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ABSTRACT

In large eddy simulation of turbulent flow, because of the

spatial filter, inhomogeneity and anisotropy affect the subgrid

stress via the mean flow gradient. A method of evaluating the

mean effects is to split the subgrid stress tensor into “rapid” and

“slow” parts. This decomposition was introduced by Shao et al.

(1999) and applied to A Priori tests of existing subgrid models in

the case of a turbulent mixing layer. In the present work, the de-

composition is extended to the case of a passive scalar in inhomo-

geneous turbulence. The contributions of rapid and slow subgrid

scalar flux, both in the equations of scalar variance and scalar

flux, are analyzed. A Priori numerical tests are performed in a

turbulent Couette flow with a mean scalar gradient. Results are

then used to evaluate the performances of different popular sub-

grid scalar models. It is shown that existing models can not well

simulate the slow part and need to be improved. In order to im-

prove the modeling, an extension of the model proposed by Cui

et al. (2004) is introduced for the slow part, whereas the Scale-

Similarity model is used reproduce the rapid part. Combining

both models, A Priori tests lead to a better performance. How-

ever, the remaining problem is that none eddy-diffusion model

can correctly represent the strong scalar dissipation near the wall.

This problem will be addressed in future work.

1 Introduction

Large-Eddy Simulation (LES) is a technique widely used in

academic studies of turbulence, as well as applied to an increas-

ing number of engineering projects. The LES approach consists

in the simulation of the governing equations for the grid-scale

(GS) motions with the introduction of models for the subgrid-

scale (SGS) effects. The GS part of the field is obtained by intro-

ducing a spatial filter in order to remove the unresolvable, small

scales of turbulence.

The problem of subgrid modeling in LES is complexified by

the fact that different types of filters are used, generally depend-

ing on the flow to which the technique is applied. For example a

spectral cut-off filter is often introduced in the case of homoge-

neous turbulence, whereas in most practical computations of in-

homogeneous turbulence, filters in the physical domain are pre-

ferred. Furthermore Piomelli et al. [1] showed that the subgrid

model formulation has to depend on the choice of the filter. Such

as the scale-similarity model [2, 3], it is not suitable to use to-

gether with the spectral cut-off filter. A distinction has also to be

made between LES with explicit filtering, and simulations where

the filtering operation is implicit. Several subgrid models, such

as the dynamic procedure introduced by Germano et al. [4] or

the scale-similarity model, require an explicit filtering operation.

With the necessity of physical-space filtering in inhomogeneous

flows as well as the success and promise of subgrid models that

require explicit filtering, it is clear that the role of filtering in SGS

modeling deserves future attention.
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The primary physical effect that requires modeling in LES

is the net energy transfer between GS and SGS turbulent scales,

which includes both the dominant dissipative effect associated

with the forward transfer from large to small scales and the back-

ward transfer from small to large scales. The backward transfer is

often small compared to the forward transfer, but it can be dom-

inant near a wall [5]. The theoretical background for modeling

the effect of small scales in LES has essentially remained within

the framework of homogeneous turbulence. Various theories of

SGS modeling have been developed by Kraichnan [6], Leslie and

Quarini [7], Leith [8], Chollet and Lesieur [9], Bertoglio and

Mathieu [10, 11], and recently L. Marstorp [12], etc. In most

cases the Kolmogorov theory for the energy cascade is implicitly

used to represent the SGS transfer. However, it is unlikely that,

for routine engineering applications, computational resources

will allow the fine resolution required for the approximation of

isotropy and homogeneity of the small-scale turbulence to be ac-

ceptable. For the important applications where the turbulence is

inhomogeneous, fundamental studies are rare. Schumann [13]

introduced a two-part eddy viscosity model: a homogeneous part

that accounts for the “locally isotropic” part of the SGS stress

and an inhomogeneous part to represent the anisotropy associated

with the use of a large filter size. The inhomogeneous part is di-

rectly related to the Reynolds-averaged strain rate in the spirit of

a classical eddy viscosity closure. In spectral space, Laporta and

Bertoglio [14] introduce a two-point closure for inhomogeneous

turbulence. O’Neil and Meneveau [15] performed an experimen-

tal study of the SGS stress in an inhomogeneous turbulent wake.

They found that the large coherent structures in the wake strongly

affect the SGS stress. Therefore, the local inhomogeneity of the

flow and the associated coherent structures influences the SGS

stress in the wake and may require modeling. Shao et al. [16]

introduced a “rapid-slow” decomposition of the subgrid terms in

inhomogeneous turbulence, and studied the relationship between

the mean flow and subgrid stress in a turbulent mixing layer. The

aim of the present work is to extend this decomposition to the

case of a passive scalar turbulence.

The understanding of small-scale fluctuations in scalar

fields, such as temperature, pollutant density, chemical or biolog-

ical species concentration, advected by turbulent flow is of great

interest in both theoretical and practical domains [17, 18]. In the

presence of mean scalar gradients, the passive scalar field be-

comes anisotropic, which introduces its particular behavior with

respect to small-scale anisotropy [19,20], structures [21] and tur-

bulent scalar fluxes [22, 23]. Adding velocity shear to the prob-

lem, complexifies the problem more, introducing non trivially

scaling turbulent fluxes in both the cross-stream and stream-wise

direction [24]. The case of simultaneous shear and scalar gra-

dient was studied by LES in [25]. Attempts to use LES for the

study of scalar mixing in complex flows (including solid bound-

aries, shear and scalar gradients) [26–30] show that each sub-

grid model has its limitation in predicting the GS scalar mix-

ing. Particularly, in wall-bounded turbulence, the near-wall en-

ergy backscatter (of both energy and scalar variance) can not be

represented well, since the influence of the mean gradients is not

considered. On the contrary, in the Cui Model, the subgrid scalar

flux is explicitly related to the mean shear and mean scalar gra-

dient [31]. However, the “rapid” part still can not be modeled,

since it strongly depends on the properties of the filter.

In the present study the implications of physical-space fil-

tering in SGS modeling of incompressible inhomogeneous scalar

turbulence is investigated. The rapid-slow decomposition is in-

troduced to represent the interactions between GS and SGS mo-

tions. We explore the various consequences of LES of inhomo-

geneous scalar turbulence on the filtering approach, on the ener-

getics of the interaction between grid scales and subgrid scales,

on the anisotropy of this interaction, on the contributions in the

equations of scalar flux, and, finally on the fidelity of existing

SGS models.

2 Basic equations of inhomogeneous anisotropic

scalar turbulence

In order to show the exact interactions between velocity and

scalar in subgrid transfer, it is necessary to derive the basic equa-

tions of inhomogeneous anisotropic scalar turbulence. Before

derivation, we would like to introduce two important concepts

in this paper. The first one is the filter operator in LES. A fil-

ter operator divides any variable φ into two parts φ = φ<+φ>,

in which φ< is the GS part and φ> is the SGS part. A filter

in physical space can be represented by introducing a filter ker-

nel
∫

G(xxx− xxx′)dxxx′ = 1, and the GS part (φ<) can be denoted as

φ<(xxx) =
∫

G(xxx− xxx′)φ(xxx′)dxxx′.

In general, the filter operator has the following properties:

(φ +ψ)< = φ<+ψ<,

(

∂φ

∂ t

)<

=
∂φ<

∂ t
. (1)

Besides, φ<< 6= φ<,(φ<)> 6= 0 when filtering is performed with

a physical space filter, which is applied in this paper. The com-

mutability between filtering and spatial derivation will be dis-

cussed later.

By contraries, the second concept is the ensemble average

operator, which is a statistical operation. Every physical variable

φ can be divided into mean and fluctuating part φ = 〈φ〉+φ ′, in

which the symbol 〈〉 is the arithmetic mean from experiments.

Comparing with the filter operator, the ensemble average has

different properties:

〈φ +ψ〉=〈φ〉+ 〈ψ〉,

〈

∂φ

∂ s

〉

=
∂ 〈φ〉

∂ s
,s = xxx, t

〈〈φ〉〉 =〈φ〉, 〈φ ′〉= 0.

(2)
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For the ensemble average operator, the following commuta-

tions can be obtained because of linear property:

〈φ〉< =
〈

φ<
〉

,

〈

∂φ

∂xi

〉

=
∂ 〈φ〉

∂xi

. (3)

However, filtering and differentiation do not commute when the

filter width is nonuniform in space [32]. A general class of

commutative filters was introduced by Vasilyev [33] and Mars-

den [34] to decrease the commutation error in LES equations

for inhomogeneous filter width. In order to avoid this difficulty,

in this paper we always use homogeneous meshes in A Priori

tests, so that the filtering and differentiation could commute, i.e.
(

∂φ
∂xi

)<
= ∂φ<

∂xi
.

Based on the concepts of filter and ensemble average, we

will write the governing equations of scalar variance and scalar

flux in the following part, respectively.

2.1 Governing equations of scalar variance

For a passive scalar θ , the governing equation is

∂θ

∂ t
+ u j

∂θ

∂x j

= κ
∂ 2θ

∂x j∂x j

, (4)

where κ is diffusion coefficient. Taking ensemble average, it

becomes

∂ 〈θ 〉

∂ t
+ 〈u j〉

∂ 〈θ 〉

∂x j

= κ
∂ 2〈θ 〉

∂x j∂x j

−
∂

∂x j

〈u′jθ
′〉. (5)

Multiplying Eq. (5) by 2〈θ 〉 leads to the equation for mean scalar

variance

∂ 〈θ 〉2

∂ t
+ 〈u j〉

∂ 〈θ 〉2

∂x j

=2κ 〈θ 〉
∂ 2〈θ 〉

∂x j∂x j

+ 2
〈

u′jθ
′
〉 ∂ 〈θ 〉

∂x j

−2
∂

∂x j

(

〈θ 〉〈u′jθ
′〉
)

.

(6)

Now we consider the scalar transport in LES. The governing

equation for the resolved scalar can be written as

∂θ<

∂ t
+ u<j

∂θ<

∂x j

= κ
∂ 2θ<

∂x j∂x j

−
∂τθ j

∂x j

, (7)

where τθ j is the subgrid-scale scalar flux defined as τθ j =
(u jθ )

<− u<j θ<.

The governing equation for resolved mean scalar variance is

1

2

∂ 〈θ<〉2

∂ t
+

1

2
〈u<j 〉

∂ 〈θ<〉2

∂x j

=κ〈θ<〉
∂ 〈θ<〉

∂x j∂x j

−
∂

∂x j

(

〈τθ j〉〈θ
<〉−

〈

u′<j θ ′<
〉

〈θ<〉
)

+
〈

u′<j θ ′<
〉 ∂ 〈θ<〉

∂x j

+ 〈τθ j〉
∂ 〈θ<〉

∂x j

,

(8)

while the transport of resolved scalar fluctuation is

1

2

∂ 〈θ ′<2〉

∂ t
+

1

2
〈u<j 〉

∂ 〈θ ′<2〉

∂x j

=κ

〈

θ ′< ∂θ ′<

∂x j∂x j

〉

−
∂

∂x j

(〈

τ ′θ jθ
′<
〉

−
〈

u′jθ
′θ ′

〉)

−〈u′<j θ ′<〉
∂ 〈θ<〉

∂x j

+

〈

u′<j θ ′< ∂θ ′<

∂x j

〉

+

〈

τ ′θ j

∂θ ′<

∂x j

〉

.

(9)

In the right hand sides of Eqs. (8) and (9),
〈

u′<j θ ′<
〉 ∂ 〈θ<〉

∂x j

is an exchange term between mean and fluctuating scalar vari-

ances. The term

〈

u′<j θ ′< ∂θ ′<

∂x j

〉

in Eq. (9) represents the self-

interaction between the velocity and scalar fluctuations. The

terms 〈τθ j〉
∂ 〈θ<〉

∂x j

and

〈

τ ′θ j

∂θ ′<

∂x j

〉

are focused on, since they

denote the interactions between the SGS scalar flux τθ j and the

GS scalar gradient
∂θ<

∂x j

. Further discussion on these terms is

presented in Sec. 3. Other terms in Eqs. (8) and (9) represent

scalar dissipation, diffusion and turbulent convection.

2.2 Governing equations of scalar flux

In order to write the governing equation for scalar flux uiθ ,

we start from the Navier-Stokes equation for incompressible tur-

bulence

∂ui

∂ t
+ u j

∂ui

∂x j

=−
1

ρ

∂ p

∂xi

+ν
∂ 2ui

∂x j∂x j

, (10)

where ν is the kinematic viscosity. Taking ensemble average, the

equation can be written as

∂ 〈ui〉

∂ t
+ 〈u j〉

∂ 〈ui〉

∂x j

=−
1

ρ

∂ 〈p〉

∂xi

+ν
∂ 2〈ui〉

∂x j∂x j

−
∂

∂x j

〈u′ju
′
i〉, (11)
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and the governing equation of velocity fluctuation is

∂u′i
∂ t

+ 〈u j〉
∂u′i
∂x j

+ u′j
∂ 〈ui〉

∂x j

=−
1

ρ

∂ p′

∂xi

+ν
∂ 2u′i

∂x j∂x j

−
∂

∂x j

(

u′iu
′
j −〈u′iu

′
j〉
)

.

(12)

In LES, with the definition of subgrid stress tensor τi j =
(uiu j)

<− u<i u<j , the governing equation is

∂u<i
∂ t

+ u<j
∂u<i
∂x j

=−
1

ρ

∂ p<

∂xi

+ν
∂ 2u<i

∂x j∂x j

−
∂τi j

∂x j

. (13)

The filtered mean equation reads

∂ 〈u<i 〉

∂ t
+ 〈u<j 〉

∂ 〈u<i 〉

∂x j

=−
1

ρ

∂ 〈p<〉

∂xi

+ν
∂ 2〈u<i 〉

∂x j∂x j

−
∂ 〈τi j〉

∂x j

−
∂

∂x j

〈u′<i u′<j 〉.

(14)

Thus the governing equation for resolved mean scalar flux is

∂ 〈u<i 〉〈θ
<〉

∂ t
+ 〈u<j 〉

∂ 〈u<i 〉〈θ
<〉

∂x j

= ν〈θ<〉
∂ 2〈u<i 〉

∂x j∂x j

+κ〈u<i 〉
∂ 2〈θ<〉

∂x j∂x j

−
∂

∂xi

[

1

ρ

(

〈θ<〉〈p<〉
)

+ 〈θ<〉〈τi j〉

+〈u<i 〉〈τθ j〉+ 〈u′<i u′<j 〉〈θ<〉+ 〈u′<j θ ′<〉〈u<i 〉
]

+
1

ρ
〈p<〉

∂ 〈θ<〉

∂x j

+ 〈u′<i u′<j 〉
∂ 〈θ<〉

∂x j

+ 〈u′<j θ ′<〉
∂ 〈u<i 〉

∂x j

+〈τi j〉
∂ 〈θ<〉

∂x j

+ 〈τθ j〉
∂ 〈u<i 〉

∂x j

(15)

and the governing equation for resolved fluctuating scalar flux is

∂ 〈u′<i θ ′<〉

∂ t
+ 〈u<j 〉

∂ 〈u′<i θ ′<〉

∂x j

= κ

〈

u′<i
∂ 2θ ′<

∂x j∂x j

〉

+ν

〈

θ ′< ∂ 2u′<i
∂x j∂x j

〉

−
∂

∂x j

(

1

ρ
〈θ ′<p′<〉+ 〈τ ′θ ju

′<
i 〉+ 〈τ ′i jθ

′<〉+ 〈u′<i u′<j θ ′<〉

)

+
1

ρ

〈

p′<
∂θ ′<

∂xi

〉

−〈u′<i u′<j 〉
∂ 〈θ<〉

∂x j

−〈u′<j θ ′<〉
∂ 〈u<i 〉

∂x j

+

〈

(u′<i θ ′<)
∂u′<j

∂x j

〉

+

〈

τ ′θ j

∂u′<i
∂x j

〉

+

〈

τ ′i j

∂θ ′<

∂x j

〉

.

(16)

In Eqs. (15) and (16), we pay attention to the interaction between

the subgrid stress and the scalar gradient, as well as the interac-

tion between the subgrid scalar flux and the velocity gradient.

The detailed analysis will be presented in Sec. 4.3.

3 Rapid-slow decomposition of subgrid scalar flux

Shao et al. [16] introduced a “rapid-slow” decomposition

for subgrid stress. The SGS tensor τi j was split into two parts: a

rapid part that explicitly depends on mean flow and a remain-

ing slow part. The term “rapid” was used by analogy to the

terminology introduced by Rotta [35] and Lumley [36] in the

context of Reynolds-averaged modeling, where the component

of the “pressure-strain” term that explicitly depends on the mean

velocity gradient is referred to as the rapid part and the remain-

der as the slow part. Shao first extended this decomposition to

LES, and applied it to the analysis of a turbulent mixing layer.

The performance of classical Smagorinsky model and of scale-

similarity model were then evaluated. However, subgrid scalar

transport has not been analyzed yet. In this paper we propose

the similar decomposition for subgrid scalar flux, which will be

applied in the following analysis.

Similar to the decomposition of velocity field, the subgrid

scalar flux τθ j can be split into rapid and slow parts:

τθ j = τrapid
θ j + τslow

θ j , (17)

in which

τrapid
θ j = (〈u j〉〈θ 〉)

<−〈u j〉
<〈θ 〉<

+(〈u j〉θ
′)<−〈u j〉

<θ ′<+(u′j〈θ 〉)
<− u′<j 〈θ 〉<

τslow
θ j = (u′jθ

′)<− u′<j θ ′<.

(18)

The rapid part corresponds to the interaction involving mean ve-

locity or mean scalar; the slow part is the interaction between

fluctuations.

In order to describe the effect of rapid and slow components

of the SGS scalar flux in the transport process of scalar variance,

the rapid and slow parts are further decomposed as:

τrapid
θ j = 〈τrapid

θ j 〉+ τ ′rapid
θ j , τslow

θ j = 〈τslow
θ j 〉+ τ ′slow

θ j (19)

It is clear that the mean rapid part is given by

〈τrapid
θ j 〉= (〈u j〉〈θ 〉)

<−〈u j〉
<〈θ 〉<, (20)

while the fluctuating rapid part is

τ ′rapid
θ j = (〈u j〉θ

′)<−〈u j〉
<θ ′<+(u′j〈θ 〉)

<− u′<j 〈θ 〉< (21)
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Similarly, the mean slow part is

〈τslow
θ j 〉= 〈(u′jθ

′)<− u′<j θ ′<〉 (22)

and the fluctuating slow part is

τ ′slow
θ j = τslow

θ j −〈τslow
θ j 〉 (23)

From these definitions above, we can also divide the terms

of subgrid transport, which are shown in Sec. 2.1, into rapid

and slow parts. For example in the governing equation of mean

GS scalar variance (8), the second term in the right hand side is

an interaction between the mean SGS scalar flux and mean GS

velocity gradient. This term can be rewritten as

〈τθ j〉
∂ 〈θ<〉

∂x j

= 〈τrapid
θ j 〉

∂ 〈θ<〉

∂x j

+ 〈τslow
θ j 〉

∂ 〈θ<〉

∂x j

, (24)

to isolate the effect of the rapid term. The slow term in Eq. (24)

corresponds to the term identified by Jiménez et al. [37] as the

SGS dissipation term. In the governing equation of GS scalar

variance fluctuation (9), the same decomposition yields

〈

τ ′θ j

∂θ ′<

∂x j

〉

=

〈

τ ′rapid
θ j

∂θ ′<

∂x j

〉

+

〈

τ ′slow
θ j

∂θ ′<

∂x j

〉

. (25)

In inhomogeneous scalar turbulence, the rapid subgrid scalar

flux strongly depends on the type of filter we use. In order to

clarify the effect of the rapid part, we evaluate the magnitude of

the mean rapid SGS scalar flux in the following part.

3.1 Magnitude of the mean rapid subgrid scalar flux

In channel turbulence, the rapid part is produced by the filter

in normal direction, which is the only inhomogeneous direction.

In order to study the properties of filters, we can define a 1-D

filter operation in normal direction:

ϕ(y)< =
1

∆(y)

∫ b

a
G

(

y′− y

∆(y)
,y

)

ϕ(y′)dy′ (26)

where ∆(y) is filter width and G(η ,y) is the location-dependent

filter function. Let η =
y− y′

∆(y)
, Eq. (26) can be written as

ϕ(y)< =

∫
y−a
∆(y)

y−b
∆(y)

G(η ,y)ϕ(y−∆(y)η)dη (27)

Following the same processes of Marsden [34] and Vasilyev [33],

taking the Taylor series expansion of ϕ(y−∆(x)η) in powers of

∆, we could obtain

ϕ(y)< = ϕ(y)+
∞

∑
l=n

(−1)l

l!
∆l(y)Ml(y)D l

yϕ(y) (28)

where Ml(y) =
∫

y−a
∆(y)
y−b
∆(y)

η lG(η ,y)dη =

{

1, l = 0

0, l = 1, ...,n− 1
,D l

y =

dl

dyl , in which n could represent a property of the filter. Thus the

terms of subgrid scalar flux are expressed as

〈θ 〉(y)<〈ui〉(y)
< = 〈θ 〉(y)〈ui〉(y)

+
∞

∑
l=n

(−1)l

l!
∆l(y)Ml(y)

(

〈θ 〉(y)D l
y〈ui〉(y)+ ui(y)D

l
y〈θ 〉(y)

)

+
∞

∑
l=n

∞

∑
r=n

(−1)l+r

l!r!
∆l+r(y)Ml(y)Mr(y)D l

y〈θ 〉(y)D
r
y 〈ui〉(y)

(〈θ 〉(y)〈ui〉(y))
< = 〈θ 〉(y)〈ui〉(y)

+
∞

∑
l=n

(−1)l

l!
∆l(y)Ml(y)

l

∑
k=0

Ck
l D

l−k
y 〈θ 〉(y)Dk

y 〈ui〉(y)

(29)

and the magnitude of the mean rapid part of subgrid scalar flux

can be evaluated as:

〈θ 〉(y)<〈ui〉(y)
<− (〈θ 〉(y)〈ui〉(y))

< =

{

O(∆n(y)), n > 1

O(∆2(y)), n = 1

(30)

In this chapter, we employ the homogeneous top-hat filter in

physical space, which has n = 1, and

〈θ 〉(y)<〈ui〉(y)
<− (〈θ 〉(y)〈ui〉(y))

< ∝
∂ 〈θ 〉

∂y

∂ 〈ui〉

∂y
∆2(y) (31)

It means that the mean rapid term is of ∆2 magnitude. It will also

be further verified by numerical simulation in the next section.

Marsden has also introduced the analysis on the 3-D filters

when all three directions are inhomogeneous, and obtained the

same conclusion [34]. However in this paper the streamwise and

spanwise directions are both homogeneous, so we should only

consider the inhomogeneous effects in normal direction, and a

1-D filter analysis is appropriate.

4 A Priori rapid-slow decomposition in Couette flow

A DNS case of Couette flow is used in evaluating the

rapid and slow parts of scalar transport. The grids number
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FIGURE 1. Sketch of computational domain, velocity profile and

scalar profile.

is 192× 384× 96 in streamwise, normal and spanwise direc-

tions respectively, and the corresponding computation domain is

4πH × 2H × 2πH. Pseudo-spectral method is employed in cal-

culation. The numerical details can be found from Xu et al. [38].

The Reynolds number is ReH = 3200 based on the bulk velocity

Um and the half width of the channel H, which is equivalent to

a Reynolds number of 12800 in Kawamura’s DNS results [26].

The scalar value is fixed to be 1 in the upper plane and 0 in the

lower plane (in the following, the normal coordinate is related to

the lower plane because of symmetry.). The molecular Prandtl

number is Pr = 0.7. The sketch of computational domain, ve-

locity profile and scalar profile is shown in Fig. 1. The original

mesh is inhomogeneous in the normal direction. In order to avoid

the non-commutativity described in Sec. 2, interpolation is done

in normal direction by using Chebyshev polynomial, and a uni-

form mesh of 192× 300× 96 grids is obtained for the following

A Priori tests. Homogeneous tophat filter is employed in phys-

ical space. The grid size is denoted as ∆ and the filter size is

∆ f , in each direction respectively. The grid sizes of DNS are the

same between streamwise direction and spanwise direction, but

smaller in normal direction, since normal direction requires more

grids in calculation.

In Fig. 2, our DNS results are compared with the DNS re-

sults of Kawamura [26]. The scalar profiles are in quite good

agreement, both in the near wall region and the channel center.

The scalar variance 〈θ 2〉 are also in agreement, except some dif-

ference far from wall. This might stem from the lack of grids

by employing Chebyshev sample-point method in the normal di-

rection. However, in this paper attention is mainly paid to the

near-wall region, where the inhomogeneous effect could cause

the rapid terms and our results show good statistical profiles.

The profiles of scalar flux are shown in Fig. 3. In the present

case, the scalar flux is positive in the streamwise direction, and

negative in the normal direction. In the spanwise direction it is

approximately zero. Note that the sign of the value depends on

the direction of the coordinate axis. This figure will be needed in

the following parts when we analyze the subgrid flux transfer.
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(b) Scalar variance

FIGURE 2. Comparison between two DNS results. Symbols: DNS

with pseudo-spectral method; lines: DNS by Kawamura.

4.1 Vector level analysis of rapid and slow subgrid

scalar flux
As explained in Sec. 3, the subgrid scalar flux is split into

rapid and slow parts. Furthermore, the mean and fluctuating parts

are defined. In the following, A Priori tests are made to study the

behavior of rapid and slow subgrid scalar flux. In the evaluations,

we use the Euclidean norm of overall scalar flux Πθ = ‖〈uuuθ 〉‖ to

normalize each flux components.

4.1.1 Mean subgrid flux magnitude and its

anisotropy Figure 4(a) shows the components of the subgrid

flux in streamwise direction, i.e. τrapid
θ1 and τslow

θ1 , for different fil-

ter sizes ∆ f varying from 2∆ to 8∆. Note that the rapid part exists

mostly in the near-wall region, especially in the region Y+ < 10,

where it can be larger than the slow part. And in the center part

of Couette flow, the rapid part is negligible because of the nearly

homogeneous velocity and scalar fields in this region.

From Eq. (31), the mean rapid part can be rescaled by the

filter size (∆ f /∆)2, and the results are shown in Fig. 4(b). The
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direction, 〈τθ1/2Πθ 〉, with ∆ f /∆ = 2,4,6, and 8. Solid lines: rapid

parts. Dashed lines: slow parts.

scaling law of Eq. (31) is reasonably satisfied in the region Y+ >
7, where the normalized curves tend to collapse.

Another important observation that should be noticed is the

strong anisotropy of the mean rapid subgrid scalar flux 〈τrapid
θ j 〉.

The rapid parts in different directions are shown in Fig. 5(a),

where the filter size is fixed at 4∆. As mentioned in Eq. (31),

the only significant component of the rapid mean SGS flux is

〈τrapid
θ1 〉, and other components are equal to zero since 〈u2〉 =

〈u3〉 = 0. This is simply because of the scalar and velocity pro-

files are in the x1 direction.

The components of the mean slow subgrid scalar flux 〈τslow
θ j 〉

are shown in Fig. 5(b). The results show strong anisotropy

among the three directions. The differences could also stem from

the effect of mean flow and scalar. In streamwise direction, the

scalar flux is positive and very strong. In normal direction, the

scalar flux is negative and not strong in near-wall region, for in-

stance Y+ < 10. The values in spanwise direction are almost

zero. These behaviors are similar as the total scalar flux (Fig. 3).

Thus we could say that the mean flow could affect the mean

slow SGS scalar flux mainly in streamwise direction and in

Y+ < 10 region. However, in the channel center, there are also

anisotropic contributions on the mean slow subgrid scalar flux.

The negative values occur in normal direction. Note that the neg-

ative subgrid scalar flux does not mean backscatter, as the scalar

flux is negative. The analysis of scalar variance will be shown in

section 4.2.

4.1.2 Fluctuating subgrid scalar flux magnitude
and its anisotropy The root-mean-square (rms) value of the

subgrid scalar flux is closely related to the behavior of the small

scales. Figure 6 shows the rms values of normalized subgrid

scalar flux components in streamwise direction. The filter sizes

are 2∆,4∆,6∆ and 8∆, respectively. The magnitude of rms values

of rapid and slow parts are compared. Unlike the mean values in

Fig. 4, the slow parts of rms values are also large in near-wall

region, especially when the filter size is large. The near-wall ef-

fect could stem from the strong inhomogeneity of velocity and

scalar under spatial filters. In addition, the rms values of rapid

parts have a similar behavior than their mean counterparts (see

Fig. 4).

In order to investigate the anisotropy of fluctuating subgrid

scalar flux, Fig. 7 shows the rms values of all components of the

rapid and slow subgrid scalar flux, for the case with ∆ f /∆ = 4.

Among the rapid components in Fig. 7(a), the most important

contribution is in streamwise direction, and the component in

normal direction is almost zero. Comparing with Fig. 5(a),

there is also the fluctuating contribution in spanwise direction,

although the mean value is almost zero. In Fig. 7(b), the three

components of rms values of the slow subgrid scalar flux are not

zero. They have close values in channel center. In the near-wall

region (Y+ < 20), the contributions of both rapid and slow rms
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FIGURE 5. Components of the rapid and slow parts of scalar flux,

with ∆ f /∆ = 4

values are mainly in the streamwise direction.

4.2 Rapid and slow scalar dissipation in the equa-

tions of scalar variance

In Sec. 2.1, the governing equations of scalar variance were

already derived. The SGS scalar flux are connected with the

scalar gradient vector by an inner product, which can be re-

garded as SGS scalar dissipation. In the following part, the rapid

and slow parts of SGS scalar dissipation are studied. The sub-

grid terms are normalized by using the overall scalar dissipation

εθ = κ

〈

∂θ

∂x j

∂θ

∂x j

〉

.

4.2.1 Subgrid dissipation of mean scalar variance

In the governing equation of resolved mean scalar variance (8),
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direction, 〈τ ′θ1/2k〉, with ∆ f /∆ = 2,4,6, and 8. Solid lines: rapid parts.

Dashed lines: slow parts.
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the subgrid term can be decomposed into rapid and slow parts:

〈

τθ j

〉 ∂ 〈θ<〉

∂x j

=
〈

τrapid
θ j

〉 ∂ 〈θ<〉

∂x j

+
〈

τslow
θ j

〉 ∂ 〈θ<〉

∂x j

, (32)

which are shown in Fig. 8. The filter sizes are 2∆,4∆,6∆
and 8∆, respectively. In parallel to the observation at the vec-

tor level comparison, the contribution of the mean rapid part,

−
〈

τrapid
θ j

〉 ∂ 〈θ<〉

∂x j

, is zero, because the subgrid flux
〈

τrapid
θ j

〉

only has non-zero value when j = 1, and the scalar gradient
∂ 〈θ<〉

∂x j

only has non-zero value when j = 2. The mean slow

part has non-zero values. Although the value of subgrid scalar

flux in normal direction is negative in Fig. 5(b), the value of

scalar dissipation is positive, which means that the mean scalar

variance is mainly dissipated in subgrid scales.

4.2.2 Subgrid dissipation of fluctuating scalar
variance In LES, SGS models aim at simulating the subgrid

dissipation of fluctuating scalar variance. In the governing equa-

tion of resolved fluctuating scalar variance (9), the subgrid term

can be decomposed as

〈

τ ′θ j

∂θ ′<

∂x j

〉

=

〈

τ ′rapid
θ j

∂θ ′<

∂x j

〉

+

〈

τ ′slow
θ j

∂θ ′<

∂x j

〉

. (33)

The results of this decomposition are shown in Fig. 9(a), compar-

ing with the same decomposition in velocity field shown in Fig.

9(b). (For the rapid-slow decomposition of velocity field, see

Ref. [16].) The rapid contributions are mostly in the near-wall re-

gion, i.e. Y+ < 10, and they are small in the quasi-homogeneous
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FIGURE 9. Contribution of subgrid dissipation in subgrid velocity

and scalar transport equations, with ∆ f /∆ = 2,4,6, and 8. Solid lines:

rapid parts. Dashed lines: slow parts. (a) scalar (b) velocity.

region near center of channel. The slow fluctuating scalar dis-

sipation, however, has special behavior in the buffer layer, i.e.

there are negative values in the region 10<Y+ < 20. This means

that backscatter is present in this region. This observation is in

agreement with the investigations of Hartel et al. [5] and Xu [39],

which show strong effect of backscatter of velocity field also in

this region. This phenomenon might stem from the turbulent

structures in buffer layer. In velocity field the backscatter exists

when ∆ f /∆ > 4, while in scalar field ∆ f /∆ > 2, this difference

may indicate the different characteristic scales between veloc-

ity and scalar fields, similar as discussed in Cui et al. [40] and

in [41], among the others. We may also explain this difference

by non-local triad interactions of scalar turbulence [42]. The re-

sults in Fig. 9 will be compared will SGS models in Sec. 5.
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4.3 Rapid and slow scalar transport in the equations

of scalar flux
In Sec. 2.2, the governing equations of scalar flux were de-

rived. In those equations, subgrid interactions exist between SGS

scalar flux and velocity gradient tensor, as well as between sub-

grid stress tensor and scalar gradient vector. The former repre-

sents the interaction between GS velocity and SGS scalar; while

the latter represents the interaction between GS scalar and SGS

velocity. In order to study these contributions, we would like

to introduce Yeung’s work. Yeung splits scalar variance transfer

term into four parts in spectral space [43]:

1. The interaction between GS velocity and GS scalar (GVGS).

It causes GS transfer.

2. The interaction between GS velocity and SGS scalar

(GVSS). It causes SGS transfer.

3. The interaction between SGS velocity and GS scalar

(SVGS). It causes SGS transfer.

4. The interaction between SGS velocity and SGS scalar

(SVSS). It causes SGS transfer.

Among the three parts causing SGS transfer (GVSS, SVGS,

and SVSS), the interaction between GS velocity and SGS scalar

(GVSS) is the main part, which is much more strong than the

other two parts. In particular, GVSS is usually compared with

SVGS since they both involve GS variables, and GVSS has

much more contribution than SVGS has. This phenomenon

was verified in isotropic scalar turbulence by Yeung [43] and in

anisotropic scalar turbulence by Fang [42]. In the following part,

we would like to investigate this phenomenon in the transport

of scalar flux in inhomogeneous anisotropic channel flow, with

a spatial filter in physical space. Besides, we will also study the

effect of rapid parts, which has not been investigated yet. The

subgrid terms are normalized by using the Euclidean norm of

overall scalar flux εuθ = (ν +κ)

∥

∥

∥

∥

∂uuu

∂x j

∂θ

∂x j

∥

∥

∥

∥

.

4.3.1 Subgrid transport of mean scalar flux

There are two subgrid dissipation terms in the transport equa-

tion of resolved mean scalar flux (15), which could be denoted

as
〈

τθ j

〉 ∂
〈

u<i
〉

∂x j

and
〈

τi j

〉 ∂ 〈θ<〉

∂x j

. They can be decomposed into

rapid and slow parts, respectively as follows:

〈

τθ j

〉 ∂
〈

u<i
〉

∂x j

=
〈

τrapid
θ j

〉 ∂
〈

u<i
〉

∂x j

+
〈

τslow
θ j

〉 ∂
〈

u<i
〉

∂x j

,

〈

τi j

〉 ∂ 〈θ<〉

∂x j

=
〈

τrapid
i j

〉 ∂ 〈θ<〉

∂x j

+
〈

τslow
i j

〉 ∂ 〈θ<〉

∂x j

,

(34)

where the rapid and slow parts of subgrid stress τi j are defined

similar as the subgrid scalar flux τθ j . The details can be found in

Shao’s paper [16].
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FIGURE 10. Contribution of subgrid transport in mean scalar flux

equation, at ∆ f /∆ = 2,4,6, and 8. Solid lines: rapid parts. Dashed

lines: slow parts.

These four terms are shown in Fig. 10. Note that in the

mean scalar flux equation, only the component in streamwise di-

rection, i.e.
〈

u<1

〉

〈θ<〉, is not equal to zero. All the rapid terms

have zero values. Between Figs. 10(a) and 10(b), the magnitudes

of the slow terms are almost the same. It shows that the contribu-

tion on mean scalar flux of GS velocity and SGS scalar is almost

the same as the contribution of SGS velocity and GS scalar. It is

reasonable since in Eq. (31), the magnitude of rapid subgrid is

expressed by the mean gradients of velocity and scalar. We could

similarly write the expression for subgrid stress, using the same

method as in Sec. 3.1, finally the terms are of the same magni-

tude between Figs. 10(a) and 10(b). In addition, in both figures

the subgrid transfer increases when the filter size increases.

4.3.2 Subgrid transport of fluctuating scalar flux

Similarly, there are two subgrid dissipation terms in the trans-
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port equation of resolved fluctuating scalar flux (16), which are
〈

τ ′θ j

∂u′<i
∂x j

〉

and

〈

τ ′i j

∂θ ′<

∂x j

〉

. They could be decomposed into

rapid and slow parts, respectively:

〈

τ ′θ j

∂u′<i
∂x j

〉

=

〈

τ ′rapid
θ j

∂u′<i
∂x j

〉

+

〈

τ ′slow
θ j

∂u′<i
∂x j

〉

,

〈

τ ′i j

∂θ ′<

∂x j

〉

=

〈

τ ′rapid
i j

∂θ ′<

∂x j

〉

+

〈

τ ′slow
i j

∂θ ′<

∂x j

〉

.

(35)

These four terms are shown in Figs. 11-13, in different di-

rections respectively. Each figure on the left denotes the GVSS

contribution, while on the right represents the SVGS part. Simi-

lar as analyzed before, the rapid parts mainly exist in the stream-

wise direction, and are almost zero in normal and spanwise di-

rection. For the slow parts in the streamwise direction, in the

region 10 < Y+ < 20 there is also backscatter, which is similar

as the analysis of energy variance. Both GVSS and SVGS terms

show the same behavior. For the slow parts in the normal direc-

tion, GVSS term has negative value while SVGS term is positive

in most part of the channel. Since the total scalar flux is negative

(see Fig. 3), here GVSS term is the forward transfer and SVGS

term is backscatter. This behavior of backscatter is quite obvious

in the region Y+ ≃ 20. All terms of the slow parts in the spanwise

direction are almost zero.

We then focus on the mostly homogeneous region (Y+ >
100), the principal contribution among the six figures is the

GVSS term in streamwise direction, i.e. Fig. 11(a). It is much

stronger than the SVGS term in the same direction, i.e. Fig.

11(b). This phenomenon is in agreement with the results of Ye-

ung [43] and Fang [42]. Thus in the homogeneous anisotropic

region, the GVSS term could be considered as the major contri-

bution of subgrid scalar flux.

5 A Priori evaluation of subgrid models

From the discussion in the previous sections, it is clear that,

through the rapid part, the mean velocity and scalar gradient di-

rectly affects the SGS scalar flux and the associated scalar trans-

fer to the small scales. The question that then arises is whether

SGS modeling has to explicitly account for the effect of the mean

velocity and scalar gradient manifested by the rapid SGS stress.

In fact, since the rapid SGS scalar flux strongly depends on the

type of filter, and only exists in inhomogeneous scalar turbu-

lence, it can not be represented by most of the SGS models.

Scale-similarity model (SSM) is one of the only models related

to filter. Thus in the following part, we follow Shao’s conclu-
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FIGURE 11. The contribution of subgrid transport in resolved scalar

flux equation, in the streamwise direction, with ∆ f /∆ = 2,4,6, and 8.

Solid lines: rapid parts. Dashed lines: slow parts. (a) GVSS term. (b)

SVGS term.

sion [16], to represent the rapid parts by using SSM:

τ ′rapid
θ j =Cm

[

(

〈θ 〉<〈u j〉
<
)<

−〈θ 〉<<〈u j〉
<<+

(

〈θ 〉<〈u j〉
<
)<

− 〈θ 〉<<u′<<
j +

(

θ ′<〈u j〉
<
)<

−θ ′<<〈u j〉
<<

]

,

(36)

where the coefficient Cm = 1. The second filter operation is done

with a “test” filter that is the same as the original “grid” top-hat

filter.

Besides, in order to simulate the slow subgrid scalar dissi-

pation, we apply the eddy-diffusivity assumption with constant

turbulent Prandtl number, which can be written as

τ ′slow
θ j =−κt

∂θ ′<

∂x j

, κt =
νt

Prt

. (37)
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FIGURE 12. The contribution of the subgrid transport in the resolved

scalar flux equation, in the normal direction, with ∆ f /∆ = 2,4,6, and 8.

Solid lines: rapid parts. Dashed lines: slow parts. (a) GVSS term. (b)

SVGS term.

νt is computed using two classical models. One is the Smagorin-

sky model νt = (Cs∆)
2(2|S′<i j S′<i j |)

1/2 with Cs = 0.1 and with van

Driest damping function in near-wall region (SM damping). An-

other is the Germano Dynamic Smagorinsky model (DSM) [4].

In both cases the turbulent Prandtl number is fixed as Prt = Pr.

The subgrid scalar dissipation is calculated and compared with

exact slow values, and is shown in Fig. 14(a). For comparison,

we also show the same result in velocity field, in Fig. 14(b).

It is found that the models can not represent the bumps around

Y+ = 5. This problem exists in both velocity and scalar fields,

and can not be simply improved. In another paper of authors,

more models have been tested (see Fig. 3 of Ref. [44]), the

same phenomenon is also observed. In other regions, SGS mod-

els have good agreement with exact slow energy dissipation in

velocity field, as investigated by Shao et al. [16], but they agree

not well in scalar field. In channel center they do not dissipate
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FIGURE 13. The contribution of the subgrid transport in the resolved

scalar flux equation, in the span direction, with ∆ f /∆ = 2,4,6, and 8.

Solid lines: rapid parts. Dashed lines: slow parts. (a) GVSS term. (b)

SVGS term.

enough, and around Y+ = 15 they can not show the backscat-

ter of scalar variance. In order to propose a better SGS scalar

model, we choose a more accurate anisotropic model by Cui et

al. (Cui Model) [31] to represent the slow parts. Comparing

with other SGS models, this anisotropic model explicitly repre-

sents the eddy diffusion as a function of mean velocity and scalar,

which can be related with the rapid-slow analysis in this paper.

5.1 Extended formulation of Cui Model

The original subgrid scalar model in Ref. [31] did not con-

sider the mean scalar gradient. In this section we consider that

the turbulence is homogeneous with mean shear γ and mean

scalar gradient G, thus the velocity and scalar can be decom-

posed to mean and fluctuation as: ui = u′i+ γx2δi1,θ = θ ′+Gx2.

The equation of large eddy simulation for scalar turbulence can
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∆ f /∆ = 4. Smagorinsky model with constant turbulent Prandtl number

is applied. (a) scalar (b) velocity.

then be written as

∂θ ′<

∂ t
+
(

u′<j + γx2δ j1

)

(

∂θ ′<

∂x j

+Gδ j2

)

= κ
∂ 2θ ′<

∂x j∂x j

−
∂τ ′θ j

∂x j

.

(38)

Following the same process as in Ref. [31], defining the

structure functions D<
θθ =

〈

δθ ′2
〉

,D<
jθθ =

〈

δu′<j δθ ′2
〉

and

D<
2θ =

〈

δu′<2 δθ ′
〉

, neglecting the molecular diffusivity, and mak-

ing average in a local sphere of radius r, finally the SGS eddy

diffusivity can be obtained as (Extended Cui Model, denoted as

ECM)

κt =
6
(

D<
rθθ

)A
+ 6γr

(

D<
θθ n1n2

)A
+
(

D<
2θ

)V
Gr

6

(

dD<
θθ

dr

)A

− 4r

〈

∂θ ′<

∂x j

∂θ ′<

∂x j

〉V
(39)

in which the notations (•)A and (•)V are local surface average

and local volume average. We can also divide it into two parts:

κ
f s

t =
6
(

D<
rθθ

)A

6

(

dD<
θθ

dr

)A

− 4r

〈

∂θ ′<

∂x j

∂θ ′<

∂x j

〉V
,

κms
t =

6γr
(

D<
θθ n1n2

)A
+
(

D<
2θ

)V
Gr

6

(

dD<
θθ

dr

)A

− 4r

〈

∂θ ′<

∂x j

∂θ ′<

∂x j

〉V
,

(40)

in which κ
f s

t represents only the interactions of subgrid scale

(fluctuating part), and κms
t contains the informations of mean

flow and mean scalar (mean part), i.e. γ and G, explicitly. Com-

paring with the original model formulation in Ref. [31], mean

scalar gradient is additionally considered. Because only homo-

geneous velocity and scalar fields are considered in Eq. (38),

we consider that ECM only simulates the slow SGS scalar flux.

However, this model formulation shows that the slow SGS scalar

flux is not only affected by SGS fluctuations, but also relative

with the mean profiles. The ECM can be regarded as a good sup-

plement to the slow part SGS of the rapid-slow analysis in this

paper.

5.2 Evaluation of subgrid scalar dissipation

From Eq. (40), subgrid eddy-diffusivity is split into mean

and fluctuating parts. Thus from eddy-diffusivity assumption,

the mean and fluctuating subgrid scalar flux are expressed as [5]:

τ ′ms
θ j =−κms

t

∂θ ′

∂x j

, τ ′ f s
θ j =−κ f s

t

∂θ ′

∂x j

. (41)

The relative terms of subgrid scalar dissipation read

〈

τ ′ms
θ j

∂θ ′<

∂x j

〉

=κms
t

〈

∂θ ′<

∂x j

∂θ ′<

∂x j

〉

,

〈

τ
′ f s

θ j

∂θ ′<

∂x j

〉

=κ
f s

t

〈

∂θ ′<

∂x j

∂θ ′<

∂x j

〉

.

(42)

With an ideal subgrid model, there should be

τ ′slow
θ j =τ ′ms

θ j + τ ′ f s
θ j ,

〈

τ ′θ j

∂θ ′<

∂x j

〉

=

〈

τ ′ms
θ j

∂θ ′<

∂x j

〉

+

〈

τ ′ f s
θ j

∂θ ′<

∂x j

〉

.
(43)

The mean and fluctuating parts of subgrid scalar dissipation

are shown in Fig. 15, by employing ECM. The filter sizes are
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FIGURE 15. Mean and fluctuating parts in the ECM, with ∆ f /∆ =

2,4,6, and 8. Solid lines: mean parts. Dashed lines: fluctuating parts.

2,4,6 and 8 times of grid size, respectively. We would like em-

phasize that here mean and fluctuating parts are both slow contri-

bution due to the effect on slow scalar dissipation by mean veloc-

ity and scalar. The mean part has positive values but small com-

paring with the fluctuating part, which means that slow scalar

variance is weakly dissipated by mean velocity and mean scalar.

The peak locations is about Y+ ≃ 15. The fluctuating part has

the main contribution. It is positive in most region of channel,

which means that in most region scalar variance is dissipated. In

channel center, flow is almost homogeneous, and subgrid dissi-

pation increases when filter size increases. However, there are

also negative values around the Y+ ≃ 15 range, i.e. the buffer

layer. Comparing with the model behaviors in Fig. 14, where

classical models always dissipate, we could regard the backscat-

ter property as an advantage of ECM.

The following work is introducing SSM for rapid SGS scalar

flux, as was discussed before. The total slow subgrid scalar

dissipation is calculated by employing the total eddy diffusiv-

ity κt = κms
t +κ f s

t . SSM is used to simulate the rapid subgrid

scalar dissipation. With different filter size, the comparisons be-

tween exact values and modeled values are shown in Fig. 16,

respectively.

For the slow parts of subgrid scalar dissipation, the model

results have similar behavior as the exact values. In channel cen-

ter, where the turbulence is almost homogeneous, their magni-

tudes are in good agreement, especially when ∆ f equal to 4∆ and

6∆. In near-wall region, all model values are smaller than exact

values, which means that ECM does not dissipate enough in the

viscous sublayer. Comparing with the results of SM and DSM

in Fig. 14, there is no improvement in this range. It could re-

ally be a serious problem for large-eddy simulation as noticed by

Spalart [45]. However, an advantage could be found in the ECM,

that in buffer layer (Y+ ≃ 15), the behavior of scalar backscat-

ter is well simulated. The peak locations and values of ECM are
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FIGURE 16. Comparison between exact and model values of scalar

dissipation, with ∆ f /∆ = 2,4, and 6. Solid line and filled symbols: ex-

act value of slow subgrid scalar dissipation. Solid line and hollow sym-

bols: slow subgrid scalar dissipation by using the shear model. Dashed

line and filled symbols: exact value of rapid subgrid scalar dissipation.

Dashed line and hollow symbols: rapid subgrid scalar dissipation by

using scale-similarity model on the velocity and scalar profiles.
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in quite good agreement with the exact results. In brief, both

the agreements in channel center and in the range of backscatter

could be considered as an improvement than other scalar mod-

els. For the rapid parts, the scale-similarity model simulates quite

well the strong dissipation in near-wall region.

Therefore, we propose ECM to be employed in wall-

bounded scalar turbulence. It could represent the behavior of

subgrid scalar backscatter. The mean velocity and scalar profiles

could affect the subgrid scalar flux explicitly. In addition, in the

inhomogeneous region, the SSM could be employed on the mean

velocity and scalar, to simulate the “rapid” part of subgrid scalar

flux and subgrid dissipation.

6 Conclusion

In application and development of LES, the “rapid-slow” de-

composition can be used to investigate the effects of inhomo-

geneity, of mean flow or large coherent eddies on the subgrid

stresses tenor and to evaluate the performance of SGS models. In

the present study this decomposition was applied to the case of

inhomogeneous scalar turbulence. Usually most studies of SGS

models only focus on the slow part and neglect the rapid part,

despite its important influence due to the non-uniform mean gra-

dients, as well as to the strong inhomogeneity near the walls.

In this paper, the “rapid-slow” decomposition was applied to a

turbulent Couette flow with a passive scalar. The influence of the

rapid part of SGS was studied for both the scalar variance and the

scalar flux. The results were used to evaluate the SGS model be-

havior, and A Priori tests using several SGS scalar models were

then performed.

By analytical and numerical analysis, it was found that the

magnitude of the rapid SGS scalar flux depends on the gradient

of both mean velocity and mean scalar and scales as ∆2. In the

near-wall region, where the inhomogeneity is strong, the rapid

part is important. A strong anisotropy in rapid SGS scalar flux

was also observed.

In the governing equations of scalar variance and scalar

flux, the phenomenon of backscatter was observed in the region

10 < Y+ < 20. Similar phenomenon has been observed on ve-

locity field in Hartel et al. [5] and Xu [39], but in scalar field

results are not exactly the same. This phenomenon might be re-

lated to the difference of characteristic scales and the non-local

triad interactions. It needs further investigation. The transport

of scalar flux was then further splitted into four parts using the

approach introduced by Yeung [43]. In the center region of the

channel, where the flow is nearly homogeneous, the GVSS part

(the interaction between GS velocity and SGS scalar) is found

much stronger than the SVGS part (the interaction between SGS

velocity and GS scalar). This result is in agreement with the

studies of Yeung [43] and Fang [42].

It is of practical interest to determine if existing models can

represent the influence of the mean velocity and scalar gradi-

ents. Following Shao’s result for the velocity field [16], the rapid

part was modeled by using the scale-similarity model. Slow part

has been evaluated using classical eddy diffusivity SGS model.

In velocity field models perform well except the region around

Y+ = 5, but in scalar field the eddy diffusivity SGS models fail

in representation of slow part in both near wall and center region

of the channel. Therefore we introduced an extended scalar SGS

model (ECM), in which the mean velocity and scalar are explic-

itly included. It is found that the ECM can partly well represent

the slow SGS scalar dissipation, even on the backscatter at about

Y+ ≃ 15. Thus, a combined model with slow and rapid parts

modeled separately should be considered in LES applications. A

remaining problem is the large dissipation near the wall, which

exists in both velocity and scalar fields. None of the SGS mod-

els tested in the present paper could represent this effect. This

problem requires more investigation in the future.

The present work clarifies the meaning of SGS modeling for

inhomogeneous scalar wall turbulence. We point out the impor-

tance of the mean velocity and mean scalar in SGS modeling.

Most popular SGS models only aim at representing the slow part

of SGS scalar flux and fail. Introducing the new ECM model for

the slow part partly improves the performance. Note that in or-

der to better account for mean shear effect, several works have

been initiated in velocity field [31, 46, 47]. Similar approach is

still lacking for scalar turbulence. Besides, the importance of the

rapid part of SGS scalar flux is clear in the near-wall region: this

part can not be neglected as is usually done in existing SGS mod-

els. Representing the rapid part is still difficult for SGS models.

We propose to apply the SSM for this part. In summary, the result

in this work could shed light in future SGS modeling of LES.
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“Scalar dispersion by a large-eddy simulation and a la-

grangian stochastic subgrid model”. Physics of Fluids,

18(9).

[31] Cui, G., Xu, C., Fang, L., Shao, L., and Zhang, Z., 2007.

“A new subgrid eddy-viscosity model for large-eddy simu-

lation of anisotropic turbulence”. Journal of Fluid Mechan-

ics, 582, pp. 377–397.

[32] Ghosal, S., and Moin, P., 1995. “The basic equations of

large eddy simulation of turbulent flows in complex geom-

etry”. Journal of Computational Physics, 118, p. 24.

[33] Vasilyev, O., Lund, T., and Moin, P., 1998. “A general

class of commutative filters for LES in complex geome-

tries”. Journal of Computational Physics, 146, pp. 82–104.

[34] Marsden, A., and Vasilyev, O., 1999. “Commutative filters

for LES on unstructured meshes”. Center for Turbulence

Research, Annual Research Briefs, pp. 389–402.

[35] Rotta, J., 1951. “Statistische theorie nichthomogener tur-

16 Copyright c© 2010 by ASME



bulenz”. Zeitschrift fr Physik A Hadrons and Nuclei, 129,

pp. 547–592.

[36] Lumley, J., 1978. “Computational modeling of turbulent

flows”. Advances in applied mechanics, 18, p. 123.

[37] Jimenez, C., Valino, L., and Dopazo, C., 2001. “A pri-

ori and a posteriori tests of subgrid scale models for scalar

transport”. Physics of Fluids, 13(8), pp. 2433–2436.

[38] Xu, C. X., Zhang, Z. S., and Nieuwstadt, F. T. M., 1996.

“Origin of high kurtosis in viscous sublayer”. Physics of

Fluids, 8, pp. 1938–1942.

[39] Xu, C., 2010. “Multi-scale analysis of subgrid stress and

energy dissipation in turbulent channel flow”. Acta Me-

chanica Sinica, 26(1), pp. 81–90.

[40] Cui, G., Chen, Y., Zhang, Z., Xu, C., Shao, L., and

Bertoglio, J., 2000. “Transportation of passive scalar in in-

homogeneous turbulence”. Acta Mechanica Sinica, 16(1),

pp. 21–28.

[41] G, L., W, B., L, S., and et al., 2007. “Decay of scalar vari-

ance in isotropic turbulence in a bounded domain”. Journal

of turbulence, 8(1), pp. 1–11.

[42] Fang, L., Cui, G. X., Xu, C. X., and Zhang, Z. S., 2005.

“Multi-scale analysis of energy transfer in scalar turbu-

lence”. Chinese Physics Letters, 22(11), pp. 2877–2880.

[43] Yeung, P., 1994. “Spectral transfer of self-similar passive

scalar fields in isotropic turbulence”. Physics of Fluids, 7,

p. 2245.

[44] Fang, L., Shao, L., Bertoglio, J., Cui, G., Xu, C., and

Zhang, Z., 2009. “An improved velocity increment model

based on kolmogorov equation of filtered velocity”. Physics

of Fluids, 21(6), p. 065108.

[45] Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. R.,

1997. “Comments on the feasibility of les for wings, and

on a hybrid rans”. Advances in DNS/LES, p. 137.
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