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ABSTRACT

The two-dimensional jet flow of a Newtonian fluid at
moderate Reynolds Number emerging from a channel where the
upper plate is moving is examined theoretically in this study. In
this case, the equations of motion are reduced by expanding the
flow field about the basic Couette flow. Inertia is assumed to be
large enough, allowing asymptotic development in terms of the
inverse Reynolds number. A boundary layer forms adjacent to
the free surface, and a classical boundary-layer analysis is
applied to find the flow in the free surface and the moving wall.
The influence of this boundary layer is investigated with the aid
of the method of matched asymptotic expansions. The flow and
stress fields are obtained as composite expansions by matching
the flow in the boundary-layer region near the free surface and
the flow both in the inner (boundary-layer) region and in the
outer region of the core. The influence of wall velocity on the
shape of the free surface, the velocity and stress is emphasized.
The formulation allows for the determination of the steady state
flow and free surface profiles analytically. The present work
provides the conditions near exit, with the help of Higher-order
boundary-layer effects (i.e. the cubic term of the inverse
Reynolds number), to determine the jet structure further
downstream.

INTRODUCTION

The flow configuration corresponds, generically, to a
Newtonian jet inside a channel, flowing onto a moving wall as it
emerges out of the channel. The flow near the channel exit is
closely examined, and the influence of wall velocity is

emphasized. Although the moving wall jet problem has its own
challenges, it presents common fundamental characteristics with
other laminar free surface jet flows which have been studied in
the past. The literature abounds on free jets (Tillett [1]; Philippe
and Dumargue [2]), impinging jets (Watson [3]; Bowles and
Smith [4]; Bush and Aristoff [5]; Phares, Smedley and Flagan
[6]), and gravity driven jets (Ruschak and Scriven [7]; Wilson
[8]) and to a much lesser extent, wall jets (Elliotis, Georgiou
and Xenophontos [9]). See, for instance, the early analyses of
Glauert [10] for a jet on a flat wall, Wygnanski and Champagne
[11] for a jet on a curved wall, the experimental study of Maki
[12] for moving wall jet, and the recent computational analysis
and measurements of Levin, Chernoray, Fdahl and Henningson
[13] for a jet on a stationary flat wall.

When a free surface jet emerges from a tube or a channel,
an abrupt change in stress occurs at the exit. This stress
singularity constitutes the major difficulty in any theoretical
analysis. In particular, if a computational approach is adopted,
the incorporation of the singularity point and its immediate
vicinity is unavoidable since the entire flow domain must be
considered (discretized). The singularity region, which is
crucial to the rest of the flow domain, is difficult to handle
numerically if a satisfactory level of accuracy is sought. In
contrast, the asymptotic approach lends itself efficiently as a
viable alternative. Perhaps more importantly, asymptotics tend
to provide deeper insight on the flow structure near the
singularity.

Asymptotic analyses tend to circumvent the singularity by
identifying two distinct flow regions: a boundary layer region
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near the free surface, extending but not including the singular
point, and a core region where the flow remains close to fully
developed. The inclusion of the singularity is not essential in
this case given the similarity character of the flow in the
boundary layer region. Note again that the boundary layer
region extends both upstream and downstream from the
singularity. However, although the flow does not remain fully
developed as it approaches the exit, the thickness of the
boundary layer upstream of the exit is generally small at high
Reynolds number, and is often ignored.

Although moving wall jet flow is of fundamental
importance, it is also of significant practical relevance. In
particular, wall jet flow has been mainly examined in the
context of the coating process. Although various coating flow
configuration exists in practice, knife coating is the closest
relevance to current problem.

Following existing asymptotic analyses in the literature for
laminar free surface flows, the method of matched asymptotic
expansions is used to examine the moving wall jet at high
Reynolds number. Similarly, a classical boundary layer analysis
is developed in the present problem near the free surface, and
the boundary layer flow is matched to the inviscid flow in the
core region. The flow field is thus determined at small distances
downstream of the jet. Similarly to all boundary layer analyses,
where the solution is not valid within a small distance from
inception such as very near a leading edge or a stagnation point
(for an impinging jet), the analysis precludes the flow at the
channel exit. However, the distance in question is small, on the
order of the (local) boundary layer thickness. Consequently, the
boundary layer approach turns out to be successful in capturing
the flow nature near inception. The solution is developed in
powers of ε, where ε3 is the inverse Reynolds number, both in
the “inner” boundary layer region and in the “outer” core
region. Special emphasis is placed on the effect of wall velocity
on the shape of the free surface and the profile of the velocity
close to the exit.

GOVERNING EQUATION

Consider the two-dimensional flow of an incompressible
fluid of density  and viscosity , emerging from a channel of
width D. The flow configuration is schematically depicted in
figure 1 in the (X, Z) plane.

The X axis is taken along the stationary wall and the Z axis
is chosen in the transverse direction across the channel. The
channel exit coincides with X = 0.The flow is induced by the
translation of the upper wall, moving at velocity C.

The stream function of the basic Couette flow is given by
2

2

C z

D
  (2.1)

FIGURE 1. SCHEMATIC ILLUSTRATION OF FLOW

CONFIGURATION

Non-dimensional variables are introduced by measuring
lengths with respect to D and stream function with respect to
CD. In this case, the Reynolds number, Re, is given by

Re
DC




Where  is the kinematic viscosity. Equation (2.1) will turn
out to be the leading order solution in the core region, and is
conveniently introduced here as

2
0

0 2

z
 (2.2)

In this study, Re is assumed to be moderately large. The
non-dimensional conservation of momentum equation for the
laminar steady flow takes the following form

 1

Rez xz x zz x xxz zzzp          (2.3a)

 1

Rez xx x xz z xxx xzzp           (2.3b)

For x > 0, the kinematic and dynamic boundary conditions

at the free surface  z x are

 , 0x z   (2.4a)

 1
2 0

Re xz zz xxp          (2.4b)

 1
2 0

Re xz zz xxp         (2.4c)

A prime denotes total differentiation. Inside the channel (x
< 0), the following conditions must be satisfied, namely,

1, 0z x  at z  1    (2.5a)

0  0  z at z (2.5b)
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The flow is supposed to have the basic Couette profile Eqn.
(2.2) to lowest order and is modified when the fluid leaves the
channel in the form of the wall jet. When the fluid detaches
itself from the wall of the channel, the removal of the wall stress
causes a boundary layer to form in a region near the free
surface. In this region, the velocity profile adjusts itself so as to
satisfy the condition of zero traction at the free surface. In the
inviscid limit, this condition would not be imposed since there
is no (viscous) mechanism for the stress singularity to diffuse.
However, no uniqueness theorem exists for this inviscid
problem, and it is conceivable that other solutions might exist.
Nevertheless, it is assumed in this paper that the fully developed
Couette flow is everywhere the proper inviscid limit. With this
assumption, the flow in the core of the jet is, to lowest order,
not affected by the flow in the boundary layer region near the
free surface although the boundary layer is expected to induce
perturbations to the basic Couette flow, when higher order terms
are included, both for the flow upstream and downstream from
the channel exit.

In particular, for the flow outside the channel, the region
close to the free surface, the inner region, is shear dominated
and the flow is of the boundary layer type. In the region
between the interface and the moving wall, the outer region,
both shear and elongation prevail as a result of the
predominance of the Couette character of the flow and the
contracting jet. The outer region extends to the channel interior
and is part of the core region. At the channel exit, x = 0, the
shear stress undergoes a step change from a non-zero value at
the lower wall, z = 0, to zero at the free surface, z = (x). The
effect of this drop diffuses upstream inside the channel (x < 0)
over a distance x0 where fully developed Couette flow is
recovered, and downstream (x > 0) toward the moving wall

over a distance x , at which point the flow is entirely of the

boundary layer type. The current study focuses on the flow
outside the channel where the similarity solution in the inner
region is matched onto the outer solution. This latter in turn is
matched onto the outer solution in the core region inside the
channel at the channel exit. It is important to observe that no
matching is required for the similarity solution at x = 0. This
constitutes a major advantage of the current formulation
compared to alternative solution methods.

The problem is now examined by considering separately
the flow near the free surface (inner region), the flow in the core
region, and the flow in the vicinity of the moving wall (outer
region). The composite flow is obtained upon matching the
solutions at the interface between the two regions. Part of the
formulation in each layer is similar to the free jet formulation
carried out by Tillett [1].

PERTURBATION EQUATIONS
Flow in the Inner Region

The inner expansion for ψ begins with a term in ε2. Thus,
the expansion proceeds in powers of ε so that

     2 3
2 3, , ,              (3.1)

Similarly, h is expanded as

       2
0 1 2h h h h          (3.2)

It is concluded that p is of order ε4 inside the channel.
Thus,

     4 5
4 5, , , ...p P P          (3.3)

A similarity solution can be carried out for Ψ2; which is
written here as

   2/3
2 2, f     (3.4)

Where θ = ηξ-1/3 is the similarity variable. The equation for
f2 (θ) is given by

2
2 2 2 23 2 0f f f f     (3.5)

subject to the following boundary conditions:

2 2(0) (0) 0f f   (3.6)

2

2( ) ~ as
2

f
  (3.7)

For large θ, an asymptotic solution is possible to obtain
subject to condition (3.7) following similar arguments, leading
to

 21
2 ( )

2

c
f





  (3.8)

Where c1 is a C dependent constant determined from
numerical integration.

To the next order in ε, a linear equation is obtained for Ψ3,
with variable coefficients, admitting a similarity solution of the
form Tillett [1]

 3 3( , ) f     (3.9)
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The equation for f3 (θ) is given by

3 2 3 2 3 2 33 2 3 3 0f f f f f f f        (3.10)

subject to the following boundary conditions:

   3 30 0 0f f   (3.11)

The third boundary condition is obtained from matching:

 3 ~ 0f as   (3.12)

For higher order-boundary layer, proceeding with the latter

expansion 6( ) , the equation for  4 , 

4 2 4 2 4 2 4 2 4

                                      (3.13)F G

                

 
Where

1
23

3 3 3 3 3 3 3

2
4 0 4 2 0 2 0 2 0 2

2
 ( ) 0

3

2

F f f f

G P h P h h h

   

     

        

           

The expression obtained here leads us to write 4 ( , )  in

the form
4 2
3 3

4 4 4( , ) ( ) ( )a bf f     


   (3.14)

4 4( ) and ( ) then satisfya bf f 

2
4 2 4 2 4 2 4 3 3 3

4 2 4 2 4 2 4

2 4 4 2
    (3.15)

3 3 3 3
2 2 2

                        (3.16)
3 3 3

a a a a

b b b b

f f f f f f f f f f

f f f f f f f g





        

      

Where

2
2 2 2

2
2 2 2 2 2

2
2 2 2 2

1
(4 2 )

27
4

   (4 2 3 3 )
81
2 1 8

   ( ) (0)
9 2 27

g t f f tf

f tf f tf f

tf f t f f

  

    

     

Here 1t c 
As f3 turns out to be zero, eqn. (3.15) becomes zero. So,

eqn. (3.16) subject to the following boundary conditions:

4 4 2
4

(0) 0, (0) (0)
9b bf f cf   (3.17)

The third boundary condition is obtained from matching:

2
4 4 2

4
(0) ( )

9b bf B t f O t  (3.18)

So, the expression for ψ and h can be obtained inside and
outside the channel exit,

     2 2 / 3 4 2 / 3
2 4, bf f            (3.19)

From matching between inner and core region, it has found
that,

1/ 3 1
0 1 2 4 and h bh c B   

So, h can be written as,

  1/3 2 1
1 4      (3.20)       bh c B

Flow in the Core Region

In the core region, which is far from the region near z = 0,
ψ and p are represented by the following expansions:

     0 1, , ,x z x z x z     (3.21)

     0 1, , ,p x z p x z p x z   (3.22)

ψm (m > 0) are higher order terms that denote the deviation
from the basic flow due to its interaction with the boundary
layer.

To leading order p0(x, z) = 0. For m = 1 and 2, the matching
conditions and the condition ψm>0(x  - , z) = 0, lead to the
vanishing of the stream function and pressure everywhere. More
explicitly,

ψ1(x, z) = ψ2(x, z) = p1(x, z) = p2(x, z) = 0 (3.23)

To next order, m = 3, from matching it is obtained that ψ3(x,
z) =0

Noting that 3 3xw   , and using boundary value problem

in the ranges -∞ ≤ x ≤ ∞ and 0 ≤ z ≤ 1 is concluded:

2
3 0w  (3.24)
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The condition  3 0, 0 0w x z   is obtained from

matching. So far, the formulation in this section has been
common to both the regions inside and outside the channel.
Although the flow fields in these two regions will have to match
at the channel exit (x = 0), they can be conveniently examined
separately.

Flow in the Outer Region

The outer expansion for ψ and p are represented by the
following perturbation expansions

     0 1, , ,              (3.25)

     0 1, , ,p P P         (3.26)

To leading order, the solution for 0 is,

   0 0
1

,    , 0                (3.27)
2      P

To the next order, from matching the solution for 1 is,

   1 1                         ,    , 0            (3.28)       P

RESULTS AND DISCUSSIONS

FIGURE 2: VARIATION OF SIMILARITY FUNCTION f2

WITH SIMILARITY VARIABLE θ

Figure 2 explains that as the problem (3.5) is solved as an
initial-value problem, where the equation is integrated subject
to the boundary conditions in eqn. (3.6) and (3.7) guessed value
of the slope at the origin. The slope is adjusted until reasonable
matching is achieved between the solution and the asymptotic
form in eqn. (3.8) at large . The integration is carried out over
the domain (0, ).

Similarly figure 3 shows the f4b profiles with similarity
variable, θ. Equation (3.16) is integrated subject to the
boundary conditions in eqn. (3.17) guessed value of the slope at
the origin and the value of B4b is approximately equal to
1.0496.

FIGURE 3: VARIATION OF SIMILARITY FUNCTION f4b

WITH SIMILARITY VARIABLE θ

FIGURE 4: FREE SURFACE HEIGHT ζ(x) VERSUS
POSITION X AT DIFFERENT ε

FIGURE 5: DEPENDANCE OF BOUNDARY LAYER δ(x)
ON DIFFERENT ε
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In figure 4, free surface height is plotted at different x
position for different ε. As ε = Re-α, where α= 1/3; therefore
Reynolds number decreases with the increases of ε. From the
figure, it is seen that outside the channel the free surface
contracts as Reynolds number decreases.

Figure 5 shows the change in boundary layer thickness with
different ε. As ε increases, the thickness of boundary layer
increases.

FIGURE 6: STREAM WISE VELOCITY VERSUS POSITION X
FOR ε = 0.1, 0.2, and 0.3

Figure 6 exhibits the variation of stream wise velocity at
ε = 0.1, 0.2, 0.3 as x increases. The figure is drawn by
composite matching between inner-core and outer-core region.

The outer-core region gives Couette profile while the matching
between inner-core deviates due to the free surface as there is
zero traction force available. As Reynolds number decreases,
the inertia force also decreases. So, the flow outside the channel
becomes more dependent on the velocity of the moving wall
while ε increases.

CONCLUSION

The two-dimensional wall jet flow of a Newtonian fluid
emerging from a channel and adhering to a moving wall is
examined in this study. In this study a special care is given to
the stress singularity in the jet flow. Inertia is assumed to be
large enough, allowing asymptotic development in terms of the
inverse Reynolds number. In this case, the equations of motion
are reduced by expanding the flow field about the basic Couette
flow. In fact, the very reason for the current successful analysis
is the fact that the fully developed flow is a solution to the
governing equations at infinite Reynolds number since the
solution is not unique in this limit. A classical boundary layer
analysis is applied to find the flow adjacent to the free surface
where a boundary layer forms for moderate distances
downstream from the channel exit. The influence of this
boundary layer is investigated by the aid of the method of
matched asymptotic expansions. The boundary layer structure
near the free surface was examined.

Finally, the significance of the current study and the
advantages of the proposed formulation cannot be overstated. In
typical jet flow calculations in the literature, fully developed
conditions are assumed at inception. The present work provides
the correct conditions near exit, which are required to determine
the jet structure further downstream. If the jet becomes thin far
downstream, a boundary layer formulation can be used with the
presently predicted boundary conditions for steady and possibly
transient flows (Khayat and Welke [14] , Muhammad and
Khayat [15]).

Typically, fully developed (uniform flow) conditions are
assumed (Phan Thien, Jin and Tanner [16]). The current
formulation also allows for the determination of the steady state
flow and free surface profiles analytically. The availability of
the steady state in analytical form constitutes a significant
advantage for a linear stability analysis on the jet Soederberg
[17], and, as often is the case, when the steady state is taken as
the initial condition for a transient analysis. The accuracy of
initial conditions is crucial, for instance, for a thin jet given the
hyperbolicity of the problem (Khayat and Kim [18]).
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