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ABSTRACT
A method to estimate the uncertainty of each vector

in Particle Image Velocimetry measurements by estimat-
ing the parameters which contribute to errors in the com-
puted velocity field is discussed. These parameters include
particle image diameter, particle density, particle displace-
ment, and velocity gradient. After PIV processing, our code
“measures” these parameters and an estimate of the veloc-
ity uncertainty is made for each vector in the flow field.

NOMENCLATURE
∆t Time difference between images
∆x Particle displacement between images
b∆t uncertainty of the time difference
b∆x uncertainty of the displacement
bk Systematic uncertainty estimate
Dtrue The true displacement
dτ Particle image diameter estimate
dτtrue True Particle image diameter
dp Particle image density estimate
N Number of samples used to compute x̄
r The average displacement computed
rhigh The upper limit of the uncertainty estimate

rlow The lower limit of the uncertainty estimate
sx Computed standard deviation of a sample
U+

r The upper combined uncertainty limit
U−r The lower combined uncertainty limit
Ū+

r The upper combined average uncertainty limit
Ū−r The lower combined average uncertainty limit
u The x component of velocity
utrue The true x component of velocity
v Velocity vector containing all components
v The y component of velocity
w The z component of velocity

1 Introduction
Numerical simulations, including Computational Fluid

Dynamics (CFD), are used extensively in engineering for
aerodynamics of aircraft and vehicles, hydrodynamics of
ships, power plant modeling, turbomachinery, cooling of
equipment, modeling blood flow through veins and arteries,
and more [1]. Before these simulation results can be used,
they must first be validated by comparison to experimental
data or analytic solutions. With the exception of a few sim-
ple flows, analytic solutions are not available. The full-field
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velocity data provided by Particle Image Velocimetry (PIV)
makes it an obvious choice for velocity validation measure-
ments. PIV has the ability to provide instantaneous two- or
three-component velocity fields which point measurement
techniques, such as hot wire anemometry or Laser Doppler
Velocimetry, can not. In numerical simulation validation, it
is crucial to know the uncertainty for both the experimental
and numerical data. A failure to do so can result in inaccu-
rate models, flawed test results, and inefficient designs.

The uncertainty of a PIV measurement is a very com-
plex function of several parameters [2]. These parameters
include, but are not limited to, particle image diameter, par-
ticle displacement, density, and velocity gradients. While
there has been extensive study of the impact of these pa-
rameters on PIV uncertainty, it is exceedingly rare to see
them employed in a PIV uncertainty analysis. The nature
of the impact of these parameters on the uncertainty is such
that the uncertainty varies in space and time, so any attempt
to determine the global uncertainty of data set post-priory
is either impossible or is doomed to be very conservative.

In this paper, we present an effort to develop a frame-
work to estimate the uncertainty of every PIV vector based
on the measured flow as well as the raw image data. We
begin by estimating the uncertainty of a publicly-available
PIV code as a function of several known error sources. Our
code (which is added to the PIV code) measures the param-
eters that are known to influence uncertainty. Once these
parameters have been quantified, an estimate of the veloc-
ity uncertainty is made for each velocity vector in space
and time. The influence of these parameters on uncertainty
is determined from data gathered from synthetic images of
known flow fields.

In summary we will:

1. Identify contributors to PIV error. For the purpose of
this paper, we have selected these contributers:

◦ Particle Size
◦ Particle Density
◦ Shear
◦ Displacement

2. Generate synthetic images for flows that contain vary-
ing amounts of each of these contributors. All correla-
tion effects are included (various combinations of the
parameters)

3. Compute vector fields from the synthetic images and
compare them to the known solution to find the errors

as a function of each of the parameters. These form the
basis for the uncertainties

4. Add the capability of estimating particle size and den-
sity as well as flow shear to the PIV code. (All PIV
codes already estimate displacement)

5. Add the capability of coupling these estimates with the
uncertainty information to determine the uncertainty
for each vector.

1.1 PIV Algorithms
It is important to make the distinction between PIV

software and a PIV algorithm. The PIV algorithm consists
of a specific series of operations which are carried out on
arrays of digital image pixel intensities. These pixel arrays
are a representation of an area of fluid flow which contain
seed particles that are illuminated by a light source. Exam-
ples of these operations include Fourier-based cross cor-
relation, gaussian subpixel displacement estimators, win-
dowing, multipass, etc. The logistics of data storage, ma-
nipulation, and implementation of the specific operations
in order describe PIV software. If two instances of PIV
software use the same algorithm, they must produce iden-
tical results. An understanding of the distinction between
PIV algorithms and software is vital when considering the
application of the results from any PIV study. When du-
plicating a published PIV result with a different algorithm,
one will not be able to identically match the results. Also
note that PIV processing with nearly any software requires
the user to make dozens of choices on the algorithm fea-
tures as well as the order in which they are executed. As a
result, even with the same software, it is unlikely that two
users will use identical algorithms.

1.2 Uncertainty Estimates for Specific PIV Algorithms
The purpose of this study is an attempt to quantify

the uncertainty of PIV-computed velocity vectors automat-
ically. It is not the intent of this study to prove the superior-
ity of one PIV algorithm over another. The original intent
of this study was to produce a universal uncertainty model
which could be distributed with any PIV software. By look-
ing at the PIV Challenge results [3, 4, 5] it is clear that this
cannot be accomplished. These studies show that various
PIV algorithms have different errors for identical input. It
is also apparent that different algorithms are more sensitive
to certain image parameters than others, such as shear, par-
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ticle diameter, and density. Because of this, a single PIV
uncertainty model for all algorithms cannot provide realis-
tic results.

To further demonstrate the need for individualized un-
certainty values for each PIV algorithm, synthetic images
are processed using LaVision’s DaVis 7.2.2 and PIVad-
vance, which was developed at Virginia Tech [6, 7, 8]. The
average error of velocity vectors from a uniform flow based
on subpixel displacement only was computed for flows pro-
cessed by the two PIV algorithms. The images processed
with DaVis used 3 passes with the first pass interrogation
regions 64 pixels square and the final pass 16 pixels square.
A circular window was applied to each pass. The images
are processed with PIVadvance using a Multigrid Standard
Cross Correlation routine with gaussian windowing and
three passes similar the one ones used by DaVis. Not only
do the velocity error values differ, but the shape and sign
of the error curves are significantly different between the
different algorithms (see Figure 1).

2 Uncertainty Estimation
Using a 1-D equation for clarity, the calculation of ve-

locity in PIV measurements come from the assumption that

u =
dx
dt
≈ ∆x

∆t
. (1)

The uncertainty of u can come from both the displacement
∆x and the time increment ∆t. Using the Taylor Series
Method for uncertainty propagation [9] the combined un-
certainty estimate for the velocity assuming that the uncer-
tainty of ∆x and ∆t are not correlated is

u2
u =

(
∂u

∂∆x

)
b∆x +

(
∂u
∂∆t

)
b∆t (2)

where b∆x and b∆t are the uncertainty estimates of ∆x and
∆t. The uncertainty of ∆t is small enough that it is assumed
negligible so the uncertainty of u becomes proportional to
the computed displacement b∆x. Equation 2 simplifies to

uu =
(

1
∆t

)
b∆x. (3)

Figure 1. Average subpixel displacement error as computed by DaVis

7.2.2 and PIVadvance for different diameters d at a particle image density

of 0.0293 particles/pixel2.

The Monte Carlo Method (MCM) for determining the
combined uncertainty assumes a Probability Density Func-
tion (PDF) for each input variable. The values of these vari-
ables are randomly chosen according to the assumed distri-
bution and the solution is computed from the data reduction
equation. The calculation is repeated until the standard de-
viation is converged [9] which is the uncertainty estimate
that includes all correlation effects.

The data reduction equation for PIV is given by its al-
gorithm. The inputs to the data reduction equation are ar-
rays of pixel intensities and the output is a vector. Pixel
intensities in a single image are correlated with each other
through particle image diameter, and density. The pixel in-
tensities between image pairs are correlated with each other
though particle displacement, shear, and rotation. For most
PIV algorithms, it is not beneficial to develop an analytic
expression of the data reduction equation. If an interroga-
tion region were only 8 pixels square, the data reduction
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equation becomes a function of 2(8)2 = 128 pixel intensity
values. Because the data reduction equation is a function of
many variables, all of which are correlated, a MCM to de-
termine a combined uncertainty estimate is selected. The
random variable in the MCM simulation is particle loca-
tion, which is selected from a uniform distribution.

2.1 Generating the Uncertainty Surface
According to [2], the main sources of error in PIV are

particle image density, in-plane loss, out-of-plane loss, par-
ticle diameter, particle displacement, and shear. In-plane
loss and out-of-plane loss will be considered as a criterion
to exclude data. The others sources of error will be the fo-
cus of the current study to estimate uncertainty values. A
multipass PIV algorithm is used so only the subpixel dis-
placement will be considered as contributing to the uncer-
tainty value. This assumption was tested and found true
97% of the time. The effects of background noise are not
included in the uncertainty surface because they are con-
sidered negligible compared to noise created by the FFT
correlation [2] (the impact of image noise on the method’s
ability to quantify error inputs will be assessed). The un-
certainty data given by [2] is not used as it is specific to the
algorithm that was used to generate it.

For interrogation regions experiencing identical true
displacements (made from synthetic images) the same vec-
tor is not always computed from interrogation region to in-
terrogation region. Even though the data reduction equa-
tion is the same for each region, the inputs of pixel intensi-
ties differ. The pixel intensity arrays vary because particles
are randomly distributed throughout the flow. Another dif-
ference arises because the Fourier-Based Cross-Correlation
computation introduces noise into the correlation map [2]
which is dependent on the input pixel intensity arrays. The
distribution of these displacements is used to compute a
95% confidence interval (see Figure 2).

There exist unique upper, rhigh, and lower, rlow, values
of the precision uncertainty (since the distribution of PIV
error is, in general, not symmetric) for each data point and a
systematic uncertainty value bk. The systematic uncertainty
is computed as the difference between the true displace-
ment Dtrue and the average computed displacement r. The
precision uncertainty values are calculated by computing
the area under the probability curve, and, since the curve is
a histogram, integration is accomplished by summing the

Figure 2. Theoretical histogram showing the distribution of computed

displacements and the true displacement Dtrue. x̄ is the average dis-

placement that is calculated by the PIV algorithm. The value bk is the

systematic uncertainty value. sx̄u and sx̄l are the upper and lower bounds

in which 95% of the data are contained

values. The lower limit rlow is the difference between r and
the point at which the area under the curve is 2.5% of total
area under the histogram. Similarly the upper bound rhigh
is difference between the point in which the area under the
curve is 97.5% of the total area and r [9].

The combined uncertainty estimate for the lower un-
certainty bar limit can be computed as Equation 4 and the
upper bound as Equation 5.

U−r =
√

r2
low +b2

k (4)

U+
r =

√
r2

high +b2
k (5)

It should be noted that no assumptions have been made
about the shape (PDF) or location of the displacement dis-
tributions. Although the bk is considered a symmetric un-
certainty value, it is represented as having a unique upper
and lower bound with magnitudes that are identical.

It is often desired to compute time statistics for PIV
velocity measurements. An estimate of the uncertainty on
the mean of a velocity vector can be computed as

Ū−r =
(

1.96
sx√
N

)2

+
N

∑
i=1

(
U−ri

)2 (6)

Ū+
r =

(
1.96

sx√
N

)2

+
N

∑
i=1

(
U+

ri

)2 (7)
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Figure 3. Values of U−r and U+
r for different numbers of samples used

to compute them

where sx is the standard deviation of the velocity at a point
in space and U−ri

and U+
ri

are the uncertainty values for each
velocity measurement that was used to compute sx.

The data are recorded for multiple particle image di-
ameters, densities, displacements, and velocity gradients
creating an input parameter space which is defined in Ta-
ble 2.1. The number of data points to be used was de-
termined after a convergence study was performed. The
results of a convergence study are shown in Figure 3. All
permutations of each parameter combination is computed
using roughly 10,000 vectors for each data point. The data
points are post-processed using a median filter [13]. Vec-
tors which are identified as outliers are removed. By gener-
ating 10,000 vectors for each data point, a sufficient num-
ber of points remain after the spurious vectors are removed.

This data creates a 4-D uncertainty surface. Some of
the results are presented by holding two variables constant
and varying the other two. Figure 4 shows U+

r for no gra-
dient and −1.00 pixel displacement. From Figure 4 it is
seen the uncertainty estimate is almost constant with diam-
eter and density with the exception of small particle im-
age diameters and low particle density. Figure 5 shows
U+

r for 2.50 pixel particle image diameter and 0.00195
particle/pixel2 density. From Figure 5 it is seen the uncer-
tainty estimate is a weak function of displacement, but is

Figure 4. U+
r surface for 0.00 gradient and -1.00 pixel displacement

Figure 5. U+
r surface for 2.50 pixel particle image diameter and

0.00195 particle/pixel2 density.

heavily sensitive to shear.

3 Results

The estimated uncertainty based on the uncertainty sur-
face was computed from flows having a uniform profile, a
linear profile, a Couette-Poiseuille flow, a Burger’s Vortex,
and a laminar separation bubble [10]. Information on how
these were generated can be found in Appendix A.
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Input Parameter Lower Limit Upper Limit Step size

Particle Image Diameter (pixels) 0.5 5.0 0.5

Particle Image Density (particles/pixels2) 0.0098 0.0391 0.0098

Particle Image Displacement (pixels) -1.0 1.0 0.1

Gradient (pixels/pixel) 0.00 0.20 0.02

Table 1. Table showing the range of the computed uncertainty estimates

Flow Type and Correlation no noise (u/v) PCO Sensicam QE noise (u/v) FastCam noise (u/v)

Uniform Flow SCC 78.0% / 66.4% 61.5% / 56.7% 71.0% / 61.9%

RPC 94.1% / 87.9% 89.6% / 83.0% 87.3% / 77.0%

Linear Profile SCC 93.0% / 44.5% 92.8% / 44.7% 93.0% / 41.0%

RPC 95.5% / 41.8% 96.1% / 42.7% 95.6% / 39.4%

Couette-Poiseuille SCC 93.3% / 42.8% 92.5% / 45.1% 92.8% / 39.6%

RPC 95.9% / 44.5% 97.4% / 49.6% 95.8% / 41.4%

Burger’s Vortex SCC 78.5% / 77.4% 78.4% / 77.5% 78.1% / 77.0%

RPC 86.2% / 83.5% 88.2% / 85.4% 86.0% / 83.1%

PIV Challenge ’05 case B SCC 72.3% / 33.6% - / - - / -

RPC 89.9% / 69.0% - / - - / -

Table 2. Table showing the percentage of computed velocity vector components which contain the true value within the error bounds (ex. u−U−r <
utrue < u +U+

r ). Normally distributed background noise is added to to the images with a mean of zero and variance equal to a percentage of the

maximum possible pixel intensity (256 for an 8-bit camera).

3.1 Assessing the Appropriateness of the Error Bars

The appropriateness of the estimated uncertainty is de-
termined by examining the percentage of calculated vectors
which contain the true value within their error bounds. If
all error sources have been taken into account, the uncer-
tainty bars on 95% of the computed vectors should contain
the true value. This percentage was computed for all flows
and three background noise levels (for cases for which im-
ages were generated) including no noise, and noise levels
corresponding to two common cameras (as described in the
Appendix). Differing levels of background noise are in-
cluded to test the results of [2], that it is negligible, and to
make the synthetic images more realistic. The results are

tabulated in Table 2 for both the standard cross correlation
(SCC) and robust phase correlation (RPC) methods. Each
flow analyzed contained 16,129 vectors with the exception
of the PIV Challenge ’05 case B which has 3608 vectors.
Each image was post-processed using a median filter and
spurious vectors were removed. In all cases, no more than
0.6% of the vectors were removed by the median filter.

From Table 2, most cases are in the neighborhood of
95% for the dominant flow direction (which is the x di-
rection for the liner profile and Couette-Poiseuille Flows).
Numbers significantly lower than 95% indicate that either
1) an error source parameter, such as shear, has been esti-
mated incorrectly or 2) and error source has been neglected.
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Figure 6.

Since the two cases with v = 0 have inappropriate un-
certainty bars on the v components, 1-D flow was further in-
vestigated to see if the u and v velocity components within
the same interrelation region are correlated with each other.
To do this, 50 synthetic image pairs were created with dis-
placements ranging from 0.2 pixels to 10.0 pixels along the
x-axis with v = 0. Background noise was added to each to
approximate that of the PCO CCD camera as described in
the Appendix. Each image pair produced 3969 vectors and
was post-processed with a median filter to remove spurious
vectors. Less than 1.5% of vectors were removed in post-
processing. Figure 6 shows the standard deviation of the y
displacement component (which should be zero) for both
the SSC and RPC methods.

The periodic behavior appears similar to displacement
peak locking. By removing all integer displacements from
the data in Figure 6, the same data are shown as a function
of subpixel displacement only (Figure 7).

It is apparent that the for the SCC method, there is
noise induced on a velocity component proportional to the
subpixel displacement on the other component. For the
RPC method the amount of noise induced on a velocity
component is less than that of the SCC method, but it is
still present and actually increases as the displacement of
the orthogonal component increases. The uncertainty sur-
face produced for this study did not account for this effect.
This may explain the poor uncertainty estimate on the zero

Figure 7.

v cases. In fact, this effect will degrade performance in any
case where all other error sources are insignificant. This
also explains why the RPC method, which suffers from this
problem to a much smaller extent than the SSC method,
provides better uncertainty results then the SSC method
even though they each have their own unique uncertainty
surface. For the method presented in this paper to be suc-
cessful, a fifth dimension would need to be added to the
uncertainty surface which accounts for the displacement of
the orthogonal velocity component.

Lastly, we note that adding image noise had very little
impact on any of the results. This is consistent with the
conclusions of [2] and validates the decision to not include
noise in the uncertainty surface.

3.2 Uncertainty Field Computations Compared with
Error

The first flow analyzed is that of a uniform velocity
field. The data was created with particle image diameters
equal to 2.5 pixels, and a particle image density of 0.0293
particles/pixel2. This case serves as a base line of a sim-
ple flow with two significant velocity components and no
gradient. The uniform displacement is set such that there
is a 3.268 pixel displacement along the x-axis, and a 5.876
pixel displacement along the y-axis. A plot of the veloc-
ity field, and the computed width of the uncertainty bars,
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√(
U−rx

)2 +
(
U−ry

)2 +
√(

U+
rx

)2 +
(
U+

ry

)2, is shown in Fig-
ure 8. It can be seen in Figure 8b that the uncertainty levels
are generally small for a flow with zero gradient, but that
regions of larger uncertainty do exist due to other factors.
It is also clear that these regions, in most cases, correspond
to regions of larger error. This is the desired performance
of the method.

For a linear velocity profile (constant gradient of 0.02
pixels/pixel) with particle image diameter equal to 2.5 pix-
els, and particle image density of 0.0293 particls/pixel2,
the velocity field and the width of the uncertainty bars are
shown in Figure 9a-b. The majority of the uncertainty bars
have the same size, since shear will dominate the uncer-
tainty estimate. The fluctuations in the uncertainty bar
width are most likely due to errors in the estimate of the
velocity gradients ∂u/∂y and ∂v/∂x. An error in the com-
puted velocity vector will be amplified during numerical
differentiation. Again, however, note the strong correlation
between regions of large uncertainty and regions of large
uncertainty.

Combined Couette-Poiseuille flow, which has a vary-
ing gradient, is also analyzed with a particle image diam-
eter equal to 2.5 pixels and a particle image density of
0.0293 particls/pixel2. The velocity field and the width
of the uncertainty bars are shown in Figure 10a-b. As ex-
pected, the width of uncertainty bars increased in areas of
higher shear and decrease in areas of low shear when the
uncertainty due to displacement becomes significant. A
plot showing the u velocity profile is shown in Figure 11
with 95% confidence uncertainty bars and the true value of
u.

A Burger’s Vortex, which is a rotating flow, is also an-
alyzed. The particle image diameter is 2.5 pixels, and par-
ticle image density is 0.0195 particls/pixel2. A plot of the
velocity field, and the computed width of the uncertainty
bars are shown in Figure 12a-b. The gradients (∂u/∂y and
∂v/∂x) in this flow are small and constant. Because of the
small gradients, the uncertainty due to the subpixel dis-
placement, which is sinusoidal, is significant. The fluctu-
ations in the uncertainty bar width appear periodic are due
to the effect of the sub pixel estimation uncertainty at that
location.

For the PIV Challenge ’05 case B data the major source
of error comes from shear, the effects of which dominate
the uncertainty estimates. A plot of the velocity field, and

(a)

(b)

Figure 8. (a) Plot of the calculated displacement of the uniform profile

velocity field with no background noise computed with the RPC method.

(b) Plot of the width of the uncertainty bar associated with each displace-

ment vector and superimposed error contour. The error level contours are

0.0, 0.05, and 0.1 pixels.
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(a)

(b)

Figure 9. (a) Plot of the calculated displacement of the linear profile ve-

locity field with no background noise as computed with the RPC method.

(b) Plot of the width of the uncertainty bar associated with each displace-

ment vector and superimposed error contour. The error level contours are

set at 0.0, 0.1, and 0.2 pixels.

the computed width of the uncertainty bars are shown in
Figure 13a-b. It is seen that the predicted uncertainty values
are higher in areas of larger error.

The importance of individual uncertainty estimates can
easily be seen when a plot is made showing the uncer-

(a)

(b)

Figure 10. (a) Plot of the calculated Couette-Poiseuille flow field dis-

placement with no background noise as computed by the RPC method.

(b) Plot of the width of the uncertainty bar associated with each displace-

ment vector and superimposed error contour. The error level contours are

0.0,0.05, and 0.1 pixels.

tainty bar width as a percentage of the local velocity. This
was done for the combined Couette-Poiseuille flow (Fig-
ure 14) and the PIV Challenge ’05 case B flow (Figure 15).
Channel flow is often thought of as having high uncertainty
near the wall. Some of this velocity field may have an ac-
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Figure 11. Comparison of the computed value of u and its 95% uncer-

tainty bar at constant x = 31mm for a Couette-Poiseuille flow which has

10% background noise.

ceptable level of uncertainty. Using a single uncertainty
value for the entire flow (which is common) obscures the
fact that some of the data are much better that others.

It is seen in Figure 15 that for a flow which appears to
have a reasonable velocity profile (Figure 13a), the uncer-
tainty for local velocity values can reach unacceptable lev-
els. If a single uncertainty value were defined for the entire
flow region, it would need to be large enough to capture
the vectors with the largest uncertainty. Such an approach
often would label PIV velocity fields with an uncertainty
high enough to cause the case to be discarded. If individual
uncertainty values are assigned to each local vector, then
each vector can be individually assessed based on its un-
certainty level. Since the uncertainty estimates generated
do not capture 95% of the true values, the uncertainty es-
timate as a percentage of local velocity is an underestima-
tion. Because of this Figure 14 and Figure 15 are expected
to overestimate the local accuracy of PIV.

4 Conclusions
A method to compute local PIV velocity vector uncer-

tainty is demonstrated. The method focused on tradition-
ally accepted image parameters which are thought to pro-
duce error in PIV measurements. Namely: particle image

(a)

(b)

Figure 12. (a) Plot of the calculated Burger’s Vortex flow field displace-

ment with no background noise as computed by the RPC method. (b) Plot

of the width of the uncertainty bar associated with each displacement vec-

tor and superimposed error contour. The error level contours are 0.0, 0.1,

and 0.2 pixels.

diameter, particle density, particle displacement, and local
shear. It is shown that an estimate of the velocity uncer-
tainty can be made for every velocity vector in a flow field.
The results shown are specific to the PIVadvance algorithm,
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(a)

(b)

Figure 13. (a) Plot of the PIV Challenge ’05 case B flow field displace-

ment as computed by the RPC method. (b) Plot of the width of the uncer-

tainty bar associated with each displacement vector in the DNS flow field

with superimposed error contours. The error level contours are set at 0.0,

0.1, 0.2, and 0.3 pixels.

although similar results could be made with other algo-
rithms. The uncertainty estimate is less sensitive to par-
ticle image diameter, density and displacement (with some
exceptions) but highly sensitive to shear.

This method tended to grossly under predict the uncer-
tainty levels for one dimensional flows for the component
with no displacement. It was suggested that this is because
motion in one direction introduces noise in the orthogo-
nal direction. The method generally under predicts the the
uncertainty levels for all two dimensional flows analyzed.
Motion induced noise is different from dynamic range in
that it affects accuracy even when particle displacements
are very small or similar magnitudes. The level of uncer-
tainty caused by the motion induced noise is dependent on

Figure 14. A plot of the local uncertainty estimate as a percentage of

local velocity for the combined Couette-Poiseuille flow.

Figure 15. A plot of the local uncertainty estimate as a percentage of

local velocity for PIV Challenge ’05 case B flow field.

the PIV algorithm chosen. Further work is needed to better
understand and quantify the effect of motion induced noise.

The importance of local velocity uncertainty estima-
tion has been demonstrated. For flows which have “good”
looking velocity fields, the local uncertainty can reach un-
acceptable levels. With local uncertainty values, areas of
the flow can be assessed and removed when uncertainty
levels are too high, while other sections of flow may be
retained and used. This is a significant improvement over
global uncertainty estimates.

While the method presented has serious flaws that need
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to be addressed and is probably not yet general enough for
wide spread use, the potential and importance of local un-
certainty estimates for PIV has been amply demonstrated.
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Appendix A: Synthetic Image Generation
Using “Synthetic Images” based on known flow data

(from analytical solutions or numerically computed flow
fields) makes it possible to know the exact solution, and
true error, for specific cases. A synthetic image is an arti-
ficial image of seed particles in a known velocity field. To
generate these images, an algorithm was produced which
follows the method discussed in [2].

We study five flows ranging from simple to complex:
uniform flow, constant gradient, Couette-Poiseuille flow
between plates, Burgers Vortex flow, and Direct Numeri-
cal Solution (DNS) for a laminar separation bubble from
the 2005 PIV challenge [10].

A uniform velocity flow can be created by displacing
all particles by the same specified magnitude for each ve-
locity component. Mathematically it can be expressed as

v =

u
v
0

 . (8)

The uniform velocity flow field allows for study of PIV er-
rors without gradients, rotation, and no out of plane loss.

The linear velocity profile (constant gradient) is de-
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fined as

v = y
(

du
dy

)
+

u
0
0

 . (9)

The linear velocity profile allows the study of velocity cal-
culations in the presence of shear without rotation and out
of plane loss.

The combined Couette-Poiseuille flow is a laminar
one-dimensional flow driven by a constant pressure gradi-
ent and moving upper wall with a no slip boundary condi-
tion at each wall. The flow field can be expressed as

u
U

=
1
2

(
1+

y
h

)
+P

(
1− y2

h2

)
, P =

(
−d p

dx

)
h2

2µU
(10)

where U is the velocity of the upper wall, and h is the half
distance between plates [11]. The velocity vector then be-
comes

v =

u
0
0

 . (11)

The Couette-Poiseuille flow maintains a constant profile in
a one-dimensional flow flied. By generating synthetic im-
ages from this flow field, the effects of non-constant shear
can be examined without out-of-plane motion of the PIV
algorithm.

A Burgers Vortex is a vortex model which assumes the
fluid is steady, axis-symmetric, with small axial gradients
of physical quantities. The flow velocity is described by

Vθ

Vθb
=

Reb

2
(
1− e−Reb/2

) r
b
, Reb =−bVrb

νt
(12)

Vr

Vrb
=

r
b

(13)

where b is the radius of the vortex, and Vrb and Vθb are
cylindrical components of velocity at r = b [12]. Convert-

ing to cartesian coordinates

v =

Vrcos(θ)−Vθsin(θ)
Vrsin(θ)+Vθcos(θ)

0

 . (14)

Producing synthetic images that follow this flow field allow
the study of the effects of rotating flow fields without out
of plane motion on the PIV algorithm.

Background noise was added to each image at three
different levels. The first level is zero noise, which is in-
tended to give a best case scenario. The second noise level
is meant to approximate the actual noise level in the PCO
sensicam QE 12 bit CCD camera. To approximate the noise
produced when recording images with this camera 100 im-
age pairs are taken of air with no seed particles illuminated
by a New Wave Research Solo PIV III ND-Yag Laser dual
cavity laser. A histogram of the pixel intensities is gener-
ated to show the noise distribution. The histogram x-axis is
normalized by the maximum pixel intensity (4095), and the
y-axis is normalized by the total number of pixels recorded.
The normalized histogram is fitted with a normal distribu-
tion:

y(x) = Ae−
(x−µ)2

2σ2 , (15)

with average µ = 1.011e−2 and standard deviation σ =
5.96e−4. Random samples are then taken from this nor-
mal distribution and added to each image to simulate the
background noise of the Imager Intense camera. The third
noise level is meant to approximate the actual noise of the
Photron FastCam APX RS 10 bit CMOS camera. Follow-
ing the same procedure that was used for the second noise
level, 100 image pairs are taken of air with no seed illumi-
nated by a Photonics ND-YLF single cavity laser. A his-
togram is made and normalized in the same manner as the
second noise case and fitted with a normal distribution of
mean µ = 2.834e−3 and standard deviation σ = 3.55e−3.
This normal distribution is then randomly sampled to pro-
duce background noise for the third case. The normalized
histograms from these cameras are seen in Figure 16.

Appendix B: Image Parameter Quantification
To use these uncertainty estimates, image parameters

need to be quantified for non-synthetic data. The easiest
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Figure 16. Normalized histogram of background noise from LaVision Im-

ager Intense CCD and Photron FastCam APX RS CMOS cameras.

parameter to quantify is displacement since the PIV algo-
rithm already calculates this. Since it is the value of the
subpixel displacement that creates error (assuming it is not
a spurious vector), this quantity is stored for each vector.
Depending on the algorithm used, this value can be deter-
mined by multiplying the velocity by ∆t, then rounding the
displacement to the neared integer pixel value, and taking
the difference from the unrounded value.

The average particle image diameter and the average
density are not as straight forward to determine. A pre-
liminary method to automatically estimate the particle im-
age diameter and density has been developed. Rows (or
columns) of pixel intensities are selected from each PIV
image pair. Each row is then averaged with the preced-
ing and following rows. A plot of this is shown in Fig-
ure 17. Because real images will have background noise, a
threshold value must be set such that background noise has
a minimal impact on the diameter estimate. The peaks that
extend above the threshold level are assumed to represent a
particle image or cluster of multiple particle images. Peaks
corresponding to multiple particle image clusters will be
generally larger in magnitude and wider than those of sin-
gle particle images. A gaussian curve is then fit to each
peak above the threshold. The standard deviation, sx, of the
gaussian curve is computed for each assumed particle. The
particle diameter is then estimated to be 2(1.6)(sx), where

Figure 17. A singe row added to the proceeding and following rows

of pixel intensity. Based on this singe row the algorithm computed

the particle image diameter such that the relative error [abs(dτtrue−
dτ)/dτtrue]100% = 3.7%. The particle image density relative error was

computed the same way to be 8.8%

the value 1.6 was empirically determined. An average par-
ticle image diameter is then from all gaussian fits. Other
methods such as those used in Particle Tracking Velocime-
try measurements may be used.

Using the gaussian fit for each assumed particle re-
duces the effect that the selected noise threshold has on the
estimated dτ which is seen in Figure 18. It is also seen
that an average particle image predicted after sampling 30
rows becomes fairly constant. The exact values of each es-
timated particle image diameter varies randomly about a
mean value. This is due to the random distribution of par-
ticles within each image. This scheme produces a very ac-
curate estimate of the particle diameter for particles larger
than 1 pixel, as shown in Figure 19.

As a first approximation of the background noise for an
image, the threshold is set to the sum of the average pixel
intensity of the image, x̄, and the standard deviation of the
pixel intensities sx. To estimate the particle image density
the image intensity values are filtered such that only pixel
intensities larger than the threshold remain. The number of
particles in the image is then estimated as the number of
pixels in the filtered image divided by the projected area of
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Figure 18. Particle image diameter, dτ, is estimated with varying num-

ber of rows sampled. The noise threshold is set to 10%, 30%, and

50% of the maximum intensity.

Figure 19. Particle image size algorithm results as a function of particle

size.

a particle which is approximated by that of a circle

Ap =
π(dτ)

2

4
. (16)

The particle density can then be estimated by divid-
ing the number of particles by the pixel area of the image.
Experimental results indicate that this method tends to un-
derestimate the particle image density. A correction factor
of 1.32 is multiplied to the estimated particle image density
estimate to provide a better estimate.

The fourth parameter that is needed for the uncertainty
estimate is the velocity gradient. The method used to esti-
mate the velocity gradient is the Robust Gradient Estimate
Method described in [14] which has shown improvement in
derivative estimates over other methods such as finite dif-
ference.

Effects of Noise on Parameter Quantification
The effects of noise on gradient estimation can be

found in [14], and the effects of noise on displacement es-
timation can be found in [6, 7, 8]. To see the effects of
noise on particle image diameter and density, three levels of
background noise are investigated which are created from
a normal distribution with zero mean and variance equal to
0%, 10%, and 20% of the maximum intensity value. A plot
of the estimated diameter and density for the three noise
levels is seen in Figure 21 and Figure 22. The uncertainty
bars on the data points are based on a Student’s t distribu-
tion with sample size of 4. As we can see the estimate of
the particle image diameter remains accurate for the three
levels of noise while the estimated particle image density
rises with increased noise. The estimation of particle im-
age density will be an area of future study.

From Figure 4 and Figure 5 it is concluded that the ac-
curacy with which this method finds the particle image di-
ameter and density will have little effect on the uncertainty
estimate. The ability to accurately predict the uncertainty
is most directly related to the accuracy that the gradient can
be estimated.
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(a)

(b)

(c)

Figure 20. A section of an image with particle image diameters of 2.5

pixels, density 0.0192 particles/pixel2 and (a) 0.0% background noise (b)

10.0% background noise (c) and 20.0% background noise.

Figure 21. The effect of image background noise on the estimated par-

ticle image diameter. The actual value is 2.5 pixels. Error bars are com-

puted from a Student’s t distribution of 4 samples and a 95% confidence

interval.

Figure 22. The effect of image background noise on the estimated parti-

cle image density. The actual value is 0.02. Error bars are computed from

a Student’s t distribution of 4 samples a 95% confidence interval.
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