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ABSTRACT

The wall jet flow near channel exit at moderate Reynolds
Number, emerging from a two-dimensional channel, is
examined theoretically in this study. Poiseuille flow conditions
are assumed to prevail far upstream from the exit. The problem
is solved using the method of matched asymptotic expansions.
The small parameter involved in the expansions is the inverse
Reynolds number. The flow and stress fields are obtained as
composite expansions by matching the flow in the boundary-
layer region near the free surface, flow in the outer layer region
and the flow in the core region. The fluid is assumed to be
Newtonian and it is found that the jet contracts downstream
from the channel exit. The influence of inertia on the shape of
free surface, the velocity and stress is emphasized and the
higher order boundary layer is explored. To leading order, the
problem is similar to the case of the free jet (Tillett) [1] with
different boundary conditions. A similarity solution can be
carried out using a similarity variable problem which is then
solved as an initial-value problem, where the equation is
integrated subject to the boundary conditions and a guessed
value of the slope at the origin. The slope is adjusted until
reasonable matching is achieved between the solution and the
asymptotic form at large . The level of contraction is
essentially independent of inertia, but the contraction moves
further downstream with increasing Reynolds number. The
present work provides the correct conditions near exit, which
are required to determine the jet structure further downstream.
If the jet becomes thin far downstream, a boundary layer
formulation can be used with the presently predicted boundary
conditions for steady and possibly transient flows.

INTRODUCTION

The stress singularity constitutes the major difficulty in any
theoretical analysis. In particular, if a computational approach
is adopted, the incorporation of the singularity point and its
immediate vicinity is unavoidable. The singularity region,
which is crucial to the rest of the flow domain, is difficult to
handle numerically if a satisfactory level of accuracy is sought.
In contrast, the asymptotic approach lends itself efficiently as a
viable alternative. Perhaps more importantly, asymptotic tend
to provide deeper insight on the flow structure near the
singularity. In the current study, the interplay between driving
pressure and the stationary wall is examined for the two-
dimensional steady jet of an incompressible fluid near channel
exit. The flow configuration corresponds, generically, to a
pressure driven wall jet inside a channel. The flow near the
channel exit is closely examined, and the influence of inertia is
emphasized. Inertia is assumed to remain relatively important,
allowing the asymptotic development of the flow field in terms
of the inverse Reynolds number. The driving pressure is
assumed to be dominant. In the current work, Tillett’s work is
extended to cover more comprehensively the flow close to and
upstream from the exit. It is important to observe that, in typical
jet flow calculations in the literature, Poiseuille conditions are
assumed at inception. The literature abounds on free jets
(Tillett[1], Philippe & Dumargue [2]), impinging jets (Watson
[3], Bowles & Smith [4]; Bush & Aristoff [5]; Phares, Smedley
& Flagan [6]), gravity driven jets (Ruschak & Scriven [7];
Wilson [8]) and, to a much lesser extent, wall jets (Elliotis,
Georgiou & Xenophontos [9]), the experimental study of
Maki [10] for moving wall jet, and the recent computational
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analysis and measurements of Levin, Chernoray, Fdahl &
Henningson [11] for a jet on a stationary flat wall.

Free surface and interfacial flows are inherently
complicated because of the unknown position of the surface or
interface. The presence of the stress singularity adds
considerably to the complexity of the problem and solution.
Both analytical and computational solution methodologies have
been pursued in the literature. Although numerical methods
seem to have prevailed over analytical approaches for most
flow problems, this is not the case for flows with singularity. A
combination of analytical and numerical treatments has also
been proposed (Shi, Breuer & Durst [12]). In a computational
approach, the entire flow domain must be discretized, including
the singularity and its surrounding region, both upstream and
downstream from the exit. Higher accuracy is achieved through
mesh refinement, which captures more effectively the
singularity but leads simultaneously to the presence of stronger
flow gradients that are difficult to handle numerically (Pasquali
& Scriven [13]). In order to circumvent the difficulty with the
unknown free surface, Tsukiji & Takahashi [14] wrote the flow
equations in a curvilinear coordinate system related to the
network comprising the streamlines and their orthogonal
trajectories. Although this approach simplifies the
implementation of the boundary conditions, it complicates the
flow equations.

Asymptotic analyses tend to circumvent the singularity by
identifying three distinct flow regions: a boundary layer region
near the free surface, extending but not including the singular
point, the core region where the flow remains close to fully
developed and in the upper wall i.e. the outer region. For a
recent perspective on asymptotic analyses, their applications
and historic development, the reader is referred to the book by
Sobey [15] on interactive boundary layer. A classical boundary
layer analysis is developed in the present problem near the free
surface, and the boundary layer flow is matched to the inviscid
flow in the core region. Similarly the matching between the
outer and core region is done. The flow field is thus determined
at small distances downstream of the jet. The solution is
developed in powers of ε, where ε3 is the inverse Reynolds
number, both in the boundary layer region and in the core
region. Special emphasis is placed on the effect of inertia on the
shape of the free surface and the profiles of the velocity and
stress components close to the exit. Good qualitative agreement
is found with measurements, observations and numerical
predictions in the literature whenever available. Asymptotic
analyses have also been successfully implemented for non-
Newtonian flows. See, for instance, the work of Denier &
Dabrowski [16] on boundary layer flow, and the work of Zhao
& Khayat [17] for the spreading of a liquid jet.

The present work provides the correct conditions near exit,
which are required to determine the jet structure further
downstream. Finally, the approach can be generalized to tackle

other high-Reynolds number laminar flow processes of
important practical interest near channel or pipe exits.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

Consider the two-dimensional flow of an incompressible
fluid of density  and viscosity , emerging from a channel of
width D. The flow configuration is schematically depicted in
figure 1 in the (X, Z) plane. The X axis is taken along the
stationary wall and the Z axis is chosen in the transverse
direction across the channel. The channel exit coincides with
X = 0.

FIGURE 1: SCHEMATIC ILLUSTRATION OF TWO
DIMENSIONAL WALL JET

The flow is induced by a pressure gradient, dP/dX, inside
the channel. The stream function of the basic Poiseuille flow is
obtained from
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is the mean velocity due to the

pressure gradient inside the channel. In this case, V is assumed
to be always positive and will be used as the velocity scale. In
other words, the pressure gradient is assumed to be always
present and negative. Non-dimensional variables are introduced
by measuring lengths with respect to D, stream function with
respect to VD, and pressure with respect to ρV2. In this case,
dimensionless groups emerge in the problem, namely, the
Reynolds number. Now, Eqn. (2.1) will turn out to be the
leading order solution in the outer region, and is conveniently
introduced here as

2 3
0 3 2 z z (2.2)

In this study, Re is assumed to be moderately large. The
non-dimensional conservation of momentum equation for the
laminar steady flow takes the following form

X
Z= 0

Z = 1

Free Surface

Channel
region

Stationary Plate        0

Stationary Plate



3 Copyright © 2010 by ASME

 1

R e
    z xz x zz x xxz zzzp      (2.3a)

 1

Re
     z xx x xz z xxx xzzp      (2.3b)

For x > 0, the kinematic and dynamic boundary conditions
at the free surface,   z x , are

0 (2.4a)

 1
2 0

Re
     xz zz xxp     (2.4b)

 1
2 0

Re
    xz zz xxp     (2.4c)

A prime denotes total differentiation. Inside the channel
(x < 0), the following conditions must be satisfied, namely,

0 and 0 z x  at z = 1, (2.5a)

0z at 0z (2.5b)

2 33 2 z z as  x (2.5c)

The flow is supposed to have the basic Poiseuille profile
(2.2) to lowest order and is modified when the fluid leaves the
channel in the form of the wall jet. When the fluid detaches
itself from the wall of the channel, the removal of the wall
stress causes a boundary layer to form in a region near the free
surface. In this region, the parabolic velocity profile adjusts
itself so as to satisfy the condition of zero traction at the free
surface. In the inviscid limit, this condition would not be
imposed since there is no (viscous) mechanism for the stress
singularity to diffuse, and all the conditions of the problem
would be satisfied by postulating that the parabolic profile
continues unchanged in the jet region. However, no uniqueness
theorem exists for this inviscid problem, and it is conceivable
that other solutions might exist. Nevertheless, it is assumed in
this paper that the fully developed Poiseuille flow is
everywhere the proper inviscid limit. With this assumption, the
flow in the core of the jet is, to lowest order, not affected by the
flow in the boundary layer region near the free surface although
the boundary layer is expected to induce perturbations to the
basic Poiseuille flow, when higher order terms are included,
both for the flow upstream and downstream from the channel
exit. This assumption is similar to the one made by Smith [18]
for the tube flow with severe constriction, where the flow field
in the core region, to leading order, satisfy the inviscid
equations of motion.

The outer region extends to the channel interior and is
different of the core region. At the channel exit, x = 0, the shear
stress undergoes a step change from a non-zero value at the
lower wall, z = 0, to zero at the free surface, z = (x). The effect
of this drop diffuses upstream inside the channel (x < 0) over a
distance x0 where fully developed Poiseuille flow is recovered,
and downstream (x > 0) toward the stationary wall over a
distance x , at which point the flow is entirely of the

boundary layer type. The current study focuses on the flow
outside the channel where the similarity solutions in the inner
and outer region are separately matched with the core solution.
It is important to observe that no matching is required for the
similarity solution at x = 0, and the flow singularity at the origin
is entirely avoided in the solution process. This constitutes a
major advantage of the current formulation compared to
alternative solution methods.

The problem is now examined by considering separately
the flow near the free surface (inner region) and the flow in the
core (outer) region and flow in the outer region. The composite
flow is obtained upon matching the solutions at the interface
between the three regions. Part of the formulation in each layer
is similar to the free jet formulation carried out by Tillett [1].

PERTURBATION EQUATIONS

The inner expansion for ψ begins with a term in ε2 and
thus, represented by the following perturbation expansions

     2 3
2 3, , ,                (3.1)

     4 5
4 5, , ,     p P P        (3.2)

To leading order, the momentum equation, Eqn. (2.3a)
reads

2 2 2 2 2         (3.3)

A similarity solution can be carried out for Ψ2, which is
written here as

   2/3
2 2,  f    (3.4)

where θ = ηξ-1/3 is the similarity variable. The equation for f2(θ)
is given by

2
2 2 2 23 2 0    f f f f (3.5)

subject to the following boundary conditions

2 2(0) (0) 0 f f (3.5a)
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2
2 ( ) ~ 3  as f    (3.5b)

An equation similar to (3.3) was investigated by Goldstein
[19] and revisited by Tillett [1]. For large  , an asymptotic
solution is possible to obtain, subject to condition (3.5b),
namely

 2 3
2 1

2
( ) 3 +o exp

3

       
  

f c   (3.6)

where c1 is a constant determined from the numerical
integration. To the next order from the momentum equation the
following equation is found

3 2 3 2 3 2 33 2 3 3 0       f f f f f f f (3.7)

subject to the following boundary conditions:

   3 30 0 0 f f (3.7a)

  3
3 ~ 2  as f    (3.7b)

An asymptotic solution similar to but more complicated
than the case of free jet flow (Tillett [1]) is possible. Thus,

   

 

3
3 1 2 1

3
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          exp 2

         
    

f c c c

O
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
(3.8)

The numerical integration of equation (3.7) gives the

value c2.

In the core region, which is far from the region near z = 0,
ψ and p are represented by the following expansions:

     0 1, , ,     x z x z x z   (3.9a)

     0 1, , ,    p x z p x z p x z (3.9b)

The solution obtained from the core region to order 2 and
3 are explicitly,

ψ1(x, z) = ψ2(x, z) = p1(x, z) = p2(x, z) = 0 (3.10)

In the core region inside the channel the shape functions Vn

are governed by the following Eigenvalue problem:

2
2

2
0

     
 

n n nV V
z z

 (3.11)

Downstream from the channel exit, the solution is given as

   

 

3 3

0
1

0, 0,

                   2 ( )






   

  

x

xn
n n

n

w x z x z

V z A e V z



(3.12)

where V0(z) satisfies the following equation and boundary
conditions

0 02
2

0  


V V
z z

(3.13)

   0 00 1 1 0 V and V (3.13a)

The outer expansion for ψ and p are represented by the
following perturbation expansions

     0 1, , ,               (3.14a)

     0 1, , ,    p P P       (3.14b)

To leading order, the solution for 0 is,

   0 0, 1 and , 0  P    (3.15)

To order 2 from the matching between outer and core it
is found that the solution for 2 is,

   2 2, 0 and , 0  P     (3.16)

Similarly for order 3 the solution for 3 is,

3 2  x (3.17)

THE COMPOSITE FLOW

We obtain the composite velocity profile by matching
between the inner and core and between outer and core.
Following Van Dyke (1964)[20], the composite expansion
operator is defined by

   n n n n nC E H E H (3.18)

Here, En is the outer-expansion operator, which truncates
immediately after the term of order εn where the expansion is
expressed in terms of outer variables. Hm is the corresponding
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inner-expansion operator. After successful matching the
composite velocity that we obtain is ,

       1/3 2 2/3 3
2 2 3 2, 2      C u x z x f x f zc O     (3.19)

RESULTS AND DISCUSSION

Problem (3.5) is solved as an initial-value problem, where
the equation is integrated subject to conditions (3.5a) and a
guessed value of the slope at the origin. The slope is adjusted
until reasonable matching is achieved between the solution and
the asymptotic form (3.6) at large θ. The integration is carried
out over the domain [0,θ∞] where θ∞ is a relatively large value
of  where matching is secured to within an imposed tolerance.
Of particular interest here is the value of the slope at the origin,
f2’(0)which is directly related to the velocity at the free surface.

FIGURE 2: VARIATION OF SIMILARITY FUNCTION f2

VERSUS SIMILARITY VARIABLE Θ

The numerical integration of equation (3.7) gives the value
c1. The solution procedure is similar to before, except that both
problems (3.5) and (3.7) are solved as a coupled system.

FIGURE 3: VARIATION OF SIMILARITY FUNCTION f3

VERSUS SIMILARITY VARIABLE Θ

Figure 4 typically illustrates the inner Vn dependence of the
Eigen values. Interestingly, Vn decreases and βn increases with
n, making convergence reasonably achievable after only a few
modes.

FIGURE 4: SHAPE FUNCTION Vn VERSUS Z

Similarly, solving equation (3.11), figure 5 illustrates the
flow in the core (outer) region outside the channel.

FIGURE 5: SHAPE FUNCTION V0 VERSUS Z

By using the composite matching between the inner and
core and outer and core, the composite velocity is obtained.
Figure 6 and 7 represents the outer-core and inner-core
composite velocity profile along with the free surface at
different position of x for Reynolds No. 1000 and 125
respectively.
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FIGURE 6: COMPOSITE VELOCITY VERSUS Z AT
DIFFERENT POSITION OF X AT ϵ=0.1

FIGURE 7: COMPOSITE VELOCITY VERSUS Z AT
DIFFERENT POSITION OF X AT ϵ=0.2

FIGURE 8: BOUNDARY LAYER THICKNESS VERSUS X

The free surface velocity increases with the decrease of
Reynolds Number. Figure 8 depicts the thickness of the
boundary layer at different ϵ. As Reynolds no. is inversely
related to ϵ, it is seen from the figure that with the decrease of
Reynolds Number, the boundary layer thickness increases.

CONCLUSION

The two-dimensional wall jet flow of a Newtonian fluid
emerging from a channel and adhering to a moving wall is
examined in this study. Inertia is assumed to be large enough,
allowing asymptotic development in terms of the inverse
Reynolds number. In this case, the equations of motion are
reduced by expanding the flow field about the basic Poiseuille
flow. In fact, the very reason for the current successful analysis
is the fact that the fully developed flow is a solution to the
governing equations at infinite Reynolds number since the
solution is not unique in this limit. A classical boundary layer
analysis is applied to find the flow adjacent to the free surface
where a boundary layer forms for moderate distances
downstream from the channel exit. The influence of this
boundary layer is investigated by the aid of the method of
matched asymptotic expansions. The roles of inertia of the
incoming jet with stationary wall are emphasized.

Finally, the significance of the current study and the
advantages of the proposed formulation cannot be overstated.
In typical jet flow calculations in the literature, fully developed
conditions are assumed at inception. The present work provides
the correct conditions near exit, which are required to
determine the wall jet structure further downstream.
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