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ABSTRACT
In this paper we present an efficient method for calculating

the friction factor for forced laminar flow in arbitrary axially
symmetric pipes. The approach is based on an analytic expres-
sion for the friction factor, obtained after integrating the Navier-
Stokes equations over a segment of the pipe. The friction factor is
expressed in terms of surface integrals over the pipe wall, these
integrals are then estimated by means of approximate velocity
and pressure profiles computed via the method of slow variations.
Our method for computing the friction factor is validated by com-
paring the results, to those obtained using CFD techniques for a
set of examples featuring pipes with sinusoidal walls. The am-
plitude and wavelength parameters are used for describing their
influence on the flow, as well as for characterizing the cases in
which the method is applicable. Since the approach requires only
numerical integration in one dimension, the method proves to be
much faster than general CFD simulations, while predicting the

∗Address allcorrespondence to this author.
†Centre for Analysis, Scientific Computing and Applications.

friction factor with adequate accuracy.

1 INTRODUCTION
The effect of wall shape on the friction factor of forced flow

through pipes and hoses is of interest in many applications such
as LNG transfer hoses [1]. Several numerical and experimental
studies have shown that the contribution of wall shape is not triv-
ial, even in the laminar case. If wall shape of corrugated pipes is
translated into an equivalent wall roughness, it is found that the
friction factor differs considerably from the values obtained from
the classical Moody diagram [2].

Despite the wide use of corrugated pipes or hoses, the effects
of wall shape on the flow are commonly obtained from one-phase
flow pressure drop experiments or CFD computational experi-
ments. For optimization of flow paths however, both methods
soon become non affordable and faster calculation methods are
required. The study of flow in non-straight pipes dates back to
Nikuradse’s experiments [3], whose results obtained from arti-
ficially roughened pipes were later arranged in the more well-
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known form of the Moody Diagram [2]. In the Moody diagram,
thefriction factor for laminar flow appears as independent of wall
roughness, but in general the friction factor for laminar flow in
corrugated pipes has been found to be dependent on the specific
wall shape [4–6].

Several approaches for the calculation of flow in corrugated
pipes have been suggested, among the ones based on CFD, we
mention the publications by Mahmud et al. [7] and Blackburn
et al. [6] for the case of laminar flow, and the publications by
Pisarenco et al. [8] and Van der Linden et al. [9], for turbulent
flow. Still, even after reducing the domain of calculation to one
single period in two dimensions, the computational costs can still
be high for certain situations, for instance, when one is interested
in optimization of flow paths, or in performing calculations for a
large network of interconnected hydraulic components.

In this paper we develop a method for estimating the Darcy
friction factor in axially symmetric pipes of arbitrary shape. The
method is accurate and very efficient because it only requires nu-
merical integration in one dimension. The range of applicability
of the method is discussed and presented via a comparison with
a set of numerical examples. The paper is organized as follows.
We start by presenting the governing equations and geometry.
Directly from the governing equations, we derive an analytical
expression for the friction factor in terms of surface integrals
over the pipe wall. In order to compute or approximate these
integrals, we require the solution for the pressure and the axial
velocity component at the wall of the pipe. We solve this problem
by using approximate solutions for the pressure and the velocity,
obtained via the method of slow variations. For completeness we
include the derivation of this asymptotic expansions. Based on
this expansion we finally obtain approximate formulas for esti-
mating the friction factor. Finally the accuracy of the method is
studied and discussed.

2 GOVERNING EQUATIONS
We consider the Navier-Stokes equations for steady, incom-

pressible, axially symmetric, laminar flow in cylindrical coordi-
nates

UUX +VUR = ν
(

UXX +URR+
1
R

UR

)

−
1
ρ

PX, (1a)

UVX +VVR = ν
(

VXX +VRR+
1
R

VR−
1
R2V

)

−
1
ρ

PR, (1b)

UX +VR+
1
R

V = 0, (1c)

wherethe corresponding variables are the axial coordinateX, the
radial coordinateR, the axial velocityU , the radial velocityV,
and the pressureP. The constantsν andρ represents the kine-
matic viscosity and the density of the fluid, respectively. The

R̃(X)Γin
Γout

Ω X

R

X = 0
X = L

Γ

FIGURE 1. Axisymmetricpipe with center line along theX-axis. Γ
stands for the wall of the pipe,Γin for the cross section atX = 0 andΓout

the cross section atX = L

angular component does not play a role due to the assumption of
axially symmetric flow.

The geometry under consideration is an axially symmetric
pipe, depicted as in Figure 1. The location of the wall of the
pipe, can be described in terms of the cylindrical basis vectors
eR, eΘ, eX, via the parametrizationX(Θ,X) = R̃(X)eR + XeX,
with parameters 0≤ Θ < 2π, 0≤ X ≤ L . We assumẽR to be
smooth, consequently, the outer unit normal vectorn, and the
surface element dS can be expressed as

n =
eR− R̃′(X)eX
√

1+ R̃′(X)2
, (2a)

dS= R̃(X)
√

1+ R̃′(X)2dΘdX. (2b)

As boundary conditions we consider no-slip at the wall of
the pipe, and a prescribed constant flow rateQ̃, i.e.,

U(X, R̃(X)) = V(X, R̃(X)) = 0, 0≤ X ≤ L (3a)

Q̃ =
∫

Γin

UdS= 2π
∫ R̃(0)

0
RU(X,R)dR. (3b)

2.1 The Darcy Friction Factor
A quantity of interest in the analysis of pipe flow is the pres-

sure drop. The pressure drop is directly related to the mean flow
rate, and it determines the power requirements of the device to
maintain the flow. In practice, for straight pipes, it is convenient
to express the pressure loss as follows [10]

∆P = f
L
D

ρŪ2
0

2
, (4)

where,∆P = Pin −Pout is the pressure drop over a segment of
lengthL, f is the Darcy friction factor,D is the diameter of the
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pipe,ρ is the density and̄U0 is the average of the velocity over
the cross section. In the case of laminar flow, i.e., for Poiseuille
flow, the friction factor takes the form

f =
64
Re

, (5)

whereRe is the Reynolds number, defined as

Re :=
Ū0D

ν
. (6)

When the radius of the pipe is not constant, one needs to choose a
characteristic radius and average velocity, in this paper we select
the respective values at the inlet of the pipe, i.e.,D = 2R̃(0) and,

Ū0 =
1

πR̃2(0)

∫

Γin

UdS. (7)

The expression in (4) can be used as a lumped model for
describing the flow in any kind of pipe. The main difficulty is to
efficiently determine a friction factor that accurately predicts the
pressure drop.

2.2 Integral Expression for the Friction Factor
By integrating the axial momentum equation (1a) we can

obtain an expression for the pressure loss in terms of surface in-
tegrals over the pipe wallΓ. To this purpose, we first rewrite (1a),
in the following form

∇ · (UV) = −
1
ρ

∇ · (PeX)+ν∇ · (∇U), (8)

whereV = UeX +VeR, and where we usedPX = ∇ · (PeX), and
V ·∇U = ∇ · (UV). Integrating over the domainΩ, see Figure 1,
and applying the divergence theorem we get

∮

∂Ω
UV ·ndS= −

1
ρ

∮

∂Ω
PnXdS+ν

∮

∂Ω

∂U
∂n

dS, (9)

wherenX = n ·eX. Next, we split the surface of integration∂Ω =
Γin ∪Γout∪Γ, as sketched in Figure 1. After using the no-slip
condition (3a), and rearranging terms we get

∫

Γin

PdS−
∫

Γout

PdS=ρ
[∫

Γout

U2dS−
∫

Γin

U2dS

]

+

+
∫

Γ
PnXdS−µ

∮

∂Ω

∂U
∂n

dS.

(10)

In the following, we restrict ourselves to the case of periodic
pipes, i.e.,R̃(X) = R̃(X + L). In this particular case the expres-
sion for the pressure loss derived above simplifies greatly. Since
the flow is steady, we can conclude that the velocity fieldV is pe-
riodic as well, from which it follows that the integrals overΓin,
cancel with the ones overΓout. In the end, we are left with the
following expression for the pressure drop over one period, i.e.,
from sectionX = 0 toX = L,

∆P =
1

|Γin|

∫

Γ
PnXdS

︸ ︷︷ ︸

∆PP

−
µ

|Γin|

∫

Γ

∂U
∂n

dS
︸ ︷︷ ︸

∆PS

, (11)

wherenX is theX-component of the normal vector to the surface,
andΓ is the wall of the pipe betweenX = 0 andX = L. This
formula also tells us that the pressure drop consists of two parts,
one due to skin friction,∆PS , and one due to the pressure forces
acting on the wall of the pipe,∆PP. In the particular case of a
straight pipe, i.e., for Poiseuille flow,nX = 0 and consequently
(11) only contains the integral due to skin friction∆PS. After
substituting the parabolic profile forU , we recover the result (5),
for the laminar friction factor in a straight pipe.

In order to be able to use (11) for computing the friction
factor, we need to approximate the normal derivative∂U/∂n,
and the pressureP at the wall of the pipe. We do this via the
method of slow variations.

3 METHOD OF SLOW VARIATIONS
The method of slow variations exploits the geometric char-

acteristics of boundaries that vary more slowly in some direction
than others. The key of the method is to rescale the geometry
in such a way that the variations become of the same order. This
crucial step, enables us to take a geometrical parameter and trans-
fer it as a coefficient in to the scaled equations, which allows us
to write the solution as an asymptotic expansion. One of the re-
markable properties of the method is that it can handle arbitrarily
large variations, provided that they take place slowly [11].

Asymptotic solutions for flow in axially symmetric pipes
have been derived in several papers [11–13]. The derivation we
present here follows the line of the paper by Kotorynski [13].
Before starting with the method of slow variations, we need to
rewrite the Navier-Stokes equations (1) in dimensionless form,
by defining the following variables

u∗ =
U
Ū0

, v∗ =
V
Ū0

, x∗ =
X
D

, r∗ =
R
D

, p∗ =
P

ρŪ2
0

. (12)

Substituting these variables in (1) and applying the chain rule we
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obtain

Re(u∗u∗x∗ +v∗u∗r∗) = u∗x∗x∗ +u∗r∗r∗ +
1
r∗

u∗r∗ −Rep∗x∗ , (13a)

Re(u∗v∗x∗ +v∗v∗r∗) = v∗x∗x∗ +v∗r∗r∗ +
1
r∗

v∗r∗ −
1

r∗2 v∗−Rep∗r∗ ,

(13b)

u∗x∗ +v∗r∗ +
1
r∗

v∗ = 0. (13c)

3.1 Reformulation in slowly varying variables
Now we proceed to rescale (13), by using the assumption

that the radius of the pipe varies slowly in the axial direction.
This means that the radius of the pipeR̃(X) can be written as

Dh
( ε

D
X

)

= R̃(X), (14)

whereh is the scaled radius of the pipe, andε is a small dimen-
sionless parameter characterizing the slow variation of the radius
in the axial direction. Such parameter can be taken directly from
the expression for the radius if available, for instance if the pipe
radius would be of the form̃R(X) = (1+ ε2X2)1/2. In the case
of a periodic pipe one can consider the maximum variation of the
radiusa, and compare it to the period of the pipeL, i.e., we de-
fineε := a/L. Then, by applying a proper scaling, we can obtain
a domain in which the period is comparable to the variation of
the radius. Formally this is done by defining the new variables

x = εx∗, r = r∗, u = u∗, εv = v∗, ε−1p = p∗. (15)

Substituting these variables in (13) and multiplying the second
and third equations byε andε−1, respectively, we obtain

εRe(uux +vur) = ε2uxx+urr +
1
r

ur −Repx, (16a)

ε3Re(uvx +vvr) = ε4vxx+ ε2
(

vrr +
1
r

vr −
1
r2 vr

)

−Repr ,

(16b)

ux +vr +
v
r

= 0. (16c)

This transfers the parameterε from the geometry into the equa-
tion, where it appears as a coefficient, which allows us to vary
this parameter, while keeping the domain fixed, namely 0≤ x≤
a/D, and, 0≤ r ≤ h(x). Formally this means that we can write
an asymptotic expansion for the functions in (16), as follows

g(x, r;ε) =
∞

∑
i=0

gi(x, r)ε i , (17)

whereg is a generic variable,g = u,v, p. By substituting these
expressions into (16), and grouping the variables with respect to
their order inε, we can get a set of equations for each of the
orders in the asymptotic expansion. The boundary conditions for
the resulting systems are

ui(x,h(x)) = vi(x,h(x)) = 0, 0≤ x≤
a
D

. (18)

In an analogous way, we expand the dimensionless fluxQ as
Q= Q0+εQ1+ε2Q2+ ..., where the scaled fluxesQi are defined
as

Qi := 2π
∫ h(x)

0
rui(x, r)dr. (19)

Due to continuity, eachQi is constant, and since the equation
must hold for arbitraryε, it follows that

Q0 = Q, Qi = 0 for i = 2,3, . . . . (20)

Furthermore, the scaled flux can be written as

Q0 = Q = 2π
∫ h(0)

0
ru0(x, r)dr =

2π
Ū0

∫ h(0)

0
rU (0,Dr)dr, (21)

and substitutinḡU0 from (7), we get

Q0 =
πR̃2(0)

∫ R̃(0)
0 RU(0,R)dR

∫ Dh(0)

0

η
D2U(0,η)dη =

π
4

. (22)

3.2 Solving for the leading term
The equations for the leading term can be obtained from

(16), by settingε = 0. The equations read

u0rr +
1
r

u0r −Rep0x = 0, (23a)

Rep0r = 0, (23b)

u0x +v0r +
v0

r
= 0. (23c)

From(23b), we conclude thatp0 is only function ofx, and after
multiplying (23a) byr and integrating with respect tor we get

ru0r = Rep0x
r2

2
+c1(x). (24)
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By evaluating the previous expression atr = 0 wefind c1(x)≡ 0,
and integrating once more with respect tor we get

u0 = Rep0x
r2

4
+c2(x). (25)

Finally, using the no-slip condition at the wall of the pipe, we can
determine the functionc2(x), and we obtain

u0 =
Rep0x

4

(
r2−h2(x)

)
. (26)

Combining(22), and (26) we obtain the following expression for
the pressure gradientp0x

p0x = −
2

Re
1

h(x)4 . (27)

Consequently, u0 takes the form

u0(x, r) =
1

2h(x)4

(
h(x)2− r2) . (28)

Finally, from (23c), we can determine the radial velocity compo-
nentv0. First from (28) we derive

u0x =

(
2r2−h(x)2

)
h′(x)

h(x)5 . (29)

Substitutingthis expression in (23c), integrating w.r.t.r and us-
ing the no-slip condition we get

v0 =
r
(
h(x)2− r2

)
h′(x)

2h(x)5 =
rh′(x)
h(x)

u0(r,x). (30)

Summarizing,the 0th order terms of the asymptotic expansion
are

u0(x, r) =
1

2h(x)4

(
h(x)2− r2) , (31a)

v0(x, r) =
rh′(x)
h(x)

u0(r,x), (31b)

p0(x, r) = −
2

Re

∫ x

0

1
h(ξ )4 dξ . (31c)

This particular expression forp0 considers setting a reference
pressurep0(0,0) = 0. These expressions can be rewritten in

terms of the original variablesU ,V andP, as follows

U(X,R) =2Ū0
R̃(0)2

R̃(X)2

(

1−
R2

R̃(X)2

)

, (32a)

V(X,R) =
R̃′(X)

R̃(X)
RU(R,X), (32b)

P(X,R) =−
16ρŪ2

0 R̃(0)3

Re

∫ X

0

1

R̃(ξ )4
dξ . (32c)

4 ESTIMATION OF THE FRICTION FACTOR
In this section we consider two different ways of using the

asymptotic solution derived above, in order to find the pressure
drop. Naturally the first idea that comes in mind is to directly
use expression (32c) and evaluate it atX = 0 andX = L, thus
finding the correspondent pressure drop. The other possibility we
consider, is to use the leading terms of the asymptotic expansion
(32) for computing the integrals in (11). The first option leads to
a result which was originally obtained by Deiber et al. [14], but
that unfortunately is not able to capture the dependency on the
periodL, for the particular case of sinusoidal pipes. The second
option is able to capture the dependency on the periodL, thus
extending the region of applicability of the method. Now we
proceed to obtain the two approximations.

Following the first idea, using thatp0 is constant over cross
sections, and evaluating (32c), the total pressure loss becomes

∆P =
16ρŪ2

0 R̃(0)3

Re

∫ L

0

1

R̃4(X)
dX. (33)

TheDarcy friction factor can be obtained by solving forf in (4),
this yields

f =
64
Re

R̃(0)4

L

∫ L

0

1

R̃(X)4
dX

︸ ︷︷ ︸

CF1

, (34)

where CF1 can be interpreted as a correction factor, which when
multiplied with the friction factor for laminar flow in straight
pipes 64/Re, gives us an approximation to the friction factor of
an arbitrarily shaped axially symmetric periodic pipe, described
by the functionR̃(X). As mentioned before, (34) corresponds to
the result previously obtained by Deiber et al. [14]. One of the
main advantages of such an estimation, is that it only requires
the calculation of a one dimensional integral, consequently ob-
taining a huge reduction in computation time, when compared to
general CFD type methods.

In order to analyze how the approximation withCF1 per-
forms, we compare the results obtained with (34) to those ob-
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FIGURE 2. Friction factor (solid lines) and approximation obtained
with correction factorCF1 (34)(dotted lines), as function of the
Reynolds number, for a sinusoidal pipe depicted as in Figure 5. Pa-
rameter values areD = 2, anda = 1. The estimation obtained withCF1
is the same for all the values ofL.
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FIGURE 3. Friction factor (solid lines) and approximations obtained
with correction factorCF2 (41) (dotted lines), as function of the
Reynolds number, for a sinusoidal pipe depicted as in Figure 5. Pa-
rameter values areD = 2, anda = 1.The estimation withCF2 is able to
capture the changes in friction factor due to changes in the periodL.

tained with the CFD methodology, that will be described in Sec-
tion 5. For the simulations we consider a sinusoidal pipe depicted
as in Figure 5. In Figure 2 we show the variation of the friction
factor with Reynolds number for a sinusoidal pipe with ampli-
tudea = 2, and different values ofL. We notice the deviation
of the friction factor computed with CFD (solid lines), from the

friction factor for straight pipes 64/Re (dotted line). The friction
factor obtained with (34), unfortunately, is not able to capture the
dependency on the parameterL, for this set of examples, and it
gives the same result regardless ofL. Nonetheless, we can ob-
serve how the results obtained with CFD approach the estimation
obtained with the correction factorCF1, as the period of the pipe
L, increases. In order to be able to capture the dependency on the
parameterL, we proceed to the second alternative.

Instead of using the asymptotic solution directly, we substi-
tute the asymptotic solution (32) into the integral expression for
the pressure drop (11), and perform the correspondent integra-
tions. First we derive the pressure loss due to pressure forces on
the wall ∆PP. Using the expressions for the normal vector (2a)
and the surface element (2b), we obtain

∆PP :=
1

|Γin|

∫

Γ
PnXdS

=
32ρŪ2

0 R̃(0)

Re

∫ L

0

(∫ X

0

1

R̃(ξ )4
dξ

)

R̃(X)R̃′(X)dX.

(35)

Changing the order of integration we get

∆PP =
16ρŪ2

0 R̃(0)

Re

[

R̃(L)2
∫ L

0

1

R̃(X)4
dX−

∫ L

0

1

R̃(X)2
dX

]

.

(36)
In the same way, using (32) and (2a), we can obtain the pressure
loss due to skin friction. First we compute

∂U
∂R

= −4Ū0R̃(0)2
R

R̃(X)4
,

∂U
∂X

= 4Ū0R̃(0)2
R̃′(X)

R̃(X)3

[

2
R2

R̃(X)2
−1

]

.

(37)

Thenwe can evaluate∇U ·n at the wallΓ and get

∆PS :=−
µ

|Γin|

∫

Γ

∂U
∂n

dS

=8µŪ0

∫ L

0

1

R̃(X)2

[

1+
(
R̃′(X)

)2
]

dX.

(38)

Adding the pressure loss due to forces on the wall (36) with the
pressure loss due to skin friction (38), we get the following ap-
proximation for the total pressure loss

∆P =
16ρŪ2

0 R̃(0)

Re

[

R̃(L)2
∫ L

0

1

R̃(X)4
dX−

∫ L

0

1

R̃(X)2
dX

]

+

+8µŪ0

∫ L

0

1

R̃(X)2

[

1+
(
R̃′(X)

)2
]

dX.

(39)
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Grouping terms and usingρDŪ0/µRe= 1, we finally get

∆P =
16ρŪ2

0 R̃(0)

Re

∫ L

0

R̃′(X)2

R̃(X)2
+

R̃(0)2

R̃(X)4
dX, (40)

which in terms of a friction factor yields

f =
64
Re

R̃(0)2

L

∫ L

0

R̃′(X)2

R̃(X)2
+

R̃(0)2

R̃(X)4
dX

︸ ︷︷ ︸

CF2

. (41)

This gives us an alternative expression for approximating the
friction factor, that in contrast with (34), is able to capture the
dependency on the parameterL, as it can be observed in Figure
3. The estimations obtained with our new approximation (41) are
displayed in dotted lines, and the results obtained with CFD in
solid lines, the line corresponding to 64/Re is displayed for ref-
erence. The estimate (34) accurately predicts the friction factor
up to certain Reynolds number, at which inertial effects become
more important.

Since it is always instructive to compare results with exper-
imental data. In Figure 4 we show a plot of experimental data
(blue dots), and two-dimensional numerical simulation (green
solid line), obtained by Deiber et al. [14, p. 642]. The estimation
obtained with (41) is displayed in a red dashed line. The two-
dimensional numerical simulation by Deiber et al., was obtained
by means of an iterative technique in which the shape is slowly
altered from a reference configuration. Their experiments, were
conducted in a sinusoidal pipe, which in terms of our parameters;
see Figure 5, correspond toa = 0.8571 andL = 8.9714. The es-
timation obtained with (41) matches both plots up to a Reynolds
number of approximately Re≈ 162. For larger Reynolds num-
ber, the estimation starts to deviate from the experimental data,
while the two-dimensional numerical solution follows to some
extend, till at Re≈ 750, a change towards turbulence can be ob-
served from the experimental data, and nor the estimate, nor the
numerical solution, are expected to correctly describe the flow.

One of the most important advantages of (41) is that it is
able to follow the effects due to changes in the periodL, while
the computational cost are still those of numerical integration in
one dimension. For instance a typical computation time for (41),
with an adaptive quadrature rule, with a tolerance of tol= 10−6

in MatLab, ranges from 6.01× 10−3, to 7.83× 10−3 seconds.
In contrast the computation times of the CFD implementation
(Comsol) presented in Section 5, range from 20, to 51 seconds,
for a fine mesh (1039 mesh points), and from 11, to 36 seconds,
for a coarse mesh (212 mesh points), achieving a huge reduc-
tion in computation time. The parameters of the geometry for
this computations were varied froma = 0 to a = 2, L = 0 to
L = 80, and Re≈ 10 to Re≈ 1200. The coarse mesh was con-
sidered mostly for time comparison purposes, in this case the
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10
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Re

f

 

 

Deiber et al. Ex.
Deiber et al.Sim.
CF2

FIGURE 4. Experimentalresults (blue dots), 2D numerical solution
(solid green line) for the friction factor by Deiber et al. [14, p. 642], and
approximation obtained with correction factorCF2 (41) (dashed line),
as function of the Reynolds number, for a sinusoidal pipe depicted as in
Figure 5. Parameter values areD = 2, a = 0.8571 andL = 8.9714; all
the values were converted from the variables used in Deiber et al. [14],
to the ones used in this paper.

CFD solver did not converge for all the geometries, specially in
the casea/L≫ 1. The simulations with the fine mesh, converged
in all cases.

The natural question at this point is to know more pre-
cisely, how accurate this estimation works, and in which cases
the method is applicable.

5 VALIDATION OF THE METHOD
Above it was shown that (41) provides better approximations

than (34). In order to analyze the accuracy of our method for
estimating the friction factor, we compare the results obtained
using (41), with the results obtained with CFD computations. To
this extend we consider pipes with sinusoidal walls depicted as
in Figure 5, wherea andL, are the amplitude and period of the
sinusoidal function, respectively. The geometry is chosen in such
a way that the radius is 1 at the inlet. The radius can be written
as

R̃(X) = 1+
a
2

(

1+sin

(
2π
L

X−
π
2

))

, (42)

which translates into

h(x) =
1
2

+
a
4

(

1+sin
(πx

a
−

π
2

))

. (43)
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FIGURE 5. Sinusoidalpipe with center line along theX-axis,a and
L stand for the amplitude and period of the sine function, respectively.

(a) (b)

(c) (d)

FIGURE 6. Pressure fluctuations̃P, and velocity streamlines for a si-
nusoidal pipe with radius at inlet̃R(0) =1, amplitudea = 1, period
L = 10, and different Reynolds numbers.

5.1 CFD Methodology
The computation domain can be reduced to just one period,

when the flow is fully developed, due to the following argument.
Since the geometry under consideration is periodic, it is plausible
to assume that all velocity components are periodic as well. The

pressure can be split as follows

P(X,R) = P̃(X,R)+ f X, (44)

whereP̃(X,R) represents the fluctuations due to the presence of
the corrugation, andf is the Darcy friction factor. This transfor-
mation is also used in the papers by van der Linden, et.al. [9],
and Pisarenco, et.al. [8].

The main advantage of this reformulation is thatP̃ is also
periodic, thus allowing to reduce the domain to just one period.
The implementation works as follows, first we prescribe a pres-
sure gradient (friction factor)f , which is included as a force term
in the Navier-Stokes equations, with variablesU ,V andP̃, i.e. we
solve for the pressure fluctuatioñP, instead of the original pres-
sureP. Second we solve the periodic Navier-Stokes equations,
and compute the average velocitȳU0, by integrating the axial ve-
locity componentU over the inlet of the pipe. Finally, we deter-
mine the resulting Reynolds number according to Re= Ū0a/ν .
The Navier-Stokes equations are solved with a finite element
code (Comsol Multiphysics [15]), using Lagrange P2-P1 ele-
ments, and a boundary layer mesh, the discretized equations were
solved using a direct sparse solver (UMFPACK) [15], with a tol-
erance of tol= 10−6.

In Figure 6 we show the fluctuation of the pressureP̃, and
the velocity streamlines obtained for a sinusoidal pipe with am-
plitude a = 1 and periodL = 10. Due to axial symmetry, it is
enough to solve just one of the symmetric sides of the pipe. The
center line is located atR= 0, the wall of the pipe appears on the
right side of the picture, and the flow direction is upwards. For
the small Reynolds number Re= 57.6, one can observe, signaled
by an arrow, the onset of a small vortex close to the deepest part
of the protrusion. In this case, our approximation to the friction
factor delivers a relative error of 10%. For Re= 187.8 we can
observe a vortex completely filling the protrusion of the pipe, but
the center of the vortex coincides with the center of the corru-
gation and our approximation delivers a relative error of about
20%. For higher Reynolds numbers, Re= 625.8,943.5, the cen-
ter of the vortex shifts towards the upper part, and then formula
(41) losses precision, yielding 30% relative error for the case in
Figure 6(c), and 40% relative error for the case in Figure 6(d).
For the pressure fluctuations, we can observe that, for moder-
ate Reynolds numbers, the pressure is constant over the cross
sections, and it starts to vary over the cross sectionX = 8.5 at
Re= 943.5; see Figure 6(d). The method provides good approx-
imations provided that the flow stays laminar, and the size of the
vortices are small, or are centered around the middle point in the
axial direction, in this particular case atX = 5.

5.2 Applicability of the method
In order to investigate the accuracy and range of applicabil-

ity of our approximation to the friction factor (41) systematically,

8 Copyright c© 2010 by ASME



FIGURE 7. Isosurfaces for the relative error at valuesErr = 1%,
Err = 10%, andErr = 20%. The surfaces appear in the parameter space
determined by Re,L, anda.

we considered the case of sinusoidal pipes, and varied the geom-
etry parameters, ranging from 0 to 2 for the amplitude of the pipe
a, from 0 to 80 for the period of the pipeL, where the geometry
had been previously rescaled for having a reference radius at the
inlet of R̃(0) =1. Then we compared these estimations to the re-
sults obtained using the CFD approach, as described above, and
computed the respective relative errorErr as

Err :=
| f − f̃ |
| f |

, (45)

with f beingthe friction factor obtained from the steady numer-
ical solver, andf̃ our estimation to the friction factor calculated
from (41).

The results from these tests are shown in Figure 7. The
regions in the parameter space, were the method delivers ap-
proximations with relative errorsErr = 1%, Err = 10%, and
Err = 20% are presented as isosurfaces. The zones below each
of the isosurfaces, constitute a region where our approximation
yields a relative error smaller than the corresponding error of the
isosurface. For instance, if the period of the pipe isL = 80, and
the Reynolds number Re= 50, our approximation yield and error
smaller thanErr = 1%, for any amplitude 0≤ a≤ 1.

In order to give a more clear impression of the regions of
accuracy of the method, we show cross sections of the error for
some fixed values of the amplitudea, as function of Re andL.
The results are displayed in terms of contour lines of the error.
Figure 8 shows the results for the casea= 0.2. Some remarkable
property, is the fact that the maximum error in the whole region
is only 8%. Of course this accuracy can not be attained for all pa-
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FIGURE 8. Contours of the relative errorErr, for a sinusoidal pipe
with amplitudea = 0.2 as function of the Reynolds number Re, and the
period of the pipeL.
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FIGURE 9. Contours of the relative errorErr, for a sinusoidal pipe
with amplitudea = 0.5143 as function of the Reynolds number Re, and
the period of the pipeL.

rameter values. When one increases the size of the amplitude, the
accuracy of the method decreases, for instance whena= 0.5143,
Figure 9, there are still some regions where the accuracy is of
the order of 5%, but in other regions the error increases up to
25%. For the casea = 1, Figure 10, the region of 5% accuracy is
reduced, and some zones with error of up to 30% appear.

We note that for large values of Re, anda/L, (i.e. in the
lower right corners in Figs. 10,8, and 9), the flow could already
be in the turbulent region. In such kind of situation, the computed
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steady solution is not valid, and consequently the plotted errors
are unlikely to be accurate.

6 CONCLUSIONS
Based on asymptotic solutions obtained from the method of

slow variations, and on an integral expression for the friction
factor, in this paper we derived approximate expressions for the
friction factor in axially symmetric pipes. Estimating the friction
factor with these expressions, requires only numerical integration
in one dimension, and consequently the method is extremely ef-
ficient. Reducing from a typical computation type of 11 seconds
for CFD type methods, to just 6×10−3 seconds.

From the validation with sinusoidal pipes, we can conclude
that our method yields an error smaller than 10%, for amplitude
values up toa = 0.2. For larger amplitudes, we additionally re-
quire, roughly speaking, either a small Reynolds number Re, or a
large value ofL, for keeping the error below 10%. The maximum
error in the range of parameters investigated here, is about 25%,
and 30%, for amplitudesa = 0.5143, anda = 1, respectively.
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