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SIMPAF INRIA Lille Nord Europe
UST Lille

F-59655 Villeneuve d’Ascq FRANCE
creuse@math.univ-lille1.fr

Delphine Depeyras
IMB Université de Bordeaux
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ABSTRACT
The aim of this work is to analyse one of the mechanisms

that contributes to the drag forces, namely the distance of the
vortices to the back wall of a bluff body. The study shows the
strong relationship between this distance and the pressure forces
at the back. Indeed, the active control processes modify the tra-
jectory of the vortices to accelerate their removal from the wall
and consequently reduce the drag coefficient.

NOMENCLATURE
U=(u,v), p velocity field and pressure
Re non dimensional Reynolds number
K non dimensional permeability coefficient of the medium
H height of the Ahmed body
Γ Vortex circulation
Fp pressure force
Cd drag coefficient

INTRODUCTION

A large part of the drag coefficient around a bluff body is
due to the pressure forces on the front and back walls. In partic-
ular the vortices generated on the sharp corners of the geometry
are moved in the near wake, inducing strong pressure forces at
the back. Consequently, each time a big vortex stand close to
the wall the drag coefficient increases. A way to reduce this drag
coefficient is to control the flow so that the vortices are either
smaller or convected away faster. To reduce the size of the vor-
tices, one way is to use porous slices to create a low speed flow
parallel to the main flow [Bruneau and Mortazavi 2004,Bruneau
et al. 2008]. Then Kelvin-Helmholtz instabilities generate small
eddies that are less strong and the pressure forces are reduced.
To convey faster the vortices, active control using blowing jets
can be an efficient tool [Brunn et al. 2007, Rouméas 2006]. In
this work, the bluff body is a simplified car called the square-
back Ahmed body [Ahmed et al. 1984]. A theoretical study
shows the strong relationship between the distance of an inviscid
vortex and the pressure forces on the back wall. Then, the results
given by the active control process are analysed to prove that this
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relationship is true in a real flow. Indeed, the variations of the
drag coefficient are directly linked to the distance of the strong
shedding vortices to the back wall. This paper is organized as
follows: for some removal analytical functions, the correspond-
ing forces are computed, then a study is performed using a vortex
superimposed on a given background flow. Finally, the study of
the trajectories of the vortices in the vicinity of the back wall for
some real flows, shows the impact of the distance of the vortices
to the pressure drag forces and thus on the whole drag coefficient.

1 ANALYTICAL APPROACH
Using the mirror image vortex theory [Lamb 1916], the slid-

ing forces of a vortex at the wall are the amount of the forces
generated by the studied vortex and its wall mirror image vortex.
Let H be the height of the back wall of the obstacle characterized
by the coordinates set x = 0 and −H/2 ≤ z ≤ H/2 (see Figure
1). Let us consider M(0,z) a point on the back wall and a vortex
whose center is located at point P(x1,z1), x1 ≥ 0. The distance
between M and P is denoted d, and~τMP is the unit vector given by
~τMP = ~MP/|| ~MP||. In that case, according to [Milne-Thomson
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Figure 1: Location of the vortex center P respecting to the in-
finitesimal surface M of the wall.

1966], the wall velocity induced at point M by the vortex is given
by

~V (M) =
Γ

2πd
~τMP,

where −Γ ∈ IR corresponds to the vortex circulation. Let the
mirror image vortex be located at the point P′(−x1,z1) with cir-

culation +Γ, The velocity ~W (M) at point M due to this mirror
image vortex can be defined the same way and a simple calcu-
lation shows that the modulus of the resulting velocity ~VR(M) =
~V (M)+ ~W (M) is given by

VR(M) = ||~VR(M)||= Γ x1

π(x2
1 +(z− z1)2)

.

When x goes towards infinity, the velocity VR(M) does also and,
according to Bernoulli, the local pressure p with respect to the
pressure at rest p0 is given by

p(M)− p0 =−ρ

2
V 2

R (M) =−ρ

2
Γ2 x2

1

π2(x2
1 +(z− z1)2)2

.

Consequently, integrating on the back wall, we get the horizon-
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Figure 2: Vortex evolutions and corresponding pressure forces.

tal pressure force Fp induced by the vortex on the whole back of
the body and, considering that the vortex is moving, the instan-
taneous pressure force Fp(t) induced by the vortex on the wall at
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time t is:

Fp(t) =
ρ

2
Γ2

π2

Z + H
2

−H
2

x2
1(t)

(x2
1(t)+(z− z1(t))2)2

dz.

This pressure force depends of course strongly on the function
x1(t). Taking x1(t) = tr with 1/2 ≤ r ≤ 2, x1(t) = exp(t)−1 or
x1(t) = Ln(t +1) (see [Milne-Thomson 1966]), and considering
in a first approach an horizontal evolution (z1(t)≡ 0), some char-
acteristic behaviours of the vortex trajectories behind the back
wall can be represented. In Figure 2 are represented these func-
tions x1(t) and the corresponding pressure forces Fp(t). The best
result (the lowest pressure force) is achieved for r = 1/2 as it
corresponds to the fastest removal from the wall at t = 0.

2 MODELING AND NUMERICAL SIMULATION
To simulate the flow around the square back Ahmed body

with height H = 1, the penalized Navier-Sokes equations (see
[Angot et al. 1999,Bruneau and Mortazavi 2008]) are solved for
the genuine unknowns velocity and pressure (U, p) in the two-
dimensional computational domain Ω = (0,15H)× (0,5H) with
the body located at the distance 0.6 from the road (Figure 3) and
whose length is L = 3.625:

∂tU +(U ·∇)U− 1
Re

∆U +
U
K

+∇p = 0 in ΩT = Ω× (0,T ),

divU = 0 in ΩT ,

where T is the simulation time, K = ρkΦU
µH is the non dimensional

coefficient of permeability of the medium, k is the intrinsic per-
meability, µ is the viscosity, Φ is the porosity of the fluid and
Re is the Reynolds number. The simulations are performed in
two-dimensions as it has been shown that for this body the flow
has almost a two-dimensional behaviour [Krajnović and David-
son 2003, Gilliéron and Chometon 1999]. To recover the gen-
uine Navier-Stokes equations we set K = 1016 in the fluid. On
the contrary, setting K = 10−8 in the solid body mimics a porous
body with a very low permeability and thus the velocity field is
also of 10−8 order inside the body. These values of K are set
on the staggered velocity points of a Cartesian mesh according
to their location. The equations are coupled to an initial datum
corresponding to the flow at rest and to two kinds of boundary
conditions. A constant Dirichlet condition upstream and on the
road U = (1,0) corresponding to the speed of the ground vehi-
cle and a non reflecting boundary condition on the open frontiers
(top and downstream) [Bruneau 2000].
The time discretization is achieved using a second-order Gear
scheme with explicit treatment of the convection term. All the

Figure 3: Computational domain around the square back Ahmed
body.

linear terms are treated implicitly and discretized via a second-
order centered finite differences scheme. A third-order finite dif-
ferences upwind scheme is used for the discretization of the con-
vection terms [Bruneau and Saad 2006]. The efficiency of the
resolution is obtained by a multigrid procedure using a cell-by-
cell relaxation smoother.
The results are presented at Re = 30,000 based on the body
length on a 1920×640 cells uniform mesh that insures that grid
convergence is reached.

3 KINEMATICS AND CONTROL OF AN ANALYTICAL
VORTEX
The real wake behind a bluff body is composed of vorti-

cal structures with different circulations and periods of shedding
depending on the geometrical constraints and the Reynolds num-
ber. They have a mutual interaction with the near wake flow
feeding the vortex street generation and being themselves condi-
tioned by the former generated vortices. However, even if this
high order real motion topology is very complex, its main char-
acteristics can be mimicked by simplified kinematic verifications
based on the vortex trajectories and their speed of removal from
the wall [Sipp et al. 1999]. Previous studies have shown that the
flow behind a bluff-body can be divided into two main areas: the
vortex formation area (near wake) and the transport area [Mor-
tazavi and Giovannini 2001]. In this section, in order to better
understand the effect of the shedding vortices on the body forces,
the formation zone kinematics is analyzed and connected to sim-
plified inviscid models. Then, the results are applied to a constant
blowing active control technique in order to explain its efficiency
to reduce the drag coefficient.
For a first approach, the typical trajectory of a circular vortex
[Batchelor 1967] with a linear velocity distribution inside the
vortex in an instantaneous flow wake around the Ahmed body
without and with control is computed (Figure 4):

u f low+vortex = u f low−C
z− z0

2R0
e−

(
R

R0

)2

,
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v f low+vortex = v f low +C
x− x0

2R0
e−

(
R

R0

)2

,

where (x0,z0) is the vortex center, R is the distance between the
studied points of the domain and the vortex center and R0 = 0.05
the viscous radius of the vortex. The velocity is zero in the centre
and increases linearly with the radius. When this radius is upper
than the viscous radius, the velocity decreases with the opposite
of the radius towards zero far away of the vortex center (Figure
5).
To have a proportional dimension to shedding vortices, the the-
oretical vortex is initially defined with C = 2. The initial con-

Figure 4: Initial instantaneous flow for the theoretical vortex
study.
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Figure 5: Velocity vs radius for a circular vortex [Milne-
Thomson 1966].

dition for the flow field is chosen when the upper near wake is
almost vortex free, then the theoretical vortex will shed at the be-
ginning of a new period. The initial position of the vortex center

is (9.02,1.56) (see Figure 3), corresponding to the appearance of
any new shedding in the upper edge of the obstacle for the uncon-
trolled mean flow. The study focuses on the comparison of the
trajectories of this vortex in the near wake for both uncontrolled
and controlled (with a steady jet) flows. For the steady active
control, the actuator with the amplitude of U j = 0.6U0, is located
at H/3 from the upper edge of the back wall. On the Figure 6 the
trajectory (a) and the removal speed (b) of the theoretical vortex
for both uncontrolled and controlled cases are compared. In the
Figure 6 (a), the letters A to F correspond to definite times on the
trajectories of the vortex for both flows (Table 1). The trajectory
plot shows that as soon as the vortex attends the front point of
the control jet, its motion is considerably modified and acceler-
ated inside the wake compared to the uncontrolled case. At the
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Figure 6: Comparison of trajectories and removals from the wall
for the theoretical vortex in an instantaneous flow.

same time, the pressure force on the wall generated by this vor-
tex looses its effect much more quickly than without the blowing
jet. This acceleration and pushing property are also well demon-
strated in the Figure 6 (b), where the controlled curve comes
closer to the linear motion which corresponds to a smaller pres-
sure force on the back wall. So, we can expect to use this mech-
anism on real shedding of vortices behind obstacles.
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Points A B C D E F G H

Time t 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Table 1: The letters show the simulation time since the origin of
the trajectory.

4 KINEMATICS AND CONTROL OF A REAL FLOW
Starting from the same initial solution in both cases, the flow

without control is compared to the controlled flow with the ac-
tuator in the middle of the back wall. This position is chosen in
order to take into account the shedding of vortices on both sides
of the back wall.
To get a general view of the relationship between vortex kine-
matics and the drag reduction due to the control, an averaged
estimation of several vortex motions is performed and the mean
trajectories of the up and down vortices are studied. The aver-
aging procedure is performed for 10 successive vortices on both
sides of the wall from t = 3.0 until t = 23.0. In the Figure 7 the
mean uncontrolled trajectories are compared to the mean con-
trolled ones. As the figure shows, the trajectories are about the
same for the upper shedding processes. but, the lower trajecto-
ries are drastically modified as the vortices are expelled from the
body much more quickly with the control. In the Figure 8, for the
upper vortex, the uncontrolled and controlled cases are very sim-
ilar and show almost a linear behaviour (a). While, for the lower
shedding the uncontrolled case is removed from the wall with a
polynomial law close to t2 whereas for the controlled case, the
removal procedure is much more accelerated and is defined by a
linear law with a smaller slope compared to the linear motion t
(b). Let us note that the active control induces a strong pressure
forces reduction at the back and consequently a 20% reduction of
the whole drag coefficient Cd . This result shows the efficiency of
the active control on the lower shedding process. The difference
between the upper and lower sheddings is due to the presence of
the road as the jet flow under the body enhances the control jet
effect. It is thus possible to connect the control efficiency to the
removal speed of the vortices from the wall.

5 CONCLUSIONS
In the first part of this paper, the drag effect of a theoretical

vortex moving away from a wall with analytical laws is studied.
It is shown that the magnitude of wall pressure forces on the back
wall depends directly on the removal speed of the vortex. The
more this speed is large, the more the pressure forces decrease.
An active control by a blowing jet in front of an analytical vortex
in a real flow changes the trajectory and accelerates the removal
speed of the vortex.
Then, the study of a real flow around a square back Ahmed body
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Figure 7: Comparison of averaged trajectories of the vortices for
the cases without control and with an active control in the middle
of the wall, for a real flow.
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Figure 8: Comparison of averaged removals of the vortices from
the wall for the cases without control and with an active control
in the middle of the wall, for a real flow.

on top of a road shows that a blowing jet accelerates the removal
of the vortices from the wall inducing a strong decrease of the
pressure forces at the back and consequently a 20% decrease of
the drag coefficient.
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