inflow boundaries where new fluid enters the computa-
tional domain, the mean residence time should be set to zero by
definition. At walls,dτ=dn = 0 is often used. The boundary
condition on outflow boundaries depends on physical situation.
A common assumption is the mass flux across an outflow bound-
ary is dominated by convection. So the boundary value can be
extrapolated from the inner points.

Equation 11 follows the standard form of the generic Eule-
rian convection-diffusion transport equation. And it can be very
efficiently solved in a steady state solver. The transport equation
provides the spatial distribution of the mean residence time over
any point of the flow. It does not provide the distribution of the
residence time though.

In practice, such mean residence time spatial distribution can
be used to identify flow bypassing, channeling and dead zones in
a flow field.

Convolution Integral
A real industrial system usually consists many devices,

which are interconnected. The fluid coming out from an exit of
one device will serve as input for the next as shown in Fig. 1.
Sometimes the entire residence time distribution is desired to
evaluate the system performance. The system may be too large
to simulate in one model or, it may be preferred to simulate them
individually since the focus of each device may be different (thus
the physical models used may be different). As a result, we can
build the model for each device. The residence time distribu-
tion can be obtained for each device from the simulation. Once
the RTD of individual device is obtained, the RTD of the entire
system can be computed by convolution integral. In general, a
convolution integral is defined as a product of functionsg1 and
g2:

f (t) = g1?g2 = Z t

0
g1(t� τ)g2(τ)dτ (13)

where the symbolg1 ? g2 (occasionally also written asg1
 g2)
denotes convolution ofg1 andg2.

In a general sense, convolution can be used to calculate the
response of a system to arbitrary inputs by using the impulse
response of a system. It has been used in many fields such as
signal processing. In the context of residence time distribution,
theg2-function can be thought of as the system’s response to an
impulse signal, andg1-function be the input signal to the system.
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FIGURE 1. A system consisting of many devices

As a result, if the RTDs of each individual device in Fig. 1 are
g1(t);g2(t); :::;gn(t), respectively, the total residence time distri-
bution through the entire system will be

fn(t) = g1(t)?g2(t)? ::: ?gn(t) (14)

In practice, RTDs are usually represented by histograms.
There is a simple but very effective way to compute convolu-
tion integral for functions in a histogram form. Let us start with
a simple case where histograms of functiong1 andg2 have the
same bin size, i.e., the time interval for each bin is the same. Un-
der such a special scenario, calculation of convolution integral
can be easily done by the following procedure: given a bin in the
g1 function, its location and weight are known. The contribution
of this bin to the integral can be visualized by first scaling the
whole g2 function by that weight factor and then shifting it ac-
cording to the location of that bin. Conducting such operations
for all the bins in theg1 function, the convolution integral can be
obtained by adding all those shifted functions together.

To illustrate the algorithm, let us assume that theg1 andg2
function haven1 andn2 bins, respectively. From the definition of
residence time distribution, thef function will haven1+n2 bins
at maximum. A segment of computer program in C to calculate
convolution is shown here:

int n1, n2;
float g1[n1], g2[n2], f[n1+n2];

for(i=0; i<n1; ++i)f
for(j=0; j<n2; ++j)f
f[i+j] += g1[i]*g2[j]; gg
In practice, the bin size used even in a single function could

be different. But, by reducing the bin size conceptually, any two
histograms can be thought of having the same bin size eventually.
Therefore, the above algorithm can be used for any functions.

TEST PROBLEM AND NUMERICAL RESULTS
Different information regarding residence time can be ex-

tracted from different approaches. To illustrate the differences,
a 2D test problem is considered in this paper. The geometry of

FIGURE 2. Geometry of the mixing device

the test problem is shown in Fig. 2. It represents a typical flow
problem which can be found in many mixing or heat exchanger
applications , in which the flow is highly nonuniform with the
presence of flow recirculation and short circuiting zones. The
problem we considered here is symmetric and only half domain
is needed in the CFD simulation. The fluid used is water with
constant density of 1,000 kg/m3 and the inlet average velocity
is taken to be 1 m/s. The flow is fully turbulent. A commercial
CFD software, ANSYS FLUENT [14], is used in the simulation.
The Navier-Stokes (N-S) equations are discretized using the fi-
nite volume method and the realizablek-ε turbulence model is
used. A pure quadrilateral mesh with a mesh size being 0.001 m
is used to mesh the domain and the total mesh count is about
15,200.

The repetition of the geometry is specially designed here to
illustrate the use of convolution integral in the residence time cal-
culation later on. A periodic boundary condition is used for the
inlet and outlet boundaries. The steady-state flow field can be
easily obtained by using the segregated solver in FLUENT. The
SIMPLE algorithm is used for the velocity-pressure coupling and
the second order discretization scheme is used for all the solved
variables. Figure 3 shows the contour plot of the velocity magni-
tude in the device. The red/yellow region in the pictures clearly
shows a fast short circuiting passage and four blue regions repre-
sent four recirculation zones in the computational domain. Since
the second stage of the mixing device is simply a repetition of the
first stage, obviously the flow pattern just repeats itself as well.

Tracer Species Transport Approach
The tracer species approach is used first. In this method,

the steady-state flow field is frozen. The solver is changed from
the steady-state solver to the transient solver. Species transport
equation of the tracer species is activated. The tracer species
gets released from the inlet for a very short period of time to
represent a pulse experiment. Then the solver keeps track of the
propagation of the tracer species by solving Eq. 7 in time. The
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FIGURE 3. Contour plot of velocity magnitude within the device

time step used in the simulation, 5� 10�4 s, is small which only
allows the species front, at maximum, to spread out less than one
mesh size. This is used to guarantee the time accuracy of the
simulation. In this study, tracer species is released only for the
first 200 time steps, i.e., 0.1 s long in total. After that, tracer
species is switched off. From the previous section, it is known
that the residence time distribution at any point in the device is
directly related to the species concentration through Eq. 1. For
the demonstration purpose, eight points as shown in Fig. 2 are
monitored. Point 1, 3, 5 and 7 are located in the center of the
recirculation zones and Point 2, 4, 6 and 8 are located in the
narrow flow passage zone. As the simulation goes on, the time
history of species concentration at those points are monitored.

Equation 6 provides a natural condition to monitor the
progress of mixing. At time infinity, the time integral of the
tracer concentration converges to a single constant value,I∞ =R ∞

0 Cdt = 100kg=m3s, at every point of the domain. The time
history of the integral values at these points are drawn in Fig. 4.
It is interesting to note that each curve represents the mixing rate
of each corresponding point. In general, points in the circulation
zones such as Point 1, 3, 5 and 7 have much slower mixing rate
than Point 2, 4, 6 and 8. For example, to reach to 50% of I∞, it
takes about 21s, 26s, 31s and 40s for Point 1, 3, 5 and 7, respec-
tively, which is much larger than 1s, 7s, 15s and 23s for Point
2, 4, 6 and 8, respectively, although the formers are at the up-
stream of the flow. The cumulative concentrations also increase
fast initially and slow down at the later stage. This is due to the
presence of a long tail in the species concentration history (which
is directly related to the residence time distribution). This will be
further discussed in the later section.

The transient simulation is run till the I-values for all the
monitored points reach 99.9%I∞, which translates to about 150 s
in the total simulation time. The normalized species concentra-
tion which is also the residence time distribution has been plotted
in Fig. 5 and 6. Figure 5 shows the residence time distribution
curves for the points in the recirculation zone. For all the points,
the RTD curve reaches to its peak quickly, then slowly decays
to zero. Note that there is obvious oscillation for the curves,
especially the one for the point in the first recirculation zone.

Time (S)

∫ 0t
C

(t
)d

t
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Point 5
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Point 8

FIGURE 4. Time history ofI at each monitored point

In fact, the interval of the oscillation denotes the fluid turn-over
time in the recirculation zone. As the fluid flows downstream,
tracer species has been well mixed and curves become smoother.
Similarly, the RTD curves for the points in the short circuiting
regions are shown in Fig 6. The characteristics of the RTDs are
quite different from the ones in the recirculation zones. In the re-
circulation zones, flow is diffusion dominated. The RTD curves
are wide and their peak values are low. In the flow short circuit-
ing zones, flow is convection dominated. Each RTD has multiple
peaks. The time to reach the first peak is much shorter compared
to the points in the recirculation zones. In addition, the curve
decays much faster.

The mean resident time for each point is calculated out using
Eq. 2 and the data are tabulated in Table 1. In the table, the
time to reach 99.9%I∞ is also shown. Another two columns of
the data are the computed mean residence time by solving the
mean residence time transport equation and by using the particle
tracking method. They will be explained in a later section. It
can be observed that, although the mean average residence time
at exit of the device is about 30 s, to get this, actually we need to
run the simulation for a much longer time period in the transient
solver. In addition, for all the points the mean residence time is
longer than the time where the peak of RTD occurs due to a long
tail of the RTD curve. The mean residence time at exit can also
be estimated by the ratio of the vessel’s volume to volume flow
rate. For this device, the volume is 1.52 m3 and the flow rate is
0.05 m3/s considering 1 m in the depth direction, so the mean
average residence time is 30.4 s. Agreement of the simulation
to this calculation provides another good check on the numerical
accuracy.
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FIGURE 5. Residence time distribution at the monitoring points

Time (S)

R
es

id
en

ce
T

im
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

0 5 10 15 20
0

0.25

0.5

0.75

1

1.25

1.5

Point 2
Point 4
Point 6
Point 8

FIGURE 6. Residence time distribution at the monitoring points

To run the case to 150 s with a time step of 0.0005 s, it re-
quires 3�105 time steps. On a single processor Linux machine,
it takes about 10 hours to run it.

TABLE 1. Comparison of convergence and mean residence time at
the monitored points

Point 99.9%I∞ (s) τTracer (s) τMeanT (s) τDPM (s)

1 109.1 25.7 26.7 -

2 99.5 8.0 10.3 -

3 131.7 32.0 30.9 -

4 109.4 15.4 15.3 18.5

5 142.6 37.1 38.8 -

6 120.2 22.7 24.6 -

7 165.7 46.5 45.6 -

8 143.9 30.6 30.5 36.5

Convolution Integral
If we want to compute the RTD using the tracer species ap-

proach for the first stage of the device, we only need to run 109 s
in the solver. But if two units are connected in serial, we will have
to run 144 s to get the RTD to reach 99.9%I∞. As more stages are
connected to a system, a transient simulation will become very
expensive. For such cases, the method using convolution integral
will be very helpful. For example, we can construct the RTDs at
Point 5, 6, 7 and 8 using the RTDs at Point 1, 2, 3 and 4. Using
Eq. 14, we can obtain,

f5(t) = f4 ? f1
f6(t) = f4 ? f2
f7(t) = f4 ? f3
f8(t) = f4 ? f4

The constructed RTDs for the above four points are shown
in Fig. 7 and 8 along with the RTDs obtained through the tracer
approach. Figures clearly show the constructed RTDs agree very
well with the ones directly obtained from the simulation. The
biggest discrepancy occurs at the first curve for Point 5 although
it is very small: the convolution computed RTD is sharper at
peaks and valleys compared to the directly computed RTD. The
reason is that the directly computed RTD is subject to numerical
diffusion and discretization errors occurring in the second stage
of the vessel while the convolution computed RTD is free of such
errors.

This approach becomes very effective if more components
are connected in a system in serial.
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FIGURE 7. Comparison of RTD between computed from CFD and
from convolution

Mean Residence Time Equation Approach

Once a RTD curve is known, it has all the information of
the residence time. Not only the mean residence time, its higher
moments (e.g., its variance and skewness) can be computed out
as well. If only the mean residence time is of the interest, solving
the transport equation of the mean residence time is a much better
solution. While it takes 10 hours to run the transient solver for
150 seconds in the first approach, it only takes several seconds
to converge a steady state scalar equation! For this test prob-
lem, the transport equation of the mean residence time, Eq. 11,
is solved in FLUENT as a user-defined scalar. The contour plot
of the mean residence time is plotted in Fig. 9. It has clearly
revealed four recirculation zones in the domain where large res-
idence time is observed. The computed mean residence times
at 8 monitored points are also compared to the values obtained
from the earlier approach in Table 1. Generally the agreement is
very good. The largest discrepancy occurs at Point 2. The tracer
transport method is transient in nature, so the accuracy of results
depends on solution parameters like time step size and total sim-
ulation time. The RTD curve at Point 2 has a very narrow peak
around t=1.5 s. It may require a smaller time step to get a more
accurate solution at that point. For the mean residence time equa-
tion method it is completely free of those transient related error
sources.
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FIGURE 8. Comparison of RTD between computed from CFD and
from convolution

FIGURE 9. Spatial mean residence time distribution in the device

Lagrangian Particle Tracking Approach
If the residence time distribution at the exit is needed, the

particle tracking method can be used. In this study, ANSYS
FLUENT’s discrete particle method (DPM) is used to conduct
the particle tracking. The resolution of the final RTD will highly
depend on the number of particles released. To study its sensi-
tivity, N=1,000, 10,000, and 100,000 are used in the simulation,
respectively. Histograms of RTD at the outlet of the first sec-
tion, i.e., location 4 in Fig. 2 are shown in Fig. 10 and 11 for the
N=1,000 and N=100,000 case. To have a statistically meaningful
curve, histogram with a bin size of 0.1s has been used in those
figures. To evaluate the accuracy of those curves, the histogram
of RTD with the same bin size from the tracer study is also shown
in the figures. The histogram of the RTD is computed from the
continuous RTD function (curve Point 4 in Fig. 6) by integration
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FIGURE 10. Histogram plot of residence time distribution from the
DPM approach (N=1,000)

over each bin.
It can be seen that in general, the particle tracking approach

can capture the trend very well. If a small number of particles
are used, the stochastic error of the histogram will be large, es-
pecially in the long-time tail region. The histogram is not very
smooth there. As the number of particles increases, the his-
togram becomes very smooth, closely following the RTD func-
tion we obtained from the tracer simulation. However, as the
number increases, the computational cost increases as well. But
this method is still less expensive compared to the tracer species
approach. It takes several minutes to track 100,000 particles in
the simulation.

The largest discrepancy in the figures is the peak values. The
DPM approach overpredicts some peaks and underpredicts oth-
ers in this case. It is mainly caused by the turbulent dispersion
model which will be discussed in the next paragraph.

The mean residence time can be computed by averaging the
residence time of each particle. The computed values are 17.9 s,
18.5 s and 18.7 s for N=1,000, 10,000, and 100,000, respectively.
It seems that the mean residence time is not very sensitive to the
number of particles. However, compared with the correct value,
15.2 s, and the values from other approaches, the DPM approach
overpredicts the mean residence time by about 20% as shown in
Table 1! This is mainly caused by inaccuracy of the turbulent dis-
persion model we used. In our simulation, a simple isotropic ran-
dom walking model has been used. It seems that more advanced
stochastic models are needed to capture the RTD correctly. The
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FIGURE 11. Histogram plot of residence time distribution from the
DPM approach (N=100,000)

importance of turbulent dispersion can be illustrated by a sim-
ple exercise: switching off turbulent dispersion in the model, the
computed mean residence time is only 3.13 s!

Besides the flexibility of changing particle numbers for dif-
ferent accuracy requirement, the particle tracking approach can
be used to visualize the internal flow pattern as well. Figure 12
shows the trajectories of particles in the device. In this figure,
100 particles’ trajectories are shown. And the trajectories are
colored by the particle’s residence time. It vividly reveals the
recirculation zone and the nature of the flow being turbulent.

FIGURE 12. Particles’ trajectories in the DPM calculation
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CONCLUSIONS
Different numerical approaches to compute residence time

information are summarized in the paper. An example is used
to illustrate each method’s advantages and disadvantages. Solv-
ing the unsteady transport equation of the tracer species is the
most comprehensive approach, allowing user to get the detailed
information. The computational cost is large due to the long tail
of a RTD curve. The mean residence time can be conveniently
obtained by solving a steady state transport equation. The com-
putational cost is low and it can reveal spatial mean residence
time distribution. The particle tracking approach is usually fast
and can provide a quick and dirty solution for the RTD informa-
tion at outlet. The method can capture the trend of RTD quite
accurately. However, the mean residence time does not necessar-
ily preserve the constraint ofV=Q. It seems that more advanced
turbulent dispersion models are needed to track the particles.
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