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ABSTRACT
In the continuous strip casting process a meniscus forms a

compliant boundary between the casting nozzle and transport-
ing conveyor. Movement of this meniscus during casting has
been shown to create surface defects, which require extensive
cold work to remove and limit the minimum thickness for which
sections may be cast. This paper discusses experimental work
conducted to test an analytical model of the meniscus oscilla-
tion. A high frame rate shadowgraph technique was used on an
isothermal water model of the casting process to observe menis-
cus motion, and thus allowing the calculation of meniscus fre-
quency, amplitude, contact points and contact angles. Both nat-
ural frequency and flow excited tests were conducted. Natural
frequency tests were also conducted using mercury as the work-
ing fluid, having a non-wetting contact angle, typical of molten
metals. The experimental results were found to be in good agree-
ment with the predictions of theory for both wetting and non-
wetting conditions. The experimentally verified analytical model
for meniscus motion is valuable to the design of the continuous
casting process, because it offers an opportunity to mitigate the
effects of boundary motion on surface quality.

NOMENCLATURE
Acv Control area in analytical theory m2

Dh2 Hydraulic diameter post step m
d Channel depth (width) m
E Meniscus fluctuation energy J

fn Meniscus natural frequency Hz
Fu Probability density function of u −
g Acceleration due to gravity m/s2

H Static head at the meniscus mH2O
h Step height m
h1,2 Pre/post-step channel height m
he f f Effective step height for recessed meniscus m
I Dimensionless inertia term (slenderness) −
L Channel length m
∆p Pressure difference across the meniscus Pa
q Channel flow rate per unit depth m2/s
R Meniscus radius m
t Time s
U Average velocity in channel m/s
u Fluctuations in average velocity U m/s
xc,s,yc,s Meniscus contact points, relative to step edge m
z Velocity fluctuations normalized by σu −
β Taper angle of step edge deg
η Dimensionless meniscus head −
θ Caster angle deg
κ Meniscus curvature (inverse radius) 1/m
λ Contact angle hysteresis −
ν Kinematic viscosity m2/s
ρ Density kg/m3

σ Surface tension N/m
σu Standard deviation of velocity fluctuations, u m/s
ϕ Equilibrium contact angle deg
ϕa,e,r Advancing/average/receding contact angle deg
ψ Dimensionless meniscus stiffness −
Ωn Dimensionless meniscus frequency −
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FIGURE 1. GEOMETRY OF THE STRIP CASTING PROCESS
SHOWING THE ALUMINIUM-AIR MENISCUS WHICH FORMS
BETWEEN THE CASTING NOZZLE EXIT AND TRANSPORTING
CONVEYOR.

PROBLEM INTRODUCTION
The problem to be investigated is that of the flow over

a backward facing step where the step face is spanned by a
liquid-air meniscus that is free to respond to pressure changes
in the flow. The motivation for this project originates in the
aluminium continuous strip casting process where molten
aluminium forms a meniscus with air between the casting
nozzle and the moving conveyor which transports the solid
product downstream, see Fig. 1. Oscillations of this meniscus
are believed to be responsible for imperfections in the final
aluminium cast.

An isothermal, geometrically similar, air-liquid meniscus on
a stationary substrate was used to model this flow and provide
insight into the meniscus oscillation phenomenon. The effect
of different geometric properties on the frequency of meniscus
motion will be determined and compared to an analytical theory
[1, 2]. In particular, this paper will discuss the effects of channel
slenderness and contact angle on the natural frequency of the
meniscus. The effect of liquid velocity on the frequency and
amplitude of meniscus motion in the presence of continuous flow
will also be studied.

ANALYTICAL MODEL
Natural Frequency

A model for meniscus natural frequency in the horizontal
strip casting process was developed [1, 2], based on the un-
steady Bernoulli equation and the Young-Laplace equation for
the meniscus surface, using the geometry shown in Fig. 1.
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Equation 1 applies to an angled casting configuration where
the outlet flow rate of solidified metal is fixed as in the industrial
process.

For the isothermal water model the inflow rate will be fixed
rather than the outflow for practical reasons. The only adjust-
ment required in Eqn. 1 to accommodate this change is the re-
placement of h1 with h2 and the association of length L with the
outlet channel length, as opposed to the inlet channel length, as
defined in Fig. 1. The angle θ is the casting angle measured
with respect to the horizontal. In the casting case, oscillations
due to meniscus motion occur in the inlet channel; whereas in
the present model fluid oscillations occur in the outlet channel.

Equation 1, with the discussed changes to channel height
and length, may also be expressed in dimensionless terms for the
purpose of empirical fitting to the data.

Ωn =
√

I(ψ +Bo) (2)
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In this form there are three important parameters for de-
termining the meniscus frequency, the channel slenderness, I,
meniscus stiffness, ψ and the Bond number, Bo. Of these three,
the slenderness and Bond number can be easily determined from
the geometry of the caster. The stiffness, however, depends on
the dimensionless head, η , and the contact angle, ϕ .

Meniscus Stiffness
The meniscus of Fig. 2 is defined by its curvature, κ , the

horizontal contact points, xc and xs, the step height, h, and the
step inclusion angle, β . The upper contact point may be at the
edge (0,0) or, as indicated in the figure, recessed under the step
where the nominal step height, h, is replaced with the effective
step height, he f f .

The meniscus stiffness contains the curvature-area deriva-
tive, dκ/dAcv, which can be calculated numerically by com-
puting the change in area behind the meniscus, Acv, for two
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FIGURE 2. POSITION OF THE MENISCUS BETWEEN THE
CASTING NOZZLE EXIT AND THE MOVING CONVEYOR. THE
UPPER MENISCUS EDGE MAY ATTACH TO THE STEP EDGE OR
RECESS AS SHOWN.

slightly different curvatures, κ+ and κ−, which are infinitesi-
mally greater and smaller than the equilibrium curvature, κ . The
functional form of this derivative is shown in Eqn. 3.

dκ
dAcv

=
κ(ϕ+,x+c ,x

+
s ,h,β )−κ(ϕ−,x−c ,x

−
s ,h,β )

Acv(ϕ+,x+c ,x+s ,h,β )−Acv(ϕ−,x−c ,x−s ,h,β )
(3)

As Eqn. 3 indicates, the curvature, and hence the value of the
derivative, depends on the movement of the contact lines, contact
angles or both. We will close this model using two limiting cases
for meniscus motion; one in which the contact line remains sta-
tionary and the contact angle changes and the other where the
contact angle remains constant and the contact line moves. Both
result in changes to meniscus curvature. These two scenarios are
illustrated for clarity in Fig. 3 and Fig. 4 respectively.

The meniscus stiffness, for both contact point models, is
calculated as a function of the dimensionless head, η , and the
meniscus contact angle, ϕ ; the inclusion angle, β , is 20o for all
experiments and theoretical calculations. Figures 6 and 7 show
the stiffness results for the fixed contact line and the fixed contact
angle models respectively. It is interesting to note for both mod-
els that when the upper meniscus contact point rests on the step
edge, a range of stiffnesses is possible for the one contact angle;
however, when the meniscus is recessed, the stiffness becomes
a singular value with contact angle; this is due to the geometric
similarity of all the recessed cases. The stiffness curves are sym-
metric about η = 0 for the wetting and non-wetting cases up to
the point where the non-wetting curves end abruptly because the
upper contact angle, when the meniscus is on the step edge, is
free to assume any angle in the wetting case (the case depicted
in Fig. 2), but it is restricted in the non-wetting case since the
meniscus contact angle ϕ must be less than 90o − β . Compar-
ing Fig. 6 and Fig. 7 we find that the stiffness is approximately
three to four times greater for the fixed contact line model. The

cases investigated in this paper are all recessed; the stiffness as a
function of equilibrium contact angle for the recessed condition
is shown in Fig. 5. The points in Fig. 5 correspond to the re-
cessed points of Figs. 6 and 7. True meniscus motion may be a
mixture of contact line and contact angle motion where the stiff-
ness would fall between the limits shown in Fig. 5, imposed by
the two motion models.

FIGURE 3. MENISCUS MOTION WHEN THE CONTACT LINE
IS FIXED AND CURVATURE CHANGE IS ACCOMMODATED BY
A CHANGE IN CONTACT ANGLE. EXAGGERATED FOR CLAR-
ITY.

FIGURE 4. MENISCUS MOTION WHEN THE CONTACT AN-
GLE IS FIXED AND CURVATURE CHANGE IS ACCOMMODATED
BY A CHANGE IN CONTACT LINE. EXAGGERATED FOR CLAR-
ITY.

Contact Angle
Contrary to popular belief, the contact angle is not fixed

for a specific gas-liquid-solid interface, and is dependent on the
molecular and dynamic conditions of the contact region. Tavana
and Neumann [3] investigated the effect of molecular forces on
the quasi-static meniscus. They found a variety of factors, in-
cluding molecule shape and size which affected the contact an-
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FIGURE 5. MENISCUS STIFFNESS, WHICH IS DETERMINED
BY THE CONTACT ANGLE FOR THE RECESSED CASES. EXPER-
IMENTAL STIFFNESS VALUES SHOULD FALL BETWEEN THE
TWO LIMITS.

gle. In addition, they found that the wetting time would change
the interfacial properties of the contact region, changing the con-
tact angle. The works of Erbil et al. [4], Hennig et al. [5] and Lam
et al. [6] all show wetting time dependence on contact angle. In
particular, Hennig et al. [5] found the contact angle for water in
his experiments to vary up to 4o due to wetting time effects. In
addition, the prior authors [4–6] saw a significant difference in
contact angle for the advancing and recessing meniscus. Hen-
nig et al. [5], using water, reported a difference of 40o between
the advancing and retreating contact angle. They also show that
when the contact angle is within the bounds of ϕa < ϕ < ϕr, the
contact line does not move.

Considering the meniscus behaviour just described, a sta-
tionary contact line model would apply where the substrate is
stationary and the changes in curvature are small enough that the
contact angle remains in the interval ϕa < ϕ < ϕr. This would
correspond to the present stationary substrate models under some
circumstances. The case of constant contact angle would cor-
respond to the case of the tangentially moving substrate, with
ϕ = ϕa or ϕ = ϕr. It would also apply to the stationary substrate
case at large amplitudes of oscillation of curvature near the limits
where ϕ > ϕa or ϕ < ϕr. Such large amplitude oscillations would
therefore have a intermittent stiffness.

In practice the substrate may also be moving in the normal
direction to the substrate, due to background vibration, as in the
work of Noblin et al. [7]. They investigated the contact motion
of vibrated sessile drops and found the contact condition to be
dependent on the local normal acceleration, a. They offer two
thresholds for contact line motion, described in Eqn. 4 and Eqn.
5.

a
g
>

λ
(1− cosϕe)

(4)

a
g
>

4λ
π(1− cosϕe)

(5)

Where

cosϕe = (cosϕr + cosϕa)/2

and

λ = 2(cosϕe − cosϕa) = 2(cosϕr − cosϕe)

Equations 4 and 5 compare the contact angle range with the
acceleration of the surface. Equation 4 is the lower limit for con-
tact line motion, bellow this only contact angle motion occurs.
Once Eqn. 4 is exceeded, a portion of the oscillation period con-
sists of contact line motion, during peak acceleration. Equation
5 is the theoretical limit for pure slip (contact line) motion. Pure
slip is not possible for oscillating motion since the contact angle
must change from advancing to receding at the apex, but for high
accelerations the non-slip time is relatively short.

Based on the discussed contact region behaviour, we expect
to see contact angle motion for small amplitude excitations used
in natural frequency testing. Flow excited testing should exhibit
both contact angle and contact line motion; the mixture being
dependent on the flow rate, preferring contact angle motion for
low flow and contact line motion for high flow experiments due
to its large amplitude.

EXPERIMENTAL APPARATUS
The experimental apparatus for testing natural frequency is

shown in Fig. 8 and consists of a removable scaled channel sec-
tion, containing the meniscus, which is attached to a larger dis-
charge tank with a free surface. The channel region is under
partial vacuum with the free surface adjusted by adding or re-
moving fluid to position the meniscus under the step, which is
open to atmosphere on the obverse side. In testing, a syringe,
connected to the discharge tank, is pulled to provide a change in
fluid level which excites the meniscus. Natural frequency tests
were performed with both water and mercury as the working
fluid; a separate, identical apparatus being used for each fluid
to prevent contamination.

Flow excited tests were also conducted for water. The water
flow tests use the same apparatus as the natural frequency water
tests, with the addition of a flow circuit and flow straightening
section, as shown in Fig. 9.
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FIGURE 6. MENISCUS STIFFNESS AS A FUNCTION OF DIMENSIONLESS HEAD, η , AND CONTACT ANGLE, ϕ , FOR THE FIXED
CONTACT LINE CASE. β = 20o.

FIGURE 7. MENISCUS STIFFNESS AS A FUNCTION OF DIMENSIONLESS HEAD, η , AND CONTACT ANGLE, ϕ , FOR THE FIXED
CONTACT ANGLE CASE. β = 20o.
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FIGURE 8. EXPERIMENTAL MODEL FOR NATURAL FRE-
QUENCY TESTS. THE DASHED REGION INDICATES THE LO-
CATION OF THE BACKWARD FACING STEP AND MENISCUS.

Both Fig. 8 and Fig. 9 outline the region of interest, which
contains the backward-facing step and meniscus and is depicted
in Fig. 10. Table 1 describes the geometric dimensions of the
model and Tab. 2 gives the fluid properties and flow ranges,
where applicable, for water and mercury testing. Note that the
channel slenderness, I, is calculated using the effective channel
length, which is defined in Eqn. 6; the exit factor of 0.82 is for a
flanged opening from Pierce [8] pp 345-349.

Le f f = Lnom +0.82Dh2 (6)

where Dh2 is the hydraulic diameter of the post step region,
defined as:

Dh2 =
4h2d

2(h2 +d)

EXPERIMENTAL METHOD
The meniscus response to natural frequency and flow excited

testing is captured using high-speed videography of the meniscus
region while being back lit, producing high contrast images like
the one in Fig. 11. The step height in the image is 3.5 mm and
the small size preserves the near circular shape of the meniscus
assumed in the development of Eqn. 1.

Video frames were captured at 200 Hz in the natural fre-
quency tests and at 24 Hz for flow excited testing. The low frame

FIGURE 9. EXPERIMENTAL MODEL FOR FLOW EXCITED
TESTING. THE MODEL IS THE SAME AS THAT FOR THE NATU-
RAL FREQUENCY TESTS WITH THE ADDITION OF THE FLOW
CIRCUIT.

TABLE 1. GEOMETRIC VARIABLES FOR THE WATER AND
MERCURY MODEL.

Geometric Variables
Water Mercury

(Wetting) (Non-wetting)

h Step Height [mm] 3.5
h1 Pre-Step Height [mm] 4.4,10.3,16.7,22.6
h2 Post-Step Height [mm] 7.9,13.8,20.2,26.1
L Channel Length [mm] 90 60
d Channel Width [mm] 50
ϕ Contact Angle [deg] 130−150 30−50

rate was used for the flow tests to extend the duration of the ob-
servation, which was necessary because of the random charac-
ter of the meniscus motion. Each frame of a video compilation
was processed using a MATLAB algorithm to calculate the loca-
tion of the meniscus surface based on abrupt changes in contrast
and user identified boundaries (the wall and step). The meniscus
boundary is identified and a circular arc is fit to it. From this arc
the curvature, contact points and contact angles are calculated,
as is the area behind (above) the meniscus. In the case of the
natural frequency testing, this gives us time-resolved values for
the meniscus parameters. Time resolution is not required for the
flow excited testing as we are only concerned with a statistical
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FIGURE 10. REGION OF INTEREST IN THE EXPERIMEN-
TAL MODEL. THE DASHED REGION SPECIFIES THE CON-
TROL AREA IN THE ANALYSIS OF GERBER ET AL. [2] WHERE
MOVEMENT OF THE MENISCUS UNDER THE STEP CAUSES A
CHANGE IN THE CONTROL AREA SIZE WITH A CHANGE OF
MENISCUS RADIUS.

TABLE 2. PROCESS VARIABLES FOR THE WATER AND MER-
CURY MODEL.

Process Variables
Water Mercury

(Wetting) (Non-wetting)

ρ Density [kg/m3] 1000 13579
ν Viscosity [m2/s] 1.0x10−6 0.114x10−6

σ Surface Tension [N/m] 0.073 0.487
q Flow Rate

(per unit depth)
[m2/s] 0.002−0.01 −

U Channel Velocity [m/s] 0.04−0.20 −

description although the Nyquist criterion was observed in this
case. The specific camera settings used for testing are given in
Tab. 3.

FIGURE 11. WATER-AIR MENISCUS UNDERNEATH THE STEP
DURING A NATURAL FREQUENCY TEST. THE STEP HEIGHT IS
3.5 mm FOR COMPARISON.

EXPERIMENTAL RESULTS
Natural Frequency

A typical natural frequency response for a water test is
shown in Fig. 12 where the area behind the meniscus, Acv, is
plotted versus time. A clear dominant frequency and exponential
decay can be seen. The area determined from the arc fitted to
the meniscus is compared to a direct numerical integration of the
area from the video frame. The area calculated directly from the
video frame is considered to be the most accurate indicator of
meniscus motion and is used to calculate the natural frequency.
From the fitted arc the contact lines and angles are calculated,
as is the effective step height. The excellent agreement between
the area calculated by the two methods confers confidence in the
contact line, angle and effective step height values.

Natural frequency experiments for water were conducted us-
ing four different slenderness ratios based on the channel length
and post-step widths given in Tab. 1. For each geometry, the
natural frequency of the recessed meniscus was determined from
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TABLE 3. VIDEO SETTINGS FOR THE NATURAL FREQUENCY
AND FLOW EXCITED TESTING.

Camera Setting
Water Mercury

(Flow) (Natural Frequency)

Frames per second [−] 24 200 200
Frame size [pixel] 356x456 356x456 356x456
Duration [s] 80 8 5
Number of frames [−] 1920 1600 1000
Exposure Time [ms] 4.0 4.0 4.0
Aperture [1/ f ] 8 8 8

FIGURE 12. RESPONSE FROM A TYPICAL NATURAL FRE-
QUENCY TEST USING WATER, PLOTTING THE AREA BEHIND
THE MENISCUS, Acv.

tests conducted at various effective step heights which were not
known a priori but were calculated from the fitted meniscus arc.
The results for natural frequency testing with water are shown in
Fig. 13.

A curve is fitted to the data for each test geometry shown in
Fig. 13 based on Eqn. 7 with the stiffness, ψ , fitted using a least-
squares method. Considering the good agreement obtained, one
would conclude that the form of Eqn. 7 is correct for predicting
the meniscus natural frequency. The range of stiffness that suits
this purpose is 2.72 to 4.91. If we compare these stiffness values
to the changing contact angle points for the wetting case of Fig.
5, they correspond to contact angles of 149o > ϕ > 135o with a
mean of 141.25o and total range of 14o. The sensitivity of stiff-
ness to contact angle is high; however, the contact angle range is
within the expected values and consistent with the work of Ta-
vana and Neumann [3], who state that contact regions involving
water are particularly susceptible to molecular effects. A specific

FIGURE 13. RESULTS OF THE NATURAL FREQUENCY TESTS
FOR WATER WITH FOUR DIFFERENT SLENDERNESS VALUES.
CURVE FITS ARE FOR A CONSTANT STIFFNESS, ψ .

example is given in the work of Hennig et al. [5] where the con-
tact angle of water on a polyimide surface was found to change
by 4o due to wetting time during testing under very controlled
conditions. Experimental confirmation of the fitted stiffnesses
could involve observed meniscus behaviour from the video data
and this will be pursued in the future.

fn =
1

2π

√√√√I

(
σ

ρh3
e f f

ψ +
g

he f f

)
(7)

Figure 14 shows the natural frequency results for testing
with mercury for three different slenderness values. Similar to
Fig. 13, the stiffness values are fitted to the experimental data
and fall within the expected range in Fig. 5 for non-wetting con-
ditions. This verifies that Eqn. 7 is valid for both the wetting
and non-wetting cases and could apply to meniscus oscillations
in aluminium casing.

Flow Excitation
Flow excitation tests were conducted with water for the ve-

locity range given in Tab. 2. The geometry used had I = 0.128
where h2 = 13.8mm and L = 90mm (Le f f = 107.7mm), and an
effective step height of approximately 3.1mm. The spectra of the
flow data are shown in Fig. 15

From Fig. 15 we see that the frequency peaks for the flow
tests are all around 5 Hz, which agrees with the natural frequency
results for this geometry, shown in Fig. 13.
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FIGURE 14. RESULTS OF THE NATURAL FREQUENCY TESTS
FOR MERCURY WITH THREE DIFFERENT SLENDERNESS VAL-
UES. CURVE FITS ARE FOR A CONSTANT STIFFNESS, ψ .

FIGURE 15. POWER SPECTRAL DENSITY (PSD) OF THE CAL-
CULATED MENISCUS AREA, Acv FOR ALL FLOW TESTS.

Figure 16 plots the energy of the meniscus oscillations,
based on the fluctuating component of the flow velocity, which is
calculated from the area behind the meniscus, Acv, as described
in Eqn. 8

u =− 1
h2

dAcv

dt
(8)

Figure 16 shows a linear dependence of meniscus energy on

FIGURE 16. ENERGY CONTAINED WITHIN THE MENIS-
CUS OSCILLATIONS AS A FUNCTION OF SQUARED INVERSE
STROUHAL NUMBER.

the inverse squared Strouhal number. This is typical flow induced
excitation being proportional to the velocity squared.

Figure 17 shows the probability density function of the fluc-
tuating component of channel velocity (derived from Acv), nor-
malized by its standard deviation, σu. As the figure indicates, the
profiles collapse for all of the mean flow rates investigated. Sta-
tistical similarity of the fluctuating component of the flow, and
hence the meniscus motion, is interesting as it allows the statisti-
cal prediction of extreme meniscus positions, which may lead to
meniscus collapse.

CONCLUSION
An isothermal model of the aluminium continuous strip cast-

ing process was used to observe the motion of an air-liquid
meniscus, representing an air-aluminium meniscus in the casting
process, and calculate its natural frequency of oscillation. Natu-
ral frequency tests were conducted using both water and mercury
as the working fluids, water having a wetting contact angle with
the substrate, whereas mercury was non-wetting, similar to the
casting case with aluminium. In both cases, the experimental re-
sults coincided with the expectations of theory [1, 2] (Eqn. 7),
which is repeated here:

fn =
1

2π

√√√√I

(
σ

ρh3
e f f

ψ +
g

he f f

)
(9)

Flow excited tests were performed for water where the
meniscus frequency was found to be independent of flow rate and
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FIGURE 17. PDF OF THE VELOCITY FLUCTUATIONS IN THE
FLOW, DERIVED FROM THE CALCULATED MENISCUS AREA,
Acv. THE PROFILE IS THE SAME FOR ALL FLOW RATES WHEN
NORMALIZED BY THE STANDARD DEVIATION.

equal to the natural frequency. In addition, the energy of menis-
cus excitation was found to increase linearly with the inverse
squared Strouhal number, indicating that excitation was broad-
band in nature. Furthermore, the probability density profile of
the fluctuating component of flow velocity, which is directly re-
lated to meniscus amplitude, was shown to collapse to one pro-
file when normalized by the standard deviation. This allows the
probability of extreme meniscus positions, which may result in
casting failure, to be calculated based on nominal casting rate
and geometry.
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