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ABSTRACT 
Finite volume methods on structured and unstructured 

meshes often utilize second-order, upwind-biased linear 
reconstruction schemes to approximate the convective terms, in 
an attempt to improve accuracy over first-order methods. 
Limiters are employed to reduce the inherent variable over- and 
under-shoot of these schemes; however, they also can 
significantly increase the numerical dissipation of a solution. 
This paper presents a novel non-local, non-monotonic (NLNM) 
limiter developed by enforcing cell minima and maxima on 
dependent variable values projected to cell faces. The minimum 
and maximum values for a cell are determined primarily 
through the recursive reference to the minimum and maximum 
values of its upwind neighbors. The new limiter is implemented 
using the User Defined Function capability available in the 
commercial CFD solver Ansys FLUENT. Various simple test 
cases are presented which exhibit the NLNM limiter’s ability to 
eliminate non-physical oscillations while maintaining relatively 
low dissipation of the solution. Results from the new limiter are 
compared with those from other limited and unlimited second-
order upwind (SOU) and first-order upwind (FOU) schemes. 
For the cases examined in the study, the NLNM limiter was 
found to improve accuracy without significantly increasing 
solution convergence rate.  

INTRODUCTION 
Crucial to many computational fluid dynamics (CFD) 

simulations is the discretized advection-diffusion equation, 
which manifests itself in all equations of transport.  Simple 
solution techniques use first-order discretization schemes for 
the convective (advective) term; however, computed solutions 
experience severe and often unacceptable levels of numerical 
dissipation.  Therefore, higher-order schemes have been 
developed to improve solution accuracy.  For simulations on 

unstructured meshes, second-order schemes are most common.  
Application of these schemes for calculation of the convective 
term is successful in decreasing the numerical dissipation; 
although, higher-order methods also result in oscillations in 
regions of discontinuity or steep local gradient, as expressed by 
Godunov’s Theorem [1].  The concept of a limiter that will 
eliminate oscillations by restoring monotonicity at 
discontinuities has been examined by numerous authors, but the 
success of this approach has yielded mixed results.  For most 
existing flux limiting schemes, oscillations are reduced at the 
expense of re-introduction of a portion of dissipation [2]. 

Various limiters for use with higher-order schemes have 
been proposed in the literature.  Early, smooth limiters 
proposed by Van Leer in 1974 [3] and Van Albada et al. in 
1982[4] are capable of virtually eliminating oscillations; 
however, both force a smoothing of the solution at 
discontinuities.  In 1981, Roe and Baines designed the 
Superbee limiter [5], reducing the smoothing behavior of 
existing limiters at the expense of slightly compressing the 
gradients in the solution.  In 1988, Gaskell and Lau exhibited 
the higher-order SMART limiter [6], which possesses local 
third order accuracy [2].  The so-called Barth limiter was 
proposed in 1989 [7], providing a limiter specifically designed 
for use with unstructured grids.  In 1993, Venkatakrishnan 
expanded upon the Barth limiter [8].  The novel limiter that 
resulted consists of a polynomial function, which is 
continuously differentiable; the Venkatakrishnan limiter also is 
not applied in regions of the domain where nearly uniform flow 
exist, allowing for computational savings.  Michalak and 
Olliver-Gooch developed another similar limiter in 2008 [9], 
comprised of a different polynomial function and performing 
better than the limiter of Venkatakrishnan.  While each new 
limiter continued to improve upon its predecessors potential 
areas of improvement remain.  These include smoothing of 
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discontinuities and damping of naturally occurring extrema in 
smooth regions of the variable field. 

Recent progress in the area of limiter improvement has 
focused in several different areas, one being in the detailed 
examination of the convective boundedness criterion (CBC) 
originally proposed by Gaskell and Lau [6].   Long considered 
a necessary and sufficient condition for bounded, normalized 
convective schemes, Yu et al. [10] proved the condition merely 
sufficient in their introduction of the extended convective 
boundedness criterion (ECBC).  Further investigation 
demonstrated both the ECBC and CBC to be limiting cases of a 
general convective boundedness criterion (GCBC) [11].  In 
these studies, limiters were developed to constrain the 
normalized convective gradient within the bounds of the 
various proposed criteria.  The limiters were able to virtually 
eliminate oscillations in the solution; however, a significant 
amount of numerical dissipation remained present in the results. 

Monotonic limiters for use with higher-order total variation 
diminishing (TVD) schemes have also been thoroughly 
investigated.  The combination of the Minmod limiter and 
ELED (Essentially Local Extremum Diminishing) scheme 
limiter [12] shows improvement over other TVD limiters; 
although, some numerical dissipation still exists.  Limiters for 
compact TVD (CTVD) schemes [13] and characteristic 
variable-based limiters [14] have been developed with similar 
results.  These advances demonstrate the necessity of a superior 
limiter in order to obtain an optimum higher-order scheme. 

Most flux limiting schemes to date, including the CBC and 
TVD based schemes mentioned above, are formulated with 
local data, i.e. the flux variables are computed entirely from cell 
data in the neighbor stencil.  While computationally attractive, 
this approach may restrict the capability of the limiters.  The 
primary difficulties encountered thus far lie in the fact that 
limiters which enforce monotonicity near discontinuities also 
tend to limit or “clip” naturally occurring extrema in smooth 
regions of the variable field, manifesting as extra dissipation in 
the solution.  Ideally, a flux limiting scheme will eliminate non-
physical oscillations near steep gradients while reproducing 
smooth regions in a manner identical to an unlimited second-
order scheme. 

This paper presents a new contribution to limiter 
development for use with upwind-biased, finite-volume CFD 
algorithms on structured and unstructured grids.  Instead of 
formulating the limiter function solely on neighbor (local) cell 
data, the dependent variable extrema within any given cell are 
estimated by recursive examination of extrema in upwind 
neighbor cells.  Reconstructed face values are then constrained 
to satisfy boundedness within these estimates.  The goal of this 
paper is to present the derivation of a non-monotonic (NLNM) 
limiter of this type and to demonstrate its improved 
performance over existing limited and unlimited second-order 
and first-order methods for simple test cases. 

The remainder of the paper is organized as follows.  The 
next section presents the numerical method, including details 
on the development of the new limiter, and contrasts it with 
existing limiter methods for second-order upwind schemes.  

Next, the new limiter is applied to several simple test cases to 
demonstrate its ability to reduce oscillations while maintaining 
low numerical dissipation on Cartesian and unstructured 
triangular meshes; the computational cost of the recursive 
limiter is also examined.  The final section provides 
conclusions and outlines future work.  

NOMENCLATURE 
 

Φ  scalar variable  n cell node 
t time   U centroid of upwind 
x,y spacial coordinates   neighbor cell 
ρ  density   D centroid of  
v velocity vector   downwind 
Γ  diffusivity coefficient   neighbor cell 
S source term  C centroid of current  
A area    cell 
ṁ   mass flow rate  MAX maximum value  
r position vector  MIN minimum value  
n̂   unit outward normal  nbr upstream neighbor 
 vector    cell 
V cell volume  in entering a cell 
α  limiter   out exiting a cell 
D dissipation   
    Superscripts 
Subscripts   * value at cell node 
Φ  of the scalar   ʹ  value at upstream 
 variable, Φ    neighbor cell  
j vector index  ʺ  value at cell based
 notation    on upwind 
f face centroid   neighbors   

 

NUMERICAL METHOD 
 
Background 
The specific class of numerical methods addressed in this 

paper is the finite-volume approach with upwind-based 
reconstruction of the convective terms.  As a representative 
problem, we consider the general scalar advection-diffusion 
equation. All results in this paper were obtained from the 
commercially available CFD solver, FLUENT version 6.2.16, 
from ANSYS, Inc. [15].  The new limiter presented in this work 
was implemented using the User Defined Function capability 
available with that code.  Simulations were performed using the 
steady state, implicit solver. 

For an arbitrary scalar quantity Φ, the general governing 
transport equation is 
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Here ρ is the fluid density, v is the fluid velocity, Γ is the 
diffusivity coefficient, and SΦ is an arbitrary source term.  For 
the steady case with no sources or sinks, the transport equation 
integrated over a finite control volume (cell) becomes: 
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where the subscript CS denotes integration over the bounding 
surface of the cell.  Discretizing this reduced finite volume 
equation transforms the surface integral into a summation over 
the faces of the cell.  
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Here v is the average face velocity, n is the outward-pointing 
unit normal vector, Φf is the average face value of the 
dependent variable, and Af is the face area.  The equation may 
be expressed more simply in terms of face mass flow rates as: 
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In general, discrete values for Φ are stored at each cell centroid; 
however, the values of Φf used in the numerical representation 
of the convective term must be determined via reconstruction 
from this known centroid data.   

 
Figure 1. Unstructured grid.  For the examined face (f), the 

position vector rf⃗ is constructed from the centroid of the upwind 
(U) cell toward the downwind (D) cell intersecting the face 

centroid. 
 
The simplest upwind-biased method available for 

calculating Φf is pure first-order upwinding (FOU).  This 
scheme simply defines Φf to be equal to the value of Φ in the 
upwind cell, ΦU in Figure 1.  To obtain improved accuracy, the 
second-order upwinding (SOU) or linear reconstruction method 
is often employed.  For this method, Φf is defined as: 

 

 fUf r⋅Φ∇+Φ=Φ  (5) 

where fr  is the position vector between the upwind cell 
centroid and the face centroid and ∇Φ is the gradient of Φ in 
the upwind cell.  The gradient must be computed numerically, 
for example, the Green-Gauss Theorem estimates the gradient 
as:   
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in which V is the cell volume and fΦ

~  is an estimated value of 
Φ at the face centroid.  For the simulations presented in this 
paper, the gradients for each cell are calculated by FLUENT 
using a cell-based method, in which fΦ

~  is set equal to the 
arithmetic average of the values of Φ at the neighbor cell 
centroids (e.g. ΦU and ΦD in Figure 1). 

In most cases, a flux limiter is used in conjunction with the 
SOU scheme for calculating Φf.  The default limiter in 
FLUENT tested in this study is that developed by Barth and 
Jespersen [7].  This method first determines limiting values 
ΦMIN and ΦMAX for each cell by finding the minimum and 
maximum Φ values from the set of all values at the centroids of 
its neighbor cells and the cell itself.  Then the limiter value for 
each face is calculated by: 

 

 If Cf Φ>Φ   :  },1{
Cf

CMAX
f MIN

Φ−Φ
Φ−Φ

=α   

  (7) 

 If Cf Φ<Φ   :  },1{
Cf

CMIN
f MIN

Φ−Φ
Φ−Φ

=α  

 
After each cell face is examined, the cell value of α is taken as 
the minimum of the face limiter values (constrained such that α 
≥ 0), and Eq. (5) becomes: 
 
 fUf r⋅Φ∇+Φ=Φ α . (8) 
 
Conceptually, the Barth limiter enforces local monotonicity 
among the face values, in the sense that no reconstructed face 
value may result in a new extremum in the immediate 
neighborhood of the cell. 
 

Non-local Non-monotonic (NLNM) Limiter 
The current work details the development of a non-local, 

non-monotonic (NLNM) limiter.  The introduction of non-
locality into a limiter by the recursive examination of a cell’s 
upwind neighbors reduces the chances of overly restricting the 
face values and “clipping” smooth regions of the variable field.  
At the same time, by ridding the solution of spurious local 
minima and maxima, oscillations are virtually eliminated.  In 
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principle, the limiter operates similarly to the Barth limiter, but 
with a less restrictive bound on face and cell values, and 
without strictly enforcing local monotonicity.  Face values may 
in fact introduce new extrema in the neighborhood of the cell, 
provided they are within the bounds determined for the cell 
from recursive reference to upstream cells. 

As with the Barth limiter, the first step in the calculation of 
the NLNM limiter is to determine the appropriate maximum 
and minimum values that should be used to bound the 
dependent variable in the region of each cell.  In contrast to the 
Barth limiter, this is done through recursive examination of 
upwind cell neighbor values, rather than examination of 
immediate upwind and downwind cell neighbors.  The 
motivation behind the use of upwind neighbors only is that 
information is convected downstream, and in the absence of 
source terms any local extrema should depend only on 
upstream values of Φ.   

We begin by defining the average inlet and outlet Φ values 
for a given cell: 
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As expressed in Eq. (4), the face mass flow rate is, 
 
 ( ) fjjff Avnm ˆρ=  (11) 
 
and positive values denote flow out of the cell.  The convective 
change in the average value of the dependent variable across a 
given cell may be defined as: 
 
 inout Φ−Φ=Φ∆ . (12) 
 
Note that, for the special case of steady state flow with no 
sources and no diffusion, the convective change is identically 
zero, according to the governing equation (Eq. 4). 

Next, the maximum and minimum unlimited 
reconstruction values on downwind faces are determined for 
each cell.  Since the reconstruction is linear, the extrema 
necessarily occur at nodes.  Denoting these node extrema by 
Φ*, they may be computed as follows: 

 
 }{*

nC

nodes
downwind

MIN rMIN ⋅Φ∇+Φ=Φ  (13) 

 

 }{*
nC

nodes
downwind

MAX rMAX ⋅Φ∇+Φ=Φ  (14) 

 
where nr  is the relative position vector for each downwind 
node (Figure 2).  The downwind nodes are defined as the set of 
nodes describing all faces of a cell for which the mass flow rate 
(Eq. 11) is positive.  The reconstruction extrema defined by 
Eqs. (13,14) are used to enforce a “limit on the limit” based on 
the local variation of the dependent variable.  For example, in 
regions with a uniform distribution of Φ, Φ∇ = 0 and *

MINΦ  = 
*
MAXΦ  = CΦ . 

 

 
Figure 2.  Unstructured Grid.  For a given cell (C), the position 

vector rf⃗ is drawn from the cell centroid to the face (f) centroid in 
the direction of the neighbor (N) cell.  The position vector rn⃗  is 
drawn from the cell centroid to the node (n), directed out of the 

cell. 
 

The limiting values ΦMAX and ΦMIN for each cell are 
computed during each solution iteration through a recursive 
process that includes the following steps: 

 
1. Initialize ΦMAX and ΦMIN in each cell to its centroid 

value ΦC. 
2. For each cell in the domain, loop through each of its 

upstream cell neighbors to determine the maximum 
and minimum upstream values as follows.  First, limit 
each upstream neighbor value by the nodal extrema 
discussed above: 
 

 ( )*
,,, , nbrMAXnbrMAXnbrMAX MIN ΦΦ=Φ′  (15) 

 
 ( )*

,,, , nbrMINnbrMINnbrMIN MAX ΦΦ=Φ′  (16) 
 
Next compute a maximum and minimum upstream 
value based on all upstream cell neighbor values: 
 

 ( )nbrMAXMAX MAX ,Φ′=Φ ′′  (17) 
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 ( )nbrMINMIN MIN ,Φ′=Φ ′′  (18) 

 
3. Update the maximum and minimum values in each 

cell by taking into account the convective change as 
follows: 
 

 ( )MAXMAXnewMAX MAX ΦΦ∆+Φ ′′=Φ ,,  (19) 
 
 ( )MINMINnewMIN MIN ΦΦ∆+Φ ′′=Φ ,,  (20) 

 
4. Repeat steps 2 and 3 for N iterations.  Each iteration 

serves to include information from one additional level 
of upstream neighbors.  For N→ ∞, the limiter in each 
cell is based on information from all of its upstream 
cell neighbors.  In practice, it was found that N = 5 
was sufficient to yield a close approximation to N→ ∞ 
without adding substantial computational effort to the 
simulation.  All results in this paper were obtained 
with N = 5. 

 
Once the maximum and minimum values for each cell 

have been thus determined, the fluxes are limited using the 
approach defined by Eqs. (7,8) above.   

In order to implement this method into the FLUENT 
solver, the scalar variable Φ was defined as a User Defined 
Scalar (UDS), and the process of calculating the NLNM limiter 
was written as a User Defined Function (UDF).  The output of 
the UDF was a source term defined for each cell by the 
summation of the difference between the limited projected face 
value, Φf, and ΦC for each face.  The discretization scheme for 
the solver was set to FOU; however, the algorithm was made 
second-order with the addition of the UDF source term. 

    
DEMONSTRATION TEST CASES 

To test the new limiter and its variations, several 2D, 
steady-state simulations were run.  The domain was a unit 
square in the x- and y-directions.  Two grids were used: one 
Cartesian with 100x100 cells and one unstructured triangular 
grid with 10,116 cells.  The unstructured mesh intentionally 
used an edge length that yielded a cell count approximately 
equal to the Cartesian mesh.  The simple test cases considered 
here are based on pure steady advection of a passive scalar Φ in 
a known incompressible velocity field, u.  Solutions are 
obtained with the second-order upwind scheme employing the 
new limiter (denoted SOU-N), and are compared to solutions 
from a first-order upwind scheme (denoted FOU), an unlimited 
second-order upwind scheme (denoted SOU), and a second-
order scheme employing the Barth [7] limiter (denoted SOU-
B). 

For the first set of test cases, the limiters were tested for 
the case of a discontinuous variable field, to ensure that any 
non-physical oscillations were removed without introducing 

excessive amounts of dissipation.  The bottom of the domain 
was set as an inlet with Φ = 0, while the left side of the domain 
was set as an inlet with Φ = 1.  Two cases were run utilizing the 
structured grid.  For the first, the velocity was uniform at an 
angle of 26.56° from the horizon; for the second, velocity was 
uniform at an angle of 45°.  Figure 3 shows the contours of Φ 
for the SOU-B and SOU-N methods.  It can be seen that the 
new limiter reduces the numerical dissipation of the 
discontinuity in the solution and maintains that reduction 
through the domain.   
  

      
           (a)      (b) 

Figure 3. Non-smoothed contours of Φ for the case of structured 
grid, uniform velocity angle of 26.56° and discontinuous variable 

distribution: (a) SOU-B ; (b) SOU-N. 
 

 
 

Figure 4. Plot of Φ vs y-Coordinate at x = 0.5 for FOU, SOU, SOU-
B and SOU-N schemes for the 26.56° structured case. 

 
Figure 4 compares the resolution of the discontinuity for 

the four methods tested.  The plot shows the distribution of Φ in 
the y-direction at the location x = 0.5 in the domain.  The 
difference in performance for each of the schemes used is 
apparent.  The FOU scheme is, of course, excessively 
dissipative.  The three second-order schemes exhibit key 
differences between themselves.  The unlimited scheme (SOU) 
shows little dissipation, but also the expected variable 
overshoot, up to 12% higher than the maximum physical bound 
on the solution.  The Barth limited (SOU-B) scheme 
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ameliorates the overshoot, but the limiter introduces some 
degree of smearing in the region of the interface.  The new 
limiter (SOU-N) shows significantly less dissipation than the 
Barth limiter while eliminating the non-physical oscillations.  
   

 
Figure 5. Plot of Φ vs y-Coordinate at x = 0.5 for FOU, SOU, SOU-

B and SOU-N schemes for the 45° structured case. 
 

 
Figure 6. Plot of Φ vs y-Coordinate at x = 0.5 for FOU, SOU, SOU-

B and SOU-N schemes for the 45° unstructured case. 
 

Similar trends are seen on the structured grid with a 
velocity angle of 45°, as shown in Figure 5.  For this case, the 
unlimited, second-order scheme shows variable over- and 
undershoot, which is eliminated by both limiting schemes.  As 
above, the new limiter introduces less dissipation into the   
results.  For the unstructured grid with a velocity angle of 45°, a 
similar plot is presented in Figure 6.  In contrast to the 
structured grid results, only a small difference is noted in the 
dissipation levels of the two limited schemes.  Also, the 
variable overshoot in the unlimited scheme is quite small (less 
than 0.3%).  All three of the second-order methods, therefore, 
appear to be quite similar for resolving the discontinuity on an 
unstructured mesh. 

To confirm that the naturally occurring extrema of a 
smooth function are maintained by the new limiting method, 
various sinusoidal inlet profiles of Φ were convected through 
the domain.  Profiles with one, two, eight and twelve sine 
waves were applied to the left inlet boundary.  As with the 
previous set of test cases, results were obtained for a structured 
grid with both uniform 26.56° and 45° velocity fields, as well 
as for an unstructured grid with a uniform 45° velocity field.  
For the single and double sine wave cases, the first-order 
method allowed some damping of the extrema; little difference 
was noted between the second-order methods, which all 
maintained the extrema throughout the domain.  This result is 
expected since the smooth variations are very well resolved in 
these cases. 
 

   
(a)           (b) 

Figure 7. Non-smoothed contours of Φ for the 26.56° structured 
eight sine wave case: (a) SOU-B; (b) SOU-N. 

 

Figure 8. Plot of Φ vs x-Coordinate at y = 1.0 for FOU, SOU, SOU-
B and SOU-N schemes for the 26.56° structured eight sine wave 

case. 
 

 As the number of sine waves at the inlet was increased, 
however, significant differences in the limiters became 
apparent.  Data from the structured grid cases for an eight sine 
wave profile at the inlet are presented in Figures 7-9.  From the 
contour plots in Figure 7, it can be seen that the new limiter is 
able to maintain distinct peaks and valleys in the convected sine 
waves throughout the entire domain, while the Barth limiter 
shows damping of the sine wave profile.  This result is even 
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more apparent in Figures 8 and 9, which provide plots of Φ 
verses the x-Coordinate at the top (y = 1) outlet of the domain.  
For the 45° velocity case in Figure 9, the smallest peak for the 
SOU-B scheme is approximately 1/5 the height of the SOU-N 
limiter’s peak at that same point. 
 

 
Figure 9. Plot of Φ vs x-Coordinate at y = 1.0 for FOU, SOU, SOU-
B and SOU-N schemes for the 45° structured eight sine wave case. 

 
As a measure of the performance of each scheme, the 

dissipation for each case was determined by: 
 

( )∫ Φ⋅−=
CS

dAnvD 2ˆρ                           (21) 

 
where n ̂  is the unit normal vector out of the domain, and the 
integration is performed over the entire domain boundary.  The 
results of this calculation are presented for the specified cases 
in Table 1.  For the 26.56° structured case, the new limiting 
scheme is 73.3% less dissipative than the Barth scheme; for the 
45° structured case, the new limiter is 69.0% less dissipative.  
 The 45° unstructured case for eight sine waves is presented 
in Figures 10 and 11.  As in the first set of test cases, the Barth 
limiting method performs better on the unstructured grid than 
on the structured grid, relative to the unlimited case.  However, 
the new limiter still indicates an improvement over the Barth 
scheme; it is 37.1% less dissipative according to Table 1.                                                  
 

Table 1. Dissipation for Eight and Twelve Sine Waves. 
 

  
Eight Sine Wave Cases 

  
 

FOU SOU SOU-B SOU-N 
S26.56 0.812996 0.154687 0.664679 0.177257 

S45 0.324133 0.118744 0.38235 0.118443 
US45 0.507826 0.174735 0.316198 0.19869 

  
Twelve Sine Wave Cases 

  
 

FOU SOU SOU-B SOU-N 
S26.56 0.698829 0.542654 0.869068 0.530025 

S45 0.426442 0.409287 0.412211 0.401727 
US45 0.466747 0.412394 0.488172 0.411991 

 

    
(a)           (b) 

Figure 10. Non-smoothed contours of Φ for the 45° unstructured 
eight sine wave case: (a) SOU-B; (b) SOU-N. 

 
 

 
Figure 11. Plot of Φ vs x-Coordinate at y = 1.0 for FOU, SOU, 

SOU-B and SOU-N schemes for the 45° unstructured eight sine 
wave case. 

 
The final convected sine wave simulations used a twelve 

wave profile at the inlet.  The data from the structured 26.56° 
case is shown in Figure 12.  For this case, the new limiter again 
shows very little dissipation of the natural extrema of the sine 
waves, compared to the unlimited second-order scheme.   It is 
also noteworthy that the Barth limiting method performs only 
marginally better than the first-order method throughout half of 
the domain.  The new limiter is 39.0% less dissipative than the 
Barth limiter for this case, according to the data presented in 
Table 1.  Figure 13 presents similar results from the 
unstructured 45° case.  Although the new limiting scheme is 
more dissipative in this case, it still shows an improvement over 
the Barth method and close agreement with the unlimited 
scheme.  At the smallest peak in Figure 13, the solution 
employing the new limiter is approximately six times larger 
than that produced by the Barth limiter.  For this case, the new 
limiter is 15.6% less dissipative than the Barth method.  In each 
of these cases, the new limiter maintains the natural extrema of 
the sine waves almost as well as the unlimited second-order 
case.   
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Figure 12. Plot of Φ vs x-Coordinate at y = 1.0 for FOU, SOU, 

SOU-B and SOU-N schemes for the 26.56° structured twelve sine 
wave case. 

 
Figure 13. Plot of Φ vs x-Coordinate at y = 1.0 for FOU, SOU, 

SOU-B and SOU-N schemes for the 45° unstructured twelve sine 
wave case. 

 
 A final set of test cases was run to examine the limiter 
performance in a non-uniform velocity field.   For these cases, 
the inlet of the domain was split into two regions, with the top 
region assigned a Φ value of 1, while the value for the bottom 
region was 0.  The velocity through the domain was sinusoidal, 
with the discontinuity in Φ convected through the domain.  
Figure 14 shows contour plots for each of the second-order 
cases on the structured grid.  The over- and undershoot in the 
unlimited (a) and the dissipation in the Barth limited (b) cases 
are apparent.  Figure 15 plots the distribution of Φ vs. x through 
the domain at y = 0.5.  From this plot, the non-physical extrema 
in the unlimited scheme are apparent, since the results exceed 
the physical bounds of 0 and 1.  The Barth limiter causes a 
gradual decrease in the amplitude of the periodic distribution as 
the flow continues through the domain.  As before, the new 
limiter produces results that are much less dissipative than 
those yielded by the Barth limiter, without the overshoot of the 
non-limited second-order method.  Figure 16 shows the results 
on a similar plot as Figure 15 for each of the three schemes on 

an unstructured grid.  As in previous cases, the first-order 
method is very dissipative.  All the second-order methods 
perform much better, with the new limiting scheme being 
slightly less dissipative than the Barth limiting method.  These 
results are consistent with all of those presented above. 
 

          
(a)                                             (b) 

 

 
(c) 

Figure 14. Non-smoothed contour plots of Φ for the structured 
non-uniform velocity case: a) SOU, b) SOU-B and c) SOU-N. 

 

 
Figure 15. Plot of Φ vs x-Coordinate at y = 0.5 for SOU, SOU-B 

and SOU-N schemes for the structured non-uniform velocity case. 
 

 The computational cost and convergence rate for both 
limiting methods was also examined in this study.  For the 
26.56° velocity field structured grid cases, the methods 
exhibited nearly the same computational time per iteration.  
With the discontinuity inlet condition, the new limiting method 
maintained a slightly slower convergence rate than that of the 
Barth scheme.  However, for the sine wave cases, the new 
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method converged at about the same rate as the Barth scheme.  
Results from the 45° velocity field structured grid were similar.  
The computational time and rate trends for the methods 
remained comparable, with one exception.  Representative of 
the majority of the sine wave profile cases, Figure 17 
demonstrates close agreement of the convergence rates.  Figure 
18 details the exception--the eight sine wave profile case.  For 
this case, the Barth limiter case did not converge in to the same 
level as the new limiter case.  For the 45° velocity field 
unstructured grid cases, the computational time per iteration 
trend was similar to the previous cases; however, both methods 
maintained the same convergence rate.   
     

 
Figure 16. Plot of Φ vs x-Coordinate at y = 0.5 for FOU, SOU, 
SOU-B and SOU-N schemes for the unstructured non-uniform 

velocity case. 
 

 
Figure 17. Plot of residual vs iteration for SOU-B and SOU-N, 

schemes for the 45° structured single sine wave case. 
 

 
Figure 18. Plot of residual vs iteration for SOU-B and SOU-N on 

the 45° structrued eight sine wave case. 
 

CONCLUSIONS 
A new, non-local flux limiter was developed and applied to 

the solution of a scalar advection equation for various 2D, 
steady cases.  The limiter utilizes recursive examination of 
upwind neighbor extrema to limit a given cell’s minimum and 
maximum reconstructed face values.  Solutions produced by the 
limiter were compared with those from first-order upwind and 
limited (employing the Barth limiter) and unlimited second-
order upwind methods.  The new limiter shows improvement 
over the existing methods in eliminating oscillations typically 
present in non-limited SOU schemes while reducing the 
numerical dissipation present in limited SOU schemes.  
Furthermore, for the majority of cases tested, the computational 
time and iterations necessary to reach convergence for the new 
method were approximately the same as those needed for the 
Barth limiter. 

Future work includes applying the new limiter to the 
momentum equations and testing the scheme for complex, 
realistic flow conditions.  Pending the success of these tests, a 
novel gradient calculation method will be developed for use in 
conjunction with the new limiter.  It is anticipated that an 
optimum combination of limiter and numerical gradient 
calculation methods may lead to significant improvement in 
simulation accuracy for second-order discretization schemes. 
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