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ABSTRACT
In this paper, particle image velocimetry (PIV) results from

a backward-facing step flow, of which Reynolds number is2800
based on free stream velocity and step height (h= 16.5 mm), are
used to demonstrate the capability of proper orthogonal decom-
position (POD)-based estimation models. Three-component PIV
velocity fields are decomposed into a set of spatial basis func-
tions and a set of temporal coefficients. The estimation models
are built to relate the low-order POD coefficients, determined
from an ensemble of1050PIV fields by the “snapshot” method,
and the time-resolved wall gradients, measured by a near-wall
measurement technique called stereo interfacial PIV. These mod-
els are evaluated in terms of reconstruction and prediction of
the low-order temporal POD coefficients of the velocity fields.
In order to determine the coefficients of the estimation models,
linear stochastic estimation (LSE), quadratic stochastic estima-
tion (QSE), principal component regression (PCR) and kernel
ridge regression (KRR) are applied. In addition, we introduce a
possibility of multi-time POD-based estimations in which past
and future information of the wall gradient events is used sep-
arately or combined. The results show that the multi-time esti-
mation approaches can improve the prediction process. Among
these approaches, the proposed multi-time KRR-POD estimation
with optimized time duration of wall gradient information in the
past yields the best prediction.

∗Address all correspondence to this author.

INTRODUCTION
Separated flows are often important in many engineering ap-

plications such as flow over wings, or dunes in rivers, in combus-
tors, turbines and compressors. Many studies have been carried
in the field of separated flows to provide a better understanding
about the dominant flow structures.

For this purpose, extensive work has been contributed to the
backward-facing step (BFS), a well-known, simple geometry of
separated flows. In this flow configuration, a recirculation zone
is formed under the shear layer that develops at the step and reat-
taches downstream. Previous investigations have described the
statistical characteristics of the flow using single point measure-
ment techniques such as hot wires, surface pressure sensors, laser
doppler anemometry (LDA), or the field measurement technique
of particle image velocimetry (PIV) ( [1–3]).

There has been an increased interest to estimate velocity
fields using point measurements, usually pressure. Several re-
searchers have investigated the relationship between the flow
structure and surface pressure by applying stochastic estimation
[4–8]. Some notable estimation techniques are linear stochastic
estimation (LSE) [9, 10], quadratic stochastic estimation (QSE)
[6, 7], principal component regression (PCR) and kernel ridge
regression (KRR) [8].

As an alternative to direct estimation techniques, several re-
searchers have explored the possibility of LSE, QSE, PCR and
KRR techniques to estimate the POD coefficients of velocity
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FIGURE 1. BACKWARD-FACING STEP EXPERIMENT.

field given pressure events [6, 8, 10]. In this study, we refer to
such approaches as LSE-POD, QSE-POD, PCR-POD and KRR-
POD. In order to investigate the capability of estimation models,
a common approach is to divide available data into two sets; the
estimation model is built by using the first, “training” set, then
validated by testing on the second set. The application of an es-
timation model on the first and second data sets yields “recon-
struction” and “prediction” respectively. As examples, Durgesh
and Naughton have investigated the performance of LSE-POD
to the prediction of wake flow [10], while Mokhasi et al [8] have
evaluated the performance of PCR-POD and KRR-POD to pre-
dict the numerically simulated 3D flow over a cube.

In this communication, experiments of turbulent flow over
a backward-facing step in an open water channel are presented.
A stereo-PIV system captures the recirculating flow region be-
hind the step in a laser sheet at the central, vertical plane. The
three component PIV velocity fields of 2100 snapshots are de-
composed into a set of spatial basis functions and a set of tem-
poral coefficients by the snapshot POD. Unlike previous work,
which uses pressure measurements, the inputs to our estimation
models are the spatial distributions of wall shear gradient, mea-
sured simultaneously by our near-wall measurement technique
“stereo interfacial PIV” [11]. In this study, we employ various
POD-based estimation techniques, LSE-POD, QSE-POD, PCR-
POD and KRR-POD, to estimate the low-order POD coefficients.
We take special care to evaluate the estimation models for the
accuracy of both reconstruction and prediction. In addition to
such single-time estimations, we evaluate the performance of the
multi-time LSE-POD estimation [10] and as another innovation
introduce and test multi-time PCR-POD and KRR-POD estima-
tions, in which past and/or future wall gradient data is used. Fi-
nally, we compare the accuracy of these single-time and multi-
time estimation models for reconstruction and prediction of the
low-order POD coefficients of the velocity fields.

EXPERIMENT
The experiment setup is sketched in fig. 1. Experiment with

a backward-facing step was conducted in an 8 m×0.5 m (length
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FIGURE 2. MEAN VELOCITY OF THE BACKWARD-FACING
STEP FLOW. VECTORS (×3) ARE MEAN STREAMWISE U
AND VERTICAL V VELOCITY COMPONENTS, COLOUR SHOWS
MEAN SPANWISE VELOCITY COMPONENTW. LOCATIONS OF
WALL GRADIENT MEASUREMENTS ARE SHOWN BY BLACK
SQUARES.

× width) open water channel. The Reynolds numberReh based
on the mean streamwise velocityUm and the step heightH
(H = 16.5 mm) was about 2800. The coordinate origin was at
the step corner with the streamwise, vertical and spanwise di-
rections denoted byx, y andz respectively. Hollow glass sphere
particles with a mean diameter of 10µm seeded the water flow.
A double pulsed Nd:YAG laser illuminated a 2 mm thick verti-
cal sheet of the flow in the mid-plane of the test section. The fluid
region in thexyplane, withx/h ranging from 0.5 to 4.25, was im-
aged by a stereo PIV system comprised of two Kodak Megaplus
Model ES1.0 charge couple device (CCD) cameras with reso-
lutions of 1018×1008 pixels. In the stereo configuration, cam-
eras viewed horizontally at 45 degrees from downstream on ei-
ther side of the channel, viewing through the water prisms on
the sidewalls. The camera bodies were slightly rotated to satisfy
the Scheimpflug condition. Acquisition software was adapted in
the LabView platform to control a PCI NI-6601 timer board for
generating external triggers. A total of 2100 PIV image pairs cor-
responding to six experimental runs were acquired. The time in-
terval between the first and second exposures was4t = 3 ms and
sampling rate was set at 15 Hz.

The PIV images were processed by a standard cross-
correlation algorithm. The size of the interrogation window was
about 33×33 pixels, equivalent to 2×2 mm2, with 50% overlap.
This resulted in a vector spacing of 1mm. The seeding density
was about eight to ten particles per interrogation area. In the ve-
locity computation, vectors conflicting with the local median cri-
terion were replaced by that corresponding to the second highest
peak in correlation map. The mean three-component velocity of
backward-facing step flow is shown in fig. 2. The color shows
the mean spanwise velocity component, of which maximal mag-
nitude is about 3% of the mean bulk velocityUm which is defined
asUm = Qf /Af , whereAf is cross-sectioned area upstream of the
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step, andQf is the bulk flow rate.

The two components of wall shear gradient,∂u/∂y and
∂w/∂y, were obtained by applying our near-wall measurement
technique, stereo-IPIV [11], to the set of experimental images as
follows. For PIV images captured by each of the oblique camera
views, we firstly identified the wall boundary. Second, the image
segment above the wall was mapped to the rectangle by means
of the image transformation. The lower edge of such image tem-
plate coincided with the wall boundary. Third, we calculated the
stack of 1D correlation curves by cross-correlating each horizon-
tal pixel line within the templates of the transformed images of
the first and second exposures. Fourth, the wall shear gradient
was determined by fitting the straight line into the correlation
stack; and searched for the corresponding slope which maxi-
mized the Gaussian-weighted sum of correlation values. Fifth,
the projected wall shear gradient was obtained by the reverse
transformation. Finally, we performed the stereo-reconstruction
to achieve two components of wall shear gradient,∂u/∂y and
∂w/∂y. In our BFS application, the wall gradient measurement
was performed at 16 locations along the streamwise direction, at
a spacing of 0.25h ranging from 0.5h to 4.25h. The locations of
wall gradient measurements are shown by the black squares in
fig. 2. In previous work [11], this technique has proven to pro-
vide a better accuracy of wall gradient measurement in compar-
ison with differentiating velocity vector derived from standard
PIV processing technique such as particle image distortion [12].

POD analysis is performed on the measured velocity fields
and wall shear measurements in order to extract the statistically
dominant structures in the flow and wall shear. In the next sec-
tion, a brief review of POD technique and results from the BFS
flow decomposition will be presented.

PROPER ORTHOGONAL DECOMPOSITION
The Karhunen-Loeve decomposition, or proper orthogonal

decomposition (POD) technique has been an effective tool to
identify dominant flow features by performing decomposition
to the experimental and numerical data. Lumley first applied
POD to identify the large-scale structures in turbulent flows [14].
Mathematical details of direct POD method can be found in
many references [15,16] but a brief review is provided here. The
decomposition of a velocity fieldu(x,t) is given by

u(x,t) =
N

∑
k=1

ζk(t)ψk(x), (1)

whereζk(t) are called the temporal POD coefficients andψ(x)
are called the POD basis functions which are the eigenfunctions
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FIGURE 3. (a) ENERGY SPECTRA, (b) CUMULATIVE ENERGY
FROM FULL DOMAIN VELOCITY POD DECOMPOSITION; (c)
ENERGY SPECTRA, (d) CUMULATIVE ENERGY FROM WALL
GRADIENT POD DECOMPOSITION. THE DASHED LINE IN (a)
INDICATES THE EPPS & TECHET [13] THRESHOLD FOR THE
POD EIGENVALUES.

of the two-point correlation functionR(x,x′) defined as

R(x,x′) =
1
T

∫

u(x,t) ·u(x′,t)dt. (2)

The basis functions are computed via an optimization problem
leading to a Fredholm integral equation

∫

R(x,x′) ·ψ(x′)dx′ = λ ψ(x). (3)

The eigenvalueλ associated with each POD mode represents
the kinetic energy contained in that mode. The decomposition
yields statistically dominant flow structures in the few lowest-
order POD modes, which capture most of the flow kinetic en-
ergy. Since the experimental results obtained by PIV measure-
ments are discrete, the integrals are computed by discrete sum-
mations. In this case, the snapshot POD developed by Sirovich
and Kirby [17] is usually more computationally efficient. A cor-
relation matrix is calculated as

Ci j =
1
N

∫

u(x,ti) ·u(x,t j)dx, (4)

whereN is the number of PIV velocity snapshots. In order to
compute the POD basis functions and temporal coefficients, let
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FIGURE 4. LOW-ORDER POD VELOCITY MODES (×3), (a) MODE 2, (b) MODE 3, (c) MODE 4. COLOUR SHOWS VORTICITY CALCU-
LATED FROM CORRESPONDING VELOCITY MODE.

us first defineαki as

αki =
υk

i
√

N∑N
m=1 ∑N

r=1 υk
mυk

r Cmr

(5)

whereυk
i is theith element of the eigenvectorυk corresponding

to the eigenvalueλk of the correlation matrixC. The POD basis
functions are then computed as

ψk(x) =
N

∑
i=1

αkiu(x,ti), (6)

and the temporal coefficients as

ζk(tp) =
∫

u(x,tp) ·ψk(x)dx = N
N

∑
i=1

αkiCip. (7)

The eigenvectors and temporal coefficients of the POD decom-
position satisfy the following orthogonality:

∫

ψ i(x) ·ψ j(x)dx = δi j , (8)

1
T

T
∫

0

ζi(t)ζ j (t)dt = λiδi j . (9)

The present PIV setup allows us to capture several hundreds
to a few thousand instantaneous three component velocity fields.
The volume of these PIV measurements sufficies for a POD anal-
ysis to reveal the statistically dominant structures of the flow. In
addition to the three-component velocity fields, a strictly analo-
gous POD of wall shear gradients obtained from stereo PIV is
performed.

Figure 3a, b show the energy spectra and cumulative energy
of the velocity decomposition. The energy fraction of the first
POD mode, which is approximately equal to the averaged flow,

is found to contribute 94% of the total energy of the flow. This
contribution is identical to the energy fraction of the mean flow
found for the BFS flow in [18]. Compared to results from numeri-
cal simulations, there are many experimental sources of error that
may dominate the representation of high-order modes, include
low seeding density, high velocity gradients, out of plane parti-
cle motion [19], inhomogeneous laser intensity, and precision of
camera calibration. Comparing the POD modes obtained from
experiments and direct numerical simulation of a cylinder wake
flow, Ma et al [20] found that the experimental modes above the
fifth POD mode were contaminated by noise. In this work, we re-
tain only the first four POD modes, which contain about 96% of
the total energy of the flow, consistent with the following thresh-
old criterion for the magnitudeλk of retained POD modes ex-
tracted from PIV data [13],

λk >
√

NDε, (10)

whereN is the number of snapshots,D is the number of spa-
tial points in the PIV vector field andε is the uncertainty of ve-
locity measurement which, according to [19], corresponds to a
root mean square error of approximatelyε = 0.1 (pixel/4t). In
this application,ε = 2.5 (mm/s) (about 2% of the mean flow),
N = 2100 andD = 2046 yieldλk ≈ 5200(mm/s). The dashed
line in fig. 3a indicates the Epps and Techet’s threshold for the
POD eigenvalues. Figure 4 shows the in-plane components of the
low-order POD modes (k = 2, 3 and 4) overplotted on the corre-
sponding vorticity modes. To get a more quantitative idea of low-
order POD modes reconstruction, fig. 6 shows the reconstruc-
tions of Reynolds stress distributions using the first four POD
modes. Compared to those distributions obtained from the orig-
inal PIV measurements (fig. 5), the low-order modes (i.e. large-
scale structures) appear to be responsible for the majority of the
background stress levels. However, the percent contribution of
these large scales to the reconstructed distributions is different
for each Reynolds stress component. The〈−uv〉 Reynolds stress
distribution is the best reconstructed, with a recovery of 86%
of the original peak stress level. The corresponding values are
77% for the maximal value of theurms Reynolds stress compo-
nent, and 64% for thevrms stress component. These reconstructed
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m×10 CALCULATED FROM THE VELOCITY FIELDS RECONSTRUCTED

BY 4 POD MODES.

stress levels are close to those recovered from using the first five
POD modes in [18] for BFS flow. Compared to the low-order
mode reconstructions of theurms, vrms and〈−uv〉 stress compo-
nents, only a small fraction of the maximal stress level ofwrms

is recovered, i.e. 27%. This result indicates that the cross-stream
motion is less well reconstructed by the low-order POD modes
because they are associated with higher-order structures which
are not included in our truncation [21].

Figure 3c, d show the energy spectra and cumulative en-
ergy of the wall gradient decomposition. The first four spatial
functions of the POD wall gradient decomposition for∂u/∂y
and∂w/∂y are shown in fig. 7. The modal descriptions of the
∂u/∂y and ∂w/∂y components indicate that the given flow is
three-dimensional and complex, especially at the region near the
reattachment pointXr = 5.5h found in [11].

POD-BASED ESTIMATION APPROACH
In this section, we describe various POD-based estimation

approaches, including single-time and multi-time estimations,
used to build estimation models. The moderately sparse wall gra-
dients measured by stereo-IPIV and temporal POD coefficients
of velocity fields are related by measurement models which then
can be used to estimate the flow from wall shear data.

Single-time LSE-POD and QSE-POD
The stochastic estimation approach, introduced by Adrian

[22], predicts a time-dependent signal given a correlated mea-
surement event. In [23], the authors proposed to use stochastic

estimation to approximate the conditional averages of turbulent
flow parameters associated with unconditional data.

For this application, the temporal POD coefficients of veloc-
ity fields are estimated by a conditional average associated with
the wall shear gradient denoted bys(t). This can be described as

ζ̃k(t) = 〈ζk(t) | s(t)〉 , (11)

where the subscriptk denotes the POD mode and the angle brack-
ets〈.〉 denote the ensemble averaging. The conditional average
can be approximated by a truncated power series expansion [24]
which, in QSE-POD, is truncated at the quadratic terms,

ζ̃k(t) =
M

∑
m=1

Akmskm(t)+
M

∑
m=1

M

∑
n=1

Bkmnsm(t)sn(t). (12)

while in LSE-POD it is truncated at the linear term. The sum-
mation covers wall gradient measurement locations indicated by
m.

In the present communication, both the linear and quadratic
stochastic estimations are applied to the wall gradient events. To
derive these estimation coefficients, the process of minimizing
the mean-square error is performed by taking derivatives with
respect toA andB, then setting these expressions to zero. This
procedure yields a linear system of equations that describes the
coefficientsA andB in terms of wall gradient autocorrelations
[SS] and POD coefficient-wall gradient correlations[ζS]

[AB] = [SS]−1 [ζS] . (13)
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From the decomposition of PIV velocity vector fields and wall
gradient results of stereo-IPIV, the correlation matrices on the
right hand side can be evaluated to calculate estimation coeffi-
cients. Due to the difference of the minimizing process, the coef-
ficients of LSE and the linear coefficients of QSE are not identi-
cal.

Single-time PCR-POD and KRR-POD
In addition to the LSE-POD and QSE-POD techniques, we

use the principal component regression (PCR) and kernel ridge
regression (KRR) that produce linear and nonlinear estimations
respectively to determine the estimation models. The PCR-POD
and KRR-POD are briefly presented next, following Mokhasi et
al [8].

Single-time PCR-POD The single-time PCR-POD
technique estimates the POD coefficientsζk(t) through a linear
relation with the wall gradient events(t)

ζ̃k(t) =
M

∑
m=1

wkmskm(t), (14)

whereM is the number of wall gradient measurement points, and
w are the coefficients of the PCR-POD regression need to be de-
termined. It can be seen that the number of PCR-POD estimation
coefficients is equal to the number of wall gradient measurement
points,M. Analogously to other estimation techniques, the ob-
jective of this technique is to minimize the mean-square error
functionC(w) between the estimated and the true temporal POD
coefficients

C(w) = min.
1
2

N

∑
i=1

(wis(ti)− ζi(t))
2 , (15)

wheres(ti) is the wall gradient event at timeti from N measure-
ments,ζi(t) is the ith POD coefficient of the velocity fields. In-

stead of derivingw by conventionally solving the linear system
of derivative equation, the PCR-POD technique looks for the co-
efficients that are the functions of the principal components of
the events, wall gradients in our case. Hence, a POD calculation
is performed to analyse to the time resolved wall gradients as
below

sEN
r (t) =

Np

∑
m=1

β EN
m (t)ΓEN

mr , (16)

whereΓ andβ with superscriptEN are the spatial and temporal
eigenfunctions derived from the given ensemble wall gradient
events respectively.Np is the number of modes used in the POD
decomposition. In the general terminology of measurement mod-
els,Np is called the number of “latent variables”; its effect on the
PCR-POD performance is discussed later. The maximal value of
Np depends on the number of snapshots and the number of spa-
tial measurement points of the wall gradient. The orthogonality
of Γ andβ can be described as,

β EN
m (t) =

Np

∑
r=1

sEN
r (t)ΓEN

mr , (17)

Next, a relationship between the POD coefficients of the velocity
fields and the POD coefficients of the wall gradient events is built
as

ζk(t) = Mkmβm(t), (18)

by solving the linear equation system expressed in equ. 19

Mkm =
Np

∑
s=1

ζ EN
ks ωsm. (19)
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where

Np

∑
s=1

β EN
ms ωsr = δmr. (20)

By plugging the equ. 17 and equ. 20 into the equ. 18, one can
derive the final form as

ζk(t) =
Np

∑
r=1

(

Np

∑
i=1

Np

∑
j=1

(

ζ EN
ki ωim

Np

∑
m=1

ω jmsEN
r j

))

sr(t). (21)

This equation represents a prediction for the temporal POD co-
efficientsζ (t) from the given wall gradients through a linear
relation.

Single-time KRR-POD In this application of kernel
ridge regression (KRR), POD coefficientsζk(t) are approximated
by a nonlinear relationship with wall gradients(t) shown below:

ζk(s) =
N

∑
j=1

wk
j h j(s), (22)

whereN is the number of snapshots,wk are the estimation co-
efficients andh j are nonlinear basis functions, most commonly
radial basis functions (RBF). In this application, we useN vector
values of wall gradients to make the regression. Therefore, the
number of KRR-POD estimation coefficients for eachζk is N.
Details of the RBF functions can be found in [8]. In this study,h
is chosen to be a multi-quadric function which has the form

h j(s) = φ(s,sj ) =

√

1+ ε2
∥

∥s−sj
∥

∥

2
2, (23)

whereε is a scaling parameter and
∥

∥s− s j
∥

∥

2
2 is the Euclidean

distance between the wall gradientss ands j . In the KRR-POD
approach, the objective is to minimize a cost function defined as

C(w) =
N

∑
i=1

(ζi − ζi(s))2 +
N

∑
j=1

β jw
2
j , (24)

where the regularization parametersβ are added to penalize
large coefficientsw that could appear due to multicollinearity
[8]. These parameters need not to constant and are often opti-
mally determined by generalized cross validation or leave-one-
out cross validation. In this application,N is rather large, so we

setβ j = β∀ j, the unknown coefficientsw are computed by taking
the derivative of equ. 24 and setting to zero;

∂C

∂wk
j

= 2
N

∑
i=1

(ζi(s)− ζi)h j(si)+2βwk
j = 0. (25)

In terms of the RBF functions denoted as

Hi j = h j(si) = φ
(∥

∥sEN
i − sEN

j

∥

∥

)

, (26)

the coefficientw can be evaluated by solving a system of linear
equations. The result written in matrix notation is

wj =
[

HT
i j Hi j + β Ii j

]−1
HT

i j ζ j , (27)

whereI denotes the square identity matrix and the superscript
EN indicates that term is from the ensemble. Once thew coeffi-
cients are determined, one can substitutew into equ. 22 to find
the regression form of KRR-POD technique as

ζk(t) =
N

∑
j=1

wjφ
(∥

∥sEN
j −s

∥

∥

)

. (28)

Like the other estimation techniques applied here, one can es-
timate the POD coefficientsζ (t) of the velocity fields from the
wall gradient events by using equ. 28.

Multi-time POD-based estimations
In the previously described estimation techniques, the POD

coefficients of velocity fields are estimated by using the wall gra-
dient events at a single time. On the other hand, several studies
have discussed an extension of LSE-POD approach with multi-
time-delay implemented in a frequency domain [25, 26] or in a
time domain [10].

In this part, we describe the multi-time estimation LSE-
POD, PCR-POD and KRR-POD techniques in which the infor-
mation of wall gradient events from the past and future is sep-
arately used or combined to build the models. In this circum-
stance, the estimated POD coefficients of the velocity field at
time t are expressed in terms of conditional averages by

ζ̃k(t) =
〈

ζk(t) | s(t ′),t −T ≤ t ′ ≤ t
〉

, (29)

ζ̃k(t) =
〈

ζk(t) | s(t ′),t ≤ t ′ ≤ t +T
〉

, (30)

ζ̃k(t) =
〈

ζk(t) | s(t ′),t −T ≤ t ′ ≤ t +T
〉

, (31)

where subscriptk denotes the POD mode estimated at timet, T is
the duration of the temporal window of wall gradient events used
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FIGURE 8. RESULTS FROM THE FULL DOMAIN,a-d SHOW COMPARISONS BETWEEN THE ACTUAL (DASHED) AND ESTIMATED
POD COEFFICIENTS (SOLID) OF MODE 1 AND MODE 4,e-h SHOW THE MEAN-SQUARE ERRORS AND CORRELATION COEFFICIENTS
OF VELOCITY MODE 1 AND MODE 4. THE DATA SET 2 CORRESPONDING TOtime/4t > 1050 (INDICATED BY VERTICAL LINE) IS
OUTSIDE THE TRAINING ENSEMBLE. THE NUMBER OF LATENT VARIABLES IN PCR-POD AND THE VALUES OF(ε,β ) IN KRR-POD
ARE SELECTED TO OPTIMIZE THE PREDICTION PROCESS. THE POD COEFFICIENTS ARE STANDARDIZED BYZ-SCORENORMAL-
IZATION.
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FIGURE 9. RESULTS FROM THE WALL DOMAIN, a-d SHOW COMPARISONS BETWEEN THE ACTUAL (DASHED) AND ESTIMATED
POD COEFFICIENTS (SOLID) OF MODE 1 AND MODE 4,e-h SHOW THE MEAN-SQUARE ERRORS AND CORRELATION COEFFICIENTS
OF VELOCITY MODE 1 AND MODE 4. THE DATA SET 2 CORRESPONDING TOtime/4t > 1050 (INDICATED BY VERTICAL LINE) IS
OUTSIDE THE TRAINING ENSEMBLE. THE NUMBER OF LATENT VARIABLE IN PCR-POD AND THE VALUES OF(ε,β ) IN KRR-POD
ARE SELECTED TO OPTIMIZE THE PREDICTION PROCESS. THE POD COEFFICIENTS ARE STANDARDIZED BYZ-SCORENORMAL-
IZATION.
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FIGURE 10. MEAN-SQUARE ERRORS AND CORRELATION COEFFICIENTS BETWEEN ACTUAL AND ESTIMATED POD COEFFI-
CIENTS BY SINGLE-TIME LSE-POD, QSE-POD, PCR-POD AND KRR-POD. (a), (b): FROM FULL DOMAIN, (c), (d): FROM WALL DOMAIN.

in the multi-time estimation. Equation 29 and 30 express that
past and future information on wall gradients is used separately,
while equ. 31 specifies that both past and future information on
wall gradients is combined.

In the multi-time LSE-POD estimation, the estimates of
POD coefficient are;

ζ̃k(t) =
M

∑
j=1

0

∑
i=−I

Ai
k, js j(t + i4t), (32)

ζ̃k(t) =
M

∑
j=1

I

∑
i=0

Ai
k, js j(t + i4t), (33)

ζ̃k(t) =
M

∑
j=1

I

∑
i=−I

Ai
k, js j(t + i4t), (34)

whereM is the number of wall gradient measurement locations,
T = I4t is the time duration, andAi

k, j is the coefficient of the es-
timation model. The estimation coefficients are derived by the
mean-square error minimizing. This procedure yields a linear
system of equations for the estimation coefficientsA in terms
of wall gradient autocorrelation[StSt ] and POD coefficient-wall
gradient correlation[ζSt ],

[A] = [StSt ]
−1 [ζSt ] . (35)

For the multi-time PCR-POD and KRR-POD estimations,
the implementations are similar to the single-time approaches.
The only difference is that the matrix of events, as with LSE-
POD, is now expanded to include the wall gradients from the
past and/or future. Compared to the standard single-time esti-
mations, the number of estimation coefficients of the multi-time
LSE-POD and PCR-POD approaches increases in proportion to
the increase of the time duration while that of the multi-time
KRR-POD is stillN.

RESULTS AND DISCUSSION
The estimation techniques discussed in the previous section

have been applied to the BFS flow, and their accuracy has been
compared via mean-square errors and correlation coefficients be-
tween the “true” POD coefficients, determined from the experi-
mental velocity fields by projection ontoψk, and their estimated
values. Before processing, the POD coefficients are standardized
by applyingz-scorenormalization, which shifts and re-scales the
signal to a mean of zero and a standard deviation of one. As a re-
sult, all the normalized POD coefficients have the same standard
deviation that gives an unbiased estimation to any POD coeffi-
cient [8]. The mean-square errors between the true and estimated
POD coefficients,ζ andζ̃ respectively, are calculated by

ε2 =
1

NNv

N

∑
t=1

Nv

∑
k=1

(

ζ̃k(t)− ζk(t)
)2

, (36)

whereN is the number of snapshots in the data set,Nv is the num-
ber of low-order POD coefficients (Nv = 4 in our application, or
Nv = 1 when considering the error of a single mode). The correla-
tion coefficient between the true and estimated POD coefficients,
ζk(t) andζ̃k(t) respectively, are calculated by

Ck =
∑N

t=1(ζ̃k(t)− < ζ̃k >)(ζk(t)− < ζk >)
√

∑N
t=1

(

ζ̃k(t)− < ζ̃k >
)2√

∑N
t=1 (ζk(t)− < ζk >)2

,

(37)
wherek indicates the POD mode,N is the number of snapshots in
the data set and the operator〈.〉 stands for the ensemble average.

A total of 2100 PIV realizations and their corresponding
wall shear gradients have been divided into two sets of 1050
snapshots. In this assessment, we first perform a POD decom-
position on the first data set of the velocity fields, called the “en-
semble”, to obtain the spatial POD basis functions. Next, the time
series of the four lowest-order temporal POD coefficients and
corresponding wall gradients from the first set are used to build

10 Copyright c© 2010 by ASME



0   8   16   24   32
0.4

   

0.6

   

0.8

   

Number of wall shear POD modes (Np)

M
ea

n 
sq

ua
re

 e
rr

or

 

 

0   8   16   24   32

0.2

0.3

0.4

0.5

Number of wall shear POD modes (Np)

C
or

re
la

tio
n 

co
ef

fic
ie

nt
s

 

 

Set 1 (reconstruction)
Set 2 (prediction)

Set 1 (reconstruction)
Set 2 (prediction)

(a)

(b)

FIGURE 11. FULL DOMAIN: EFFECTS OF THE NUMBERNp

OF LATENT VARIABLES ON PERFORMANCE OF PCR-POD ES-
TIMATION, (a) MEAN-SQUARE ERROR, (b) CORRELATION CO-
EFFICIENT.

the estimation models and estimation coefficients. By using the
estimation coefficients and wall gradient distributions from “set
1”, one can partially “reconstruct” the POD coefficients that cor-
respond to that data set. The accuracy of reconstruction is eval-
uated by comparing the POD coefficients calculated by the esti-
mation models and the original/“true” POD coefficients obtained
directly by equ. 7. Next, if the estimation coefficients determined
from the ensemble operate on the wall gradients from another
data set, say set 2, one can approximately “predict” the values
of POD coefficients of set 2. The accuracy of prediction is com-
puted by comparing the POD coefficients, estimated by applying
the models to the wall gradient events from set 2, with the actual
POD coefficients, which are obtained by projecting the PIV ve-
locity fields of the second set onto the POD basis functions from
the first set. Normally, “reconstruction” yields more accurate es-
timates than “prediction”.

Performances of single-time LSE-POD, QSE-POD,
PCR-POD and KRR-POD estimations

First, we evaluate the performances of the single-time LSE-
POD, QSE-POD, PCR-POD and KRR-POD estimations.

In the linear estimation technique PCR-POD, one must spec-
ify the numberNp of “latent variables” indexed bym in equ. 16,
which, in this application, is the number of modes used from
the POD decomposition of the wall gradient events. When the
maximal number of wall gradient POD modes is used, the re-

sult of PCR-POD estimation is identical to that by LSE-POD.
For prediction, it is advised to use only the few most energetic
eigenvectors from the decomposition to achieve a better regres-
sion [8]. In other words, rather than using all measured data, one
can optimize the numberNp of latent variables used in PCR-POD
to improve the prediction process. This is a benefit of PCR-POD
versus LSE-POD. Such consideration is very valuable if one uses
tens to hundred(s) of sensors or PIV object points. In this study,
we choseNp = 8 as will be now explained. We have evaluated the
performance of the PCR-POD estimation technique versus the
numberNp of latent variables through the calculation of mean-
square errors and correlation coefficients from the reconstruction
and prediction procedures. The results are plotted in fig. 11. In
our BFS application, the two-component wall shear gradients are
measured at 16 streamwise locations, so the maximal value of
Np is 32. It is seen that for reconstruction, the highest accuracy
is obtained when all the wall gradient POD modes are used. By
contrast, the mean-square error of the prediction process takes a
minimum when 8 dominant POD eigenvectors, covering about
60% of the total variance of the wall gradient events from set 1,
are used. This value ofNp is accordingly selected for the PCR-
POD to optimize its predictive capability.

We perform comparative assessments for two different phys-
ical domains. The “full domain” covers a region ofx/h ranging
from 0.5 to 4.25 andy/h ranging from 0.06 to 2; while the “wall
domain” has its upper boundary lowered toy/h = 0.25 (fig. 1).

For the performances of LSE-POD, QSE-POD, PCR-POD
and KRR-POD to the full domain, fig. 8a-d compare the time se-
ries of actual and estimated coefficients of the first and the fourth
POD modes of the velocity fields. The process of reconstruc-
tion corresponds to the left half of the time series,time/4t <
1050, while prediction corresponds to the right half. Figure 8e-h
show the corresponding mean-square errors and correlation co-
efficients. It can be seen from fig. 8 and fig. 10a, b that the re-
constructions by the nonlinear estimations, QSE-POD and KRR-
POD, are superior to those by the linear estimations LSE-POD
and PCR-POD. In particular, the QSE-POD estimation could ac-
curately reconstruct the temporal POD coefficients, as confirmed
by its very high correlation coefficient in fig. 10b.

However, when we consider the performance of these es-
timation techniques for prediction, i.e. set 2,time/4t > 1050,
in the full domain (fig. 8), QSE-POD technique suffers a prob-
lem associated with overfitting. Overfitting refers to a situation
in which model parameters respond to random fluctuations in
the training data, thus reducing the reconstruction error but mak-
ing the prediction worse [27]. This phenomenon makes the QSE-
POD estimation model overly dependent on the individual wall
gradient events, which in experiments includes both physical ran-
domness and measurement noise. To reduce the dependence of
model on large thus degrades amplitude fluctuations, an addi-
tional term, parameterβ in KRR-POD is added to penalize the
large weights in the model. Now for the wall domain, fig. 9a-d
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FIGURE 12. WALL DOMAIN: MULTI-TIME LSE-POD, PCR-POD AND KRR-POD, (a) MEAN-SQUARE ERRORS, (b) CORRELATION CO-
EFFICIENTS BY USING BOTH OF THE PAST AND FUTURE INFORMATION OF WALL GRADIENTS, (c) MEAN-SQUARE ERRORS, (d)
CORRELATION COEFFICIENTS BY USING THE PAST INFORMATION (SOLID) AND THE FUTURE INFORMATION (DASHED) OF WALL
GRADIENTS.

compare the actual POD coefficients calculated from the origi-
nal velocity fields with those from the estimation models. Figure
9e-h show the corresponding mean-square errors and correlation
coefficients calculated for modes 1 and 4. One can clearly ob-
serve from fig. 9a-d that the estimation models perform well,
as confirmed by the mean-square error and correlation coeffi-
cient shown by fig. 10c and d. It can be seen that the predic-
tions of QSE-POD are less accurate than those of LSE-POD,
PCR-POD and KRR-POD estimations, whose accuracies are ex-
tremely comparable.

Performance of multi-time LSE-POD, PCR-POD and
KRR-POD estimations

In addition to the single-time estimations, we evaluate the
performances of the multi-time LSE-POD, PCR-POD and KRR-
POD estimations in predicting the POD coefficients of the ve-
locity fields that are taken from the wall domain of the data set
2. The durationT into the past and/or future is a multiple of the
PIV sampling interval,T = I∆t. Given the mean bulk velocity,
Um, and the step heighth of the BFS flow, the non-dimensional
durationτ∗ is given by

τ∗ =
TUm

h
. (38)

It is important to note that for each durationT, the estimation
coefficients of LSE-POD, PCR-POD and KRR-POD are recal-
culated, and the numberNp of “latent variables” of PCR-POD
and the parameters(ε,β ) of KRR-POD are re-optimized.

Figure 12a, b show the performances of the multi-time esti-
mations LSE-POD, PCR-POD and KRR-POD in which both the
past and future information of the wall gradient events are used.
In this circumstance, the multi-time estimation LSE-POD cor-
responds to the estimation technique proposed by Durgesh and

Naughton [10]. The results of single-time estimations shown in
fig. 10c, d correspond to the caseτ∗ = 0. An increase in dura-
tion τ∗ reduces the accuracy of the multi-time LSE-POD pre-
diction, whileτ∗ = 2.1 yields only a slightly higher correlation
coefficient thanτ∗ = 0 for the multi-time PCR-POD estimation.
By contrast, the performance of multi-time KRR-POD estima-
tion in predicting the POD coefficients of velocity fields is best
atτ∗ = 2.8.

Figure 12c, d show the mean-square errors and correlation
coefficients obtained by the multi-time estimation techniques in
which the information from the past and the future of wall gra-
dient events is used separately. It can be seen that in our appli-
cation, use of future information on wall gradient events reduces
the accuracy of prediction of all the estimation techniques. On
the contrary, using past information withτ∗ = −1.4 (I = −2)
yields the best prediction for PCR-POD and KRR-POD, min-
imizing mean-square error and maximizing correlation coeffi-
cient, though it does not improve prediction for the LSE-POD
estimation. This result reasonably suggests a phase relationship
between the wall gradient events and POD coefficients of the ve-
locity fields of wall domain. The multi-time LSE-POD yields a
worse prediction because it suffers from the problem of multi-
collinearity. Multicollinearity refers to the phenomena that the
training data are statistically similar or correlated and hence close
to linearly dependent [8]). Apparently, adding past and/or future
information on wall gradients to the estimation models increases
the linear dependence between individual wall gradient events.
As built from linearly dependent data, the LSE-POD estima-
tion invariably becomes sensitive to small changes in input in-
formation, while the KRR-POD estimations can handle collinear
data [8]. From fig. 12, it can be observed that the nonlinear multi-
time estimation, KRR-POD, performs best in predicting the POD
coefficients of velocity fields if a certain duration of past informa-
tion on wall gradient events is included in the model. This per-
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formance demonstrates the capability of multi-time KRR-POD
estimation to successfully capture the relationship between the
POD coefficients and wall gradient events while PCR-POD is
somewhat less successful. Note that the accuracy of prediction
of multi-time estimations does not continue to increase beyond a
certain value ofT, which would limit its specification in practical
application.

CONCLUSIONS
Considering to estimation models for real-time flow estima-

tion, we have applied various estimation techniques to PIV ex-
periments of turbulent flow over the backward-facing step. We
have applied the snapshot POD to the three-component PIV ve-
locity fields to calculate POD basis functions and their tempo-
ral coefficients. The low-order POD coefficients and the wall
gradients measured by stereo interfacial PIV have been used
to build POD-based estimation models, LSE-POD, QSE-POD,
PCR-POD and KRR-POD, to estimate the low-order temporal
POD coefficients of velocity fields.

In the first part, we have evaluated the performances of the
single-time estimations LSE-POD, QSE-POD, PCR-POD and
KRR-POD. The single-time estimation approaches build the esti-
mation models by using the wall gradient information only at the
instance when the estimation is performed. In this assessment,
the QSE-POD estimation suffered from overfitting, which de-
graded its prediction, while the overall performances of the LSE-
POD, PCR-POD and KRR-POD estimations are almost identi-
cal. Based on the performance and capability of single-time lin-
ear estimations, LSE-POD and PCR-POD in this application, the
PCR-POD estimation is superior because it provides an optimal
use of given events to achieve a better prediction, which is very
useful for real-time flow estimation using sparse measurements.

When there is a time-lag between the POD coefficients
and given events, it is more efficient to employ multi-time es-
timations. We have introduced the multi-time estimations PCR-
POD and KRR-POD, which used the past and future infor-
mation on wall gradients, to predict the POD temporal coeffi-
cients. The multi-time estimations require greater computational
time in comparison to the single-time approaches. Compared
to the multi-time LSE-POD estimation proposed by Durgesh
and Naughton [10], our proposed multi-time estimations PCR-
POD and KRR-POD yield more accurate prediction. Especially,
the nonlinear multi-time KRR-POD estimation has successfully
captured the structures of the flow given a certain past infor-
mation on wall gradient events. This result indicated a phase
relationship between the wall gradient events and POD coef-
ficients of the velocity fields of wall domain. Implemented in
the time-domain, the multi-time KRR-POD estimation does not
need the Fourier transform of the measurement events as required
in the frequency-domain approach proposed by Ewing and Cit-
riniti [25]. As a result, after the estimation coefficients are deter-

mined, the multi-time KRR-POD may perform faster. In addition
to having number of estimation coefficients constant with differ-
ent values of durationτ∗, the multi-time KRR-POD estimation
can handle collinear data and achieve the highest accuracy of
prediction after a certain duration. For real-time estimation ap-
plications, it is only feasible to use the past information on the
wall gradient events, i.e.τ∗ ≤ 0, to build the estimation models.

Given that these results were obtained from the experimen-
tal data in a complex, three-dimensional recirculating flow, we
suggest that the KRR-POD multi-time approach is a practically
useful and that it may improve the capability for real-time esti-
mation as compared with previous approaches.
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