
Proceedings of the ASME 2010 International Design Engineering Technical Conferenc es &
Computers and Information in Engineering Conference

FEDSM2010-ICNMM2010
August 1-5, 2010, Montreal, Quebec, Canada

DRAFT FEDSM-ICNMM2010-30697

IMMERSED BOUNDARY METHOD FOR LARGE EDDY SIMULATION AND
LAGRANGIAN STOCHASTIC MODELING OF PASSIVE SCALAR DISPERSION

DOWNSTREAM OF AN OBSTACLE

C. Le Ribault
LMFA, ECL, CNRS UMR 5509, UCB Lyon 1

36, avenue Guy de Collongue,
BP 163, 69131 Ecully Cedex, FRANCE
Email: catherine.le-ribault@ec-lyon.fr

S. Simo ëns
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ABSTRACT
A large-eddy simulation (LES) using the atmospheric code

ARPS is performed to study the passive scalar dispersion down-
stream of an obstacle. An immersed boundary method has been
introduced to take into account the obstacle. To simulate the
scalar dispersion, instead of resolving the passive scalar trans-
port equation, fluid particles containing scalar are tracked in
a Lagrangian way. The results of the LES are compared with
the experiments of Vinçont et al. [1]. In those experiments, si-
multaneous measurements of the velocity and scalar concentra-
tion fields have been made in the plume emitting from a two-
dimensional line source flushed with the wall. The source is one
obstacle height downstream of a two-dimensional square obsta-
cle located on the wall of a turbulent boundary layer. Our sim-
ulations predict the qualitative and quantitative features of the
experimental results.

INTRODUCTION
The study of transport and mixing of reactant species such

as fuel-oxidant mixing, contaminant dispersion, is very impor-
tant for environmental problems. Considerable attention is paid
to the prediction of concentration levels downwind of pollution
sources, especially in the vicinity of one or more obstacle.

LES has become a well-established tool for the study of
turbulent flows, the transport of passive scalars as well as the
dispersion of reactive plumes. A large-eddy simulation (LES)

combined with Lagrangian stochastic modeling at sub grid-scale
level is used to study the passive scalar dispersion downstream
of an obstacle. This model is integrated in the atmospheric code
ARPS [2],[3].

The code ARPS is an atmospheric code and was not devel-
oped to deal with complicate geometries and blunt angles. In-
stead of using complicated boundary fitted grids to define the
geometrical configuration, the immersed boundary method mim-
ics a solid body by means of suitably defined body forces ap-
plied to the discretized set of the momentum equations [4]. Im-
mersed boundary methods can broadly be categorized under two
categories: first are methods that employ ”continuous forcing”
wherein a forcing term is added to the Navier-Stokes equations.
The main advantage of this category of methods is that they are
formulated relatively independently of the spatial discretization
and can therefore be implemented into an existing Navier-Stokes
solver relatively simply. The second category consists in meth-
ods that employ ”discrete forcing” where the forcing is either
explicitly or implicitly applied to the discretized Navier-Stokes
equations. In this case the forcing scheme is much dependent
on the spatial discretization scheme. The main advantage of this
category of methods is that it allows a sharp representation of the
immersed boundary. This is important for turbulent flows with
boundary layers.

Experiments of the passive scalar dispersion from a line
source downstream of an obstacle have been performed by
Vinçont et. al. [1]. Those experimental data provide controlled
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conditions necessary for testing prediction methods and models.
They also give some insight into the underlying scalar transport
processes. Our goal is to perform LES of this experiment and to
compare with experimental results.

LARGE EDDY SIMULATION
The atmospheric code ARPS is used for the computation

[2],[3]. ARPS is based on compressible Navier-Stokes equations
describing the atmospheric flow. The governing equations of
the atmospheric model component of ARPS include momentum,
heat (potential temperature), mass (pressure), water subtances,
turbuelent kinetic energy and the equation of state. The govern-
ing equations used are the result of direct transformation from
the Cartesian system and are expressed in a fully conservative
form. These equations are solved in a rectangular computational
space. The discretized form of the governing equations can be
found in [2],[3].

The Navier-Stokes equations in the LES approach are fil-
tered. The top-hat filter with a filter width∆ is used. The effect
of the subgrid scales are represented by the subgrid stress tensor
qi j = ũiu j − ũiũ j . ũi is the filtered velocity andi = 1,2,3 refers
to the x (streamwise), y (spanwise) and z (normal) directions
respectively. This tensor is modeled by the Germano dynamic
Smagorinsky model. For brevity, we do not repeat the equations
for models of the subgrid stress tensor. A more complete descrip-
tion of the model can be found in [5], [6] .

COUPLING OF THE LAGRANGIAN STOCHASTIC SUB-
GRID MODEL WITH EULERIAN LES

Details of the coupling between the Eulerian LES and the
Lagrangian stochastic subgrid model may be found in [7],[8].
Fluid particles are tracked in a Lagrangian way. The position of
fluid particles at each timestep is given by:

~xp(t) =
d~v
dt

(1)

In a turbulent flow, the velocity of fluid particles may be obtained
by:

vi(t) = ũi(~xp(t),t)+v′i(t) (2)

wherevi is the Lagrangian velocity of the fluid particle in thexi

direction and ˜ui is the Eulerian velocity of the fluid at the position
~xp(t) of the fluid particle.v′i is the Lagrangian velocity fluctua-
tion around the Eulerian large scale velocity ˜ui. In order to com-
pute the movement of a fluid particle within a grid, a Langevin

model is introduced:





dxpi = vidt
dvi = (γi + αi j (v j − ũ j(~xp,t)))dt

+βi j η j(t)
(3)

whereη j(t) is an isotropic, Gaussian white noise with zero mean
and variancedt, so thatηi(t ′)η j(t”) = δi j δ (t ′− t”)dt. The veloc-
ity of each fluid particle at a given time t is modeled by a deter-
ministic partγi + αi j v′j and a completely random termβi j η j(t).
The coefficientsαi j , βi j andγi are determined by relating the sub-
grid statistical moments of~v(t) to the filtered Eulerian moments
of the fluid velocity. Knowing that the subgrid turbulence is as-
sumed locally homogeneous and isotropic, the velocity of fluid
elements given by the Lagrangian stochastic subgrid model can
be writen as:

dvi = [ ∂ ũi
∂ t +

∂ (ũi ũ j )

∂xj
+

∂τi j
∂xj

+

3
2

vi−ũi
Ẽ

(
1
3

dẼ
dt −

Coε̃
2

)
]dt

+
√

Coε̃δi j η j(t)dt

(4)

whereẼ is the subgrid turbulent kinetic energy,Co is the
constant of Kolmogorov (Co = 2.1) andε̃ the dissipation rate of
subgrid turbulent kinetic energy. Each fluid particle has a large-
scale and a subgrid scale velocity component. The large-scale
velocity of the fluid particle is directly computed by the LES.
The subgrid scale velocity component is obtained from the sub-
grid scale closure. An additional transport equation is solved to
obtain the residual kinetic energỹE. The instantaneous rate of
dissipationε̃ is related toẼ and the filter width∆ by:

ε̃ =
CEẼ

3
2

∆
(5)

where the constantCE is taken to beCE = 0.7.
To take into account diffusion, a deterministic, continuous

in time pairing particle exchange model is used.

IMMERSED BOUNDARY METHOD
The simulations are performed using the LES code ARPS

4.5.2. This is is a 3D, non-hydrostatic code where the fully com-
pressible equations are solved with a time splitting procedure.
The code ARPS is an atmospheric code and was not developed
to deal with complicate geometries and blunt angles. Instead of
using complicated boundary fitted grids to define the geometri-
cal configuration, the immersed boundary method mimics a solid
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body by means of suitably defined body forces applied to the dis-
cretized set of the momentum equations.

Du
Dt

= − 1
ρ

∇p+ ν∇.[∇u]+F (6)

The body force is imposed so that the velocity distribution
on the immersed boundary is equal to a specified functionVs. The
forcing will act on the points nearest to the immersed boundary.
The source termsF can be computed by:

F = −Rhs+
Vs−un

∆t
(7)

whereRhsrepresents the right-hand side of Eq. (6) without the
body forceF .

In the present paper, a new ghost-cell technique proposed
by Ghias [9] for imposing the boundary conditions on the im-
mersed boundaries has been implemented. This approach leads
to a sharp representation of the immersed boundaries, a property
that is especially useful for flow simulations at high Reynolds
numbers with boundary layers. The velocity at the grid points
external to the solid body is obtained by directly solving the
Navier-Stokes equations. For the first point internal to the body, a
ghost image is constructed by taking its symmetric to the bound-
ary. The velocity at the ghost image location is evaluated using
the value of the velocity at the solid wall and at the first exter-
nal point if the ghost image is located between the wall and the
first external point (figure 1). If the ghost image location is lo-
cated between the two closest external grid points (figure 2), the
velocity at those points is used.

Then the velocity at the internal node is computed by sym-
metry. In the corner, the scheme is slightly more complicated and
the procedure is detailed in Ghias and al. Bilinear interpolations
are used to estimate the velocity at the ghost image location in
function of the adjacent grid points. This bilinear interpolation
scheme in conjunction with the ghost cell results in second -order
global as well as local spatial accuracy.

Zero pressure gradient boundary condition is also incorpo-
rated into the interpolation procedures to effectively reproduce
the correct pressure distribution on the immersed boundaries and
to enforce mass conservation (Li and Wang [10]). Those authors
experiment that in the case of the cylinder, the calculation is not
quite stable since the distribution is incorrect near the immersed
boundary and that the problem is alleviated by the imposition of
zero normal gradient condition of pressure. This approach can
be interpreted as an alternative way to enforce continuity since
the Poisson equation is derived from the continuity equation.

In our case, the construction of the immersed boundary is
easy because the geometry is a simple rectangle.

FIGURE 1. SKETCH OF THE INTERPOLATION PROCEDURE
- THE IMAGE POINT IS LOCATED BETWEEN THE WALL AND
THE FIRST EXTERNAL NODE

FIGURE 2. SKETCH OF THE INTERPOLATION PROCEDUCE
- THE IMAGE POINT IS LOCATED BETWEEN THE TWO FIRST
EXTERNAL NODES

In almost all of the reported works, staggered arrangement
of variables on structured rectilinear grids were adopted. In
ARPS, non staggered grids are used which require a separate
treatment for each variable.

DESCRIPTION OF THE EXPERIMENTAL CASE AND
COMPUTATIONAL PARAMETERS

Our aim is to validate our approach with the experiments
of Vinçont [1] of scalar dispersion downstream of an obstacle in
a turbulent boundary layer. In those experiments, simultaneous
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measurements of the velocity and scalar concentration fieldshave
been made. The scalar was emitted from a two-dimensional line
source at the wall. The source is one obstacle height downstream
of a two-dimensional square obstacle located on the wall of a
turbulent boundary layer.

The dimensions of the computational domain in the stream-
wise, spanwise and wall-normal directions are respectivelylx =
3.3L, ly = 1.L and lz = 1.4L, L being the boundary layer depth.
The boundary layer depthL is equal to seven times the obstacle
depthh. The number of nodes in each direction is respectively
equal tonx = 250,ny = 32 andnz = 90. The Reynolds number
based on the obstacle height and the free stream velocity is equal
to Reh = 1500. The grid is uniform in thexy planes. In thez di-
rection, the grid spacing is uniform untily= 1.17h above the ob-
stacle, then a slight stretching is applied using hyperbolic tangent
function. The grid spacings are∆x = 0.013L, ∆y = 0.033L and
0.0033L < ∆z < 0.04L. The no-slip boundary condition is ap-
plied at the wall. The immersed boundary method is applied on
the obstacle. On the top of the domain and in the spanwise direc-
tion the mirror free-slip and the periodic boundary conditions are
applied, respectively. In the streamwise direction, at the end of
the domain the wave-radiation open boundary condition is used
in order to allow acoustic waves in the interior of the domain to
pass out freely through the boundary with minimal reflection. At
the beginning of the domain, in the streamwise direction forcing
is applied.

COMPUTATIONAL RESULTS
Streamlines of velocity

Before considering detailed statistical properties of the ve-
locity field, instantaneous streamlines of the velocity (Figure 3)
are presented.

FIGURE 3. STREAMLINES OF VELOCITY

Upstream of the obstacle, a vortex with negative vorticity

appears. Its characteristic size is approximately the same as the
obstacle. Another vortex of about the same size with positive
vorticity is seen just downstream the obstacle. A zone of high
shear is evident above the obstacle with a region of some slow
reverse flow between it and the obstacle. Downstream of the ob-
stacle, a large recirculation region is apparent. The zone of the
large recirculation is about 6 time the sizehof the obstacle. In the
experimental data the downstream end of the large recirculating
region is around 6.5h. In the present results, the point where the
flow above the recirculating region reattaches to the wall appears
to be at about 6.5h. The computational value is then in the range
of experimental values. In this region detailed experimental sta-
tistical information have been obtained at 4h and 6h downstream
of the obstacle. The qualitative characteristics of the flow around
the obstacle are in good agreement with experimental data. This
mean velocity field indicates how the scalar from the source can
be transported upstream and over the top of the obstacle.

Mean velocity field In figure 4 and 5,U/Ue profiles
for the mean velocity components normalized by the external
flow velocityUe are shown respectively at the locations 4h and
6h. The LES results are compared to the experimental results. A
region of mean flow directed upstream is quite evident atx= 4h,
up to above 0.6h above the wall. At 6h this reverse flow region is
much smaller. The results are in overall agreements with experi-
mental results. The size of the recirculation region is confirmed
to be aroundx = 6h.
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FIGURE 4. MEAN LONGITUDINAL U VELOCITY PROFILES
DOWNSTREAM OF THE OBSTACLE AT 4h
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FIGURE 5. MEAN LONGITUDINAL U VELOCITY PROFILES
DOWNSTREAM OF THE OBSTACLE AT 6h

Velocity turbulence intensities The root-mean square
u′/Ue are shown in figure 6 and 7 at 4h and 6h downstream of
the obstacle. The root-mean square ofw′/Ue are also presented
on the figures 8 and 9. The intensity of thew fluctuations is
considerably less than theu fluctuations at both locations. The
values predicted by the LES are higher than the experimental
values. The maxima of theu′/Ueprofiles occur in the vicinity of
1.2h−1.5h, in the mixing region above the level of the obstacle
and near the inflection points of theU profiles where the mean
velocity gradient is largest. The maxima ofw′/Ue profiles also
occur in the mixing region but are considerably less pronounced.

The Reynolds shear stress profiles for these two locations
are respectively plotted on the figures 10 and 11. Like in the
experimental results,uv/U2

e values are everywhere negative and
have larger magnitudes at the 6h location than at 4h for all y/h
positions. The negative values indicate turbulent mixing in the
recirculating bubble but stop above 2h which is the end of the
obstacle wake. The negative maxima occur in the mixing zone
just above the level of the top of the obstacle (y/h≈ 1).

CONCLUSION

An immersed boundary method has been introduced in the
atmospheric code ARPS to study passive scalar dispersion down-
stream of an obstacle. Comparisons between LES and experi-
mental field are performed on the mean and fluctuating velocity.
Passive scalar results will be presented in a future paper. The im-
mersed boundary method predicts the main qualitative and quan-
titative features of the experiments.
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FIGURE 6. ROOT MEAN SQUARE LONGITUDINAL VELOC-
ITY FLUCTUATION PROFILES DOWNSTREAM OF THE OBSTA-
CLE AT 4h
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FIGURE 7. ROOT MEAN SQUARE LONGITUDINAL VELOC-
ITY FLUCTUATION PROFILES DOWNSTREAM OF THE OBSTA-
CLE AT 6h
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