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ABSTRACT
This paper provides an immersed boundary method using

a flexible local grid refinement technique for solving conjugate-
heat-transfer problems. The proposed method is used to solve
the flow past a heated hollow cylinder inside a channel together
with the temperature field within the cylinder and then to predict
turbomachinery blade cooling.

INTRODUCTION
In recent years the immersed boundary (IB) method is

emerging as a very appealing approach for solving flows past
very complex geometries, like those occurring in most industrial
applications. Its main, very significant, feature is the use of a
Cartesian grid embodying the complex boundaries of the flow
domain, which allows one to generate the computational mesh
within a few minutes, whereas a very complicated body fitted
grid may require several hours or even days. The IB technique
was originally developed for incompressible flows [1–5] using
non-uniform Cartesian grids to take advantage of simple numeri-
cal algorithms. Some of the authors have extended the IB method
to the preconditioned compressible Reynolds-averaged Navier–
Stokes (RANS) equations in order to solve complex flows at
any value of the Mach number [6], and equipped it with a lo-
cal mesh refinement procedure to resolve boundary layers and
regions with high flow gradients (e.g., shocks) [7].

∗Address all correspondence to this author.

In this work, the IB method is extended to the solution of
conjugate heat-transfer problems. The Fourier heat-conduction
equation is solved inside the immersed body coupled together
with the RANS equations.

In the following sections, after a brief description of the
method and of the boundary conditions at the immersed bound-
ary, results are obtained for a well documented test-case as well
as for the blade cooling of a turbine cascade.

GOVERNING EQUATIONS AND NUMERICAL METHOD
The Reynolds Averaged Navier–Stokes (RANS) equations,

written in terms of Favre mass-averaged quantities and using the
k−ω turbulence model, can be written as follows:
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In the equations above, H̃ and pt are the total enthalpy and the
pressure including the turbulent kinetic energy, k,

H̃ = h+
1
2
| u |2 +

5
3

k, pt = p+
2
3

ρk; (6)

the eddy viscosity, µt , is defined in terms of k and of the specific
dissipation rate, ω, according to the low-Reynolds-number k−ω

turbulence model of Wilcox [8]:

µt = γ
∗ ρk

ω
. (7)

Moreover, τ̂i j indicate the sum of the molecular and Reynolds
(τi j) stress tensor components. According to the Boussinesq ap-
proximation, one has:

τ̂i j = (µ+µt)
[
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3
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Finally, the heat flux vector components, q j, are given as:

q j =−
(

µ
Pr

+
µt

Prt

)
∂h
∂x j

, (9)

where Pr and Prt are the laminar and turbulent Prandtl numbers
equal to 0.71 and 1, respectively. The Sutherland law is used to
compute the molecular viscosity coefficient.

It is useful to write the RANS equations (1)-(5) in compact
form:

∂Q
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= D, (10)

where Q is the conservative variable vector, E, F , G and Ev, Fv,
Gv indicate the inviscid and viscous fluxes, respectively, and D is
the vector of the source terms.
A pseudo-time derivative is added to the left-hand-side of
Eqn. (10) in order to use a time marching approach for both
steady and unsteady problems; the preconditioning matrix, Γ,

proposed in [9,10] is used to premultiply the pseudo-time deriva-
tive in order to improve efficiency. The final system reads:
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where Qv = (pt ,u,v,w,T,k,ω)T is the primitive variable vector,
which is related to Q by the Jacobian matrix P = ∂Q/∂Qv. Equa-
tion (11) is rewritten in delta form discretizing the pseudo-time
derivative by an Euler implicit scheme and approximating the
physical-time derivative by a second-order-accurate three-point
backward difference. After some simplifications of the LHS op-
erator which improve the efficiency of the method without affect-
ing the residual [7], the diagonalization procedure of Pulliam and
Chausee [11], followed by a factorization, proides the following
final system:
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(12)

where R r represents the residual at the previous iteration and the
matrices S, M, R, and Λ are given in [7].

Equation (12) is discretized in space using a cell-centred fi-
nite volume approach. The convective terms in the RHS are dis-
cretized using a second-order-accurate upwind flux-difference-
splitting scheme. The viscous terms are discretized by second-
order-accurate centred differences. The LHS convective term is
always discretized using a first-order upwind scheme, according
to a deferred-correction approach, in order to ensure convergence
of the iterative solver.

The resulting discrete system is solved direction-by-
direction using a BiCGStab [12] approach, the boundary con-
ditions being treated explicitly.

A data structure is employed which allows an efficient lo-
cal grid refinement (LGR) for clustering cells near the immersed
boundary and at other high-flow-gradient regions. For each face,
the contributions of the neighbour cells are collected to build the
corresponding convective and diffusive operators for the cell, the
maximum number of neighbours being limited to two for the
present 2D computations (see [7], for details).
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IMMERSED BOUNDARY METHOD
The IB technique used in this work is based on that proposed

in [3,4]. In a preliminary step, the geometry under consideration,
which is described by a closed polygon in two dimensions (a
closed surface in three dimensions), is overlapped onto a Carte-
sian (non uniform) grid. Using the ray tracing technique based
on the geometrical algorithms reported in [13], the computational
cells occupied entirely by the flow are tagged as fluid cells; those
whose centres lie within the immersed body are tagged as solid
cells. Furthermore, the fluid cells neighbouring solid ones are
tagged as interface fluid cells, and the solid cells neighbouring
fluid ones are tagged as interface solid cells. Interface cells are
used to enforce the boundary conditions between the solid body
and the fluid. In the present implementation, starting from an
auxiliary grid with uniform mesh size, a structured grid is gener-
ated by recursively halving the mesh size at the immersed bound-
ary region, until an assigned target value is reached. This auto-
matic refinement is based on the following strategy. A tag func-
tion, generated using the ray tracing technique, is used to mark
the cells inside and outside the immersed body: an integer value
±1 is assigned to “fluid” and “solid” cells, respectively. The gra-
dient of this function is different from zero only at the immersed
boundary and depends on the local grid size. The components
of this gradient in the x and y directions are used to select the
rows of cells to be refined. The grid is refined until a user speci-
fied resolution is achieved at the boundary. A smoothing function
can be applied on the±1 tagging function to obtain a smeared in-
terface that will allow a smoother transition between the coarse
and the refined region. By this procedure, a uniform grid is ob-
tained. Then, starting from such a grid, it is possible to coarsen
the cells in the regions far from the boundaries until a maximum
prescribed cell-size is achieved. Finally, one can define other re-
gions of the computational domain to be refined, selecting the
local resolution of the mesh, like the wake or wall regions and,
finally, it is possible to refine on void surfaces, namely, surfaces
without solid or interface points, like bow-shock regions.

CONJUGATE HEAT TRANSFER
The RANS equations, solved at the “fluid cells”, are coupled

with the following equation for the thermal diffusion which is
solved at all points inside the solid body

∂T
∂t

=
ks

ρscs
∇

2T, (13)

where T is the temperature and ks, ρs, and cs are the solid ther-
mal conductivity, density, and specific heat, respectively. Two
boundary conditions are needed at the fluid-solid interface to en-
force the equality of the solid (s) and fluid ( f ) temperatures and

Figure 1. SCHEME FOR THE INTERFACE BETWEEN FLUID AND
SOLID.

heat fluxes:

Tw, f = Tw,s, (14)

k f ∇Tf ·nw = ks∇Ts ·nw, (15)

where k f is the thermal conductivity of the fluid and nw is the
unit vector normal to the wall pointing from the solid to the fluid.
Eqn. (13) is discretized in space by a second-order-accurate cen-
tred difference, whereas, the physical-time derivative is approx-
imated by a second-order-accurate three-point backward differ-
ence. The dual time stepping approach is employed also at solid
points. The two boundary conditions above are implemented ac-
cording to the following procedure. As proposed in [15, 16],
“fluid” and “solid” interface cell centres are projected onto the
body surface along the normal direction to the surface itself, so
that one has “solid” cell projection points (SCPP) and “fluid” cell
projection points (FCPP) which in general do not coincide, see
figure (1). The heat fluxes are approximated using first-order-
accurate one-sided differences,

∇Tf ·nw = (Tf −Tw, f )β f , (16)

∇Ts ·nw = (Ts−Tw,s)βs, (17)

where β f and βs are the inverse distances between the wall
points (FCPP, SCPP) and the corresponding interface-cell cen-
tres. Then, the values of the temperatures at the “fluid/solid”
interface points are approximated using the following weighted-
average formulas

Tf =
∑

Nnbr
i αiTi, f +Tw, f β f

∑
Nnbr
i αi +β f

, (18)

3 Copyright c© 2010 by ASME



Ts =
∑
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i αiTi,s +Tw,s βs

∑
Nnbr
i αi +βs

. (19)

where Ti, f , i = 1, ...Nnbr and Ti,s, i = 1, ...Nnbr are the values of the
temperature at the fluid and solid points surrounding the interface
cells and αi are the inverse distances between the surrounding
cell centres and the interface cell centres. Equations. (16), (18)
and (17), (19) are combined to eliminate Tf and Ts to give

∇Tf ·nw =
∑

Nnbr
i αiTi, f

∑
Nnbr
i αi

β
+1

−
Tw, f

1
β
+ 1
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, (20)
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∑
Nnbr
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−

(
1
β

+
1

∑
Nnbr
i αi

)
∇Ts ·nw. (21)

Notice that equations (20) and (21) are written in a different
form, for convenience. If the values ∇Tf · nw and ∇Ts · nw and
Tw, f and Tw,s were computed at the same points (which are not,
see figure (1)), the two boundary conditions (14) and (15), to-
gether with Eqns. (20) and (21) would provide a closed system.
Here, the boundary conditions are enforced explicitly. Therefore,
we compute ∇Tf ·nw at all FCPP points using the old values for
Tw, f . We then interpolate ∇Tf · nw at all SCPP points and use
boundary condition (15) to evaluate ∇Ts · nw at all such points.
We then compute all Tw,s values at such points from Eqn. (21). Fi-
nally, all Tf and Ts values are evaluated from Eqns. (18) and (19).
It is noteworthy that such an explicit procedure could be reversed
providing the same results within the accuracy of the interpo-
lation procedure. In the first case, we interpolate the ∇Tf · nw
values from the FCPP points to the SCPP ones. In the second
case, we would interpolate the ∇Ts · nw values form the SCPP
points to the FCPP ones. The first procedure is chosen because
it is anticipated to be more stable since in most practical applica-
tions ks >> k f so that ∇Tf ·nw >> ∇Ts ·nw. Finally, it is note-
worthy that Eqns. (16) and (17) are only first-order-accurate, but
these conditions involving a line/surface in 2D/3D applications,
the overall second-order-accuracy of the method is maintained.

RESULTS
Flow past a heated cylinder in a channel

This test case is based on the numerical and experimental
investigation of Laskowski et al. [14], also studied in [15, 16].
It consists in the simulation of an unsteady flow, involving natu-
ral convection, transition to turbulence and conjugate heat trans-
fer. The test case aims at a deeper understanding of the base
mechanisms of channel flow heat transfer for the design of

more efficient and compact heat exchangers, also in the field of
micro-fluidic applications [17]. The experimental configuration
is shown in figure 2: water flows inside a channel and a circular
tube, with two coaxial surfaces, is immersed in the flow. The

Figure 2. SCHEME OF THE FLOW PAST A HEATED CYLINDER IN A
CHANNEL.

Figure 3. LOCAL VIEW OF THE GRID.

bottom wall of the channel is heated, so that the outer surface
of the cylinder touches the thermal boundary layer developing
along the bottom wall. Inside the tube, hot water flows heating
the tube. The Reynolds number, based on the mean streamwise
velocity and the channel half-width is about equal to 414. In this
flow conditions, transition to turbulence is due to thermal plumes
generated by the buoyancy force. A two-dimensional compu-
tation has been performed in a rectangular domain with length
equal to 61 cm and height equal to 7.62 cm. The inner and outer
radii of the tube are equal to 0.635 cm and 1.5875 cm, respec-
tively, its centre having coordinates 42.7 cm and 1.43 cm in the
streamwise and wall-normal directions. The inlet velocity profile
is provided in [14] and the inlet temperature of the water is equal
to 284 K. The bottom wall of the channel is maintained at 318 K
whereas the top wall is adiabatic. Finally, the temperature of the
inner surface of the tube is set to 320.5 K. At walls, the no-slip
condition is enforced and at outlet points the convective outflow
condition is employed. Material properties are the ones for water
and stainless steel. The acceleration of gravity in the wall normal
direction has been considered equal to 9.81 m/s2. A Cartesian
mesh with about 19100 (15000 for discretizing the tube) cells has
been employed. The mesh is locally refined near the wall and the
tube, as shown by the local view provided in figure 3. A snap-
shot of the temperature contours obtained using the present ap-
proach are given in figure 4(a), whereas figure 4(b) provides the
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(a)

(b)

Figure 4. LOCAL VIEW OF THE TEMPERATURE CONTOURS:
PRESENT RANS SIMULATION (a); LES FROM REFERENCE [15] (b).

results of the large eddy simulation performed in [15]. The qual-
itative comparison between the two results demonstrates that the
present unsteady RANS simulation can capture the main struc-
tures developing in the flow. In particular, the effect of the ther-
mal plumes, generated by the heated wall, on the temperature
distribution over the cylinder surface is predicted with reason-
able accuracy. Figure 5 provides the time averaged heat flux over
the outer surface of the tube. The angle θ is measured from the
trailing edge in the counter-clockwise direction. The numerical
results obtained by the present method are compared with the
experimental data of [14]. Also in this case, the comparison in-
dicates that the numerical prediction is in good agreement with
the real dynamics of the flow.

Figure 5. HEAT FLUX DISTRIBUTION OVER THE OUTER SURFACE
OF THE TUBE.

Flow past a cooled turbine cascade

This second and last test case concerns the simulation of a
highly-loaded cooled two-dimensional turbine cascade. The ge-
ometry of the blade is provided in [18] and it is known as the
T106 turbine cascade which has been modified in order to add
three cooling channels. The flow is subsonic, with isentropic exit
Mach number equal to 0.3, inlet flow angle equal to 37.7, and
Reynolds number, based on the chord length and on the exit con-
ditions, equal to 3× 105. Air and stainless steel are considered
for the fluid and for the solid, respectively. At the inlet boundary
points, the total pressure and temperature are assigned, together
with the flow direction, whereas only the static pressure is pre-
scribed at the outlet points. Three cooling holes are added to the
original geometry. Two of them have assigned wall temperature,
equal to Tc = 200 K, whereas, cooling air with inlet tempera-
ture Tc = 200 K and inlet velocity vc = 5 m/s flows through the
main central hole. Such a cooling air issues from a secondary
channel into the main flow forming a film along the suction side.
In the span-wise direction, the total pressure and temperature at
the cells corresponding to the inlet of the main cooling channel
are imposed, together with the direction of the velocity, normal
to the endwalls. Thanks to the versatility of the present IB ap-
proach, the complete geometry of the blade can be discretized
easily and efficiently. The computational grid, using about 66000
cells (33700 in the solid region), shown in figure ??(a), is refined
at the leading edge of the blade, at the region of maximum curva-
ture, and near the cooling holes, see figure ??(b). Figures ??(a)
and (b) provide the computed temperature countours in the solid
and in the fluid, and the velocity-vector field in and around the
main central cooling channel. This test case demonstrates the
capability of the present method to solve conjugate-heat-transfer
problems of industrial interest.
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(a)

(b)

Figure 6. COOLED T106 CASCADE: LOCALLY REFINED GRID (a);
TEMPERATURE CONTOURS (b).

CONCLUSIONS
An immersed boundary method for computing compress-

ible viscous flows has been improved and applied to solve com-
plex turbomachinery flows. The method has been extended to
solve conjugate-heat-transfer problems with a flexible local grid
refinement technique. The proposed method has been applied
with success to solve complex flow fields, even at high values of
the Reynolds number, as well as to predict turbomachinery blade
cooling.
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