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ABSTRACT
A second-order accurate and efficient Immersed Bound-

ary Method (IBM) has been developed for simulating particle-
laden flows. Recently, this method has been combined with a
soft-sphere collision model to accommodate inter-particle and
particle-wall collisions. Details of the collision model are given.
Results are shown from a lubrication study of non-touching par-
ticles at close distance from each other. The numerical results for
the drag force acting on the particles agree well with exact solu-
tions, except when the gap width between the particles becomes
significantly smaller than the numerical grid spacing. For very
small gap width, lubrication force corrections are proposed for
the normal approach between particles based on asymptotic ana-
lytical solutions. Results are presented from a numerical study of
sphere-wall collisions in a viscous fluid. The simulated behavior
of the coefficient of restitution as function of the Stokes number
based on the particle impact velocity, is in good agreement with
experimental data.

NOMENCLATURE
e coefficient of restitution
ed dry coefficient of restitution
f n+1/2 IBM force at time level n+1/2
g gravitational acceleration
kn normal spring stiffness
me effective mass of two colliding particles

∗Address all correspondence to this author.

n outward unit normal on surface particle
p fluid pressure
p̃ correction pressure
r diffusion minus advection term
t time
u fluid velocity
uc centroid velocity of particle
u∗ first prediction velocity
u∗∗ second prediction velocity
xc position vector of particle centroid
xi jk position vector of Eulerian grid point (i, j,k)
A surface area
Fab,n normal collision force between particles a and b
H Heaviside step function
I unit tensor
Ic moment of inertia of (spherical) particle
Nc number of computational time steps in collision
Nq number of iterations in multi-direct forcing scheme
R radius of sphere
Rec particle Reynolds number
St Stokes number
U d particle (segment) velocity
Vc volume of particle
Vl volume of Lagrangian grid cell with index l
X position vector of particle segment
X l position vector of Lagrangian grid point l
∂V surface of particle
αi jk solid volume fraction of Eulerian grid cell (i, j,k)
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δd regularized Dirac delta function
δn normal overlap distance
ε gap width normalized by sphere radius
ηn normal damping coefficient
λ Stokes amplification factor
µ f dynamic viscosity of fluid
ν f kinematic viscosity of fluid
ρ f mass density of fluid
ρp mass density of particle
τ fluid stress tensor
φ signed distance to particle surface (level-set function)
ω c angular velocity of particle
∆t computational time step
∆x computational grid spacing of Eulerian grid
∆F lubrication force correction
∆Vl volume of Lagrangian grid cell

1. INTRODUCTION
Particle-laden / particulate flows are found in many applica-

tions ranging from fluidized bed reactors in the chemical indus-
try, transport of sediment by rivers and streams, sedimentation
processes in a hopper dredger and flocculation/sedimentation
processes in the treatment of drinking water. The fundamen-
tal understanding of such flows is still rather poor, in particular
when the solid volume fraction is not small. Fundamental issues
of interest are the modulation of turbulence by the presence of
particles and preferential concentration / particle clustering. Nu-
merical simulations become expensive when particles are larger
than the Kolmogorov scale and the flow in the immediate vicin-
ity of a particle needs to be resolved.
The work presented in this paper is part of a research project
with the aim to develop a parallel Direct Numerical Simula-
tion (DNS) code for simulating O

(

103) finite-size particles in
turbulent flows. For the particle-fluid coupling a modified ver-
sion [1] of the efficient Immersed Boundary Method (IBM) of
Uhlmann [2] has been developed. Recently, this model has been
extended with a soft-sphere collision model [3] to accurately rep-
resent inter-particle and particle-wall interactions. In this paper
the combined IBM / soft-sphere collision model is explained.
Results are shown from a lubrication study of the hydrodynamic
interaction between non-touching particles at close distance from
each other and from a study of sphere-wall collisions in a viscous
fluid.
The structure of this paper is as follows. In section 2 the govern-
ing equations are given for the fluid phase and for the particles. In
section 3 and 4 the IBM used for the particle-fluid coupling is ex-
plained. In section 5 the soft-sphere collision model is explained.
Details of the numerical implementation are given in section 6.
In section 7 results are shown from the lubrication study. In sec-
tion 8 results are presented from the study of sphere-wall colli-
sions. Finally, in section 9 the main conclusions are summarized.

2. GOVERNING EQUATIONS
The fluid phase of particulate flows is described by the in-

compressible Navier-Stokes equations, which read:

∇ ·u = 0 , (1a)
∂u
∂ t +∇ ·uu = −

1
ρ f

∇p+ν f ∇2u , (1b)

where u is the velocity, p is the modified pressure (i.e., the pres-
sure minus the hydrostatic contribution), ρ f is the mass density
of the fluid and ν f is the kinematic fluid viscosity that is equal to
µ f /ρ f with µ f the dynamic fluid viscosity.
The velocity Ud of a particle segment at position X can be de-
composed into a translational part and a rotational part according
to:

Ud (X) = uc +ωc × (X − xc) , (2)

where uc is the velocity of the particle centroid at X = xc and ωc
is the angular velocity of the particle. In this paper only results
are shown for solid spheres. The time evolution of the centroid
and angular velocities is governed by the Newton-Euler equa-
tions, which for a sphere can be written as:

ρpVc
duc
dt = ρ f

∮

∂V
τ ·ndA+

(

ρp −ρ f
)

Vcg , (3a)

Ic
dωc
dt = ρ f

∮

∂V
(X − xc)×

(

τ ·n
)

dA . (3b)

Here ρp is the mass density of the sphere, Vc = (4/3)πR3 is the
volume of a sphere with radius R, τ = −pI + µ f

(

∇u+∇uT )

is the fluid stress tensor with I the unit tensor, n is the outward
unit normal at the surface ∂V of the sphere, g is the gravitational
acceleration and Ic = (2/5)ρpVcR2 is the moment of inertia
of a solid sphere. Note that in Eqn. (3a) the term −ρ f Vcg is
included to account for the buoyant force from the background
hydrostatic pressure stratification.
Eqns (1a)-(1b) and (3a)-(3b) are coupled and have to be solved
together with the no-slip / no-penetration conditions at the
surface of the solid particles (u = Ud at ∂V ).

3. IMMERSED BOUNDARY METHOD
The principle of the IBM is that the Navier-Stokes equations

(1a)-(1b) are not only solved in the fluid phase, but in the en-
tire domain, including the space occupied by the particles. In the
immediate vicinity of the surface of the solid particles an extra
force is added to the right-hand side of the momentum equation
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FIGURE 1. EULERIAN GRID AND THE DISTRIBUTION OF
THE LAGRANGIAN GRID POINTS OVER A SPHERE FOR
2R/∆x = 16 AND RETRACTION OF 0.3∆x. THE NUMBER OF LA-
GRANGIAN GRID POINTS ON THE (RETRACTED) SURFACE OF
THE SPHERE IS EQUAL TO 746.

(1b) such that by good approximation u ≈ U d at ∂V . Thus, the
no-slip / no-penetration conditions at the particle-fluid interface
are not imposed directly as in conventional methods employing
body-conforming grids, but indirectly by means of adding forces
to the flow field near the surface of a particle. The main advan-
tage is that a fixed, continuous and structured grid can be used
for the fluid phase for which computationally efficient methods
are available. Another advantage of the IBM is that it does not
require regridding in case of moving particles.
When using IBMs the price that has to be paid is some loss in
the accuracy. The challenge is to develop a method that is not
only efficient, but also sufficiently accurate at the same time.
Throughout the years numerous variants of the IBM have been
developed and successfully applied to many different flow prob-
lems. A recent review of the IBM is given by Mittal and Iac-
carino [4].
Recently, Uhlmann [2] developed an efficient IBM for simulat-
ing particulate flows. The method makes use of two different
grids as illustrated in Fig. 1. A uniform, staggered Cartesian grid
is used for the fluid phase, to which I will refer to as the Eu-
lerian grid. Furthermore, the method makes use of a uniform
Lagrangian grid that is attached to and moves with the surface of
the particles.
The IBM of Uhlmann is integrated in a pressure-correction
method, which for clarity is given here in semi-discrete form and

based on the Crank-Nicolson scheme for time integration:

u∗ = un +∆t
(

−
1

ρ f
∇pn−1/2 + rn+1/2

)

, (4a)

u∗∗ = u∗ +∆t f n+1/2 , (4b)
1

ρ f
∇2 p̃ =

1
∆t ∇ ·u∗∗ , (4c)

un+1 = u∗∗− ∆t
ρ f

∇p̃ , (4d)

pn+1/2 = pn−1/2 + p̃ , (4e)

where r ≡−∇ ·uu+ν f ∇2u , u∗ is the first prediction velocity, u∗∗
is the second prediction velocity that includes the forcing from
the IBM, p̃ is the correction pressure and ∆t is the computational
time step.
The IBM force f in Eqn. (4b) is computed by: (1) interpolation
of the prediction velocity u∗ from the Eulerian to the Lagrangian
grid, (2) computation of the force on the Lagrangian grid based
on the difference between the interpolated velocity and the ac-
tual particle velocity and (3) spreading of this force from the
Lagrangian to the Eulerian grid. The interpolation and spreading
operations [5] are based on a regularized Dirac delta function δd
that extends over 3 grid cells in all coordinate directions [6]. The
scheme for computing the IBM force is summarized below:

U∗ (X l) = ∑
i jk

u∗
(

xi jk
)

· δd
(

xi jk −X l
)

∆x3 , (5a)

Fn+1/2 (X l) =
Ud (X l)−U∗ (X l)

∆t , (5b)

f n+1/2 (

xi jk
)

= ∑
l

Fn+1/2 (X l) · δd
(

xi jk −X l
)

∆Vl (5c)

Here the upper case letters refer to quantities defined on the La-
grangian grid, while the lower case letters denote quantities de-
fined on the Eulerian grid. xi jk denotes the position of the Eule-
rian grid point with index (i, j,k). X l denotes the position of the
Lagrangian grid point with index l. ∆x is the grid spacing of the
Eulerian grid. ∆Vl is the volume of the Lagrangian grid cells. It
is determined from the requirements that its value is as close as
possible equal to ∆x3 and that an integer number of Lagrangian
grid points can be evenly distributed over the surface of a parti-
cle.
In Eqn. (5b) the force distribution is computed on the Lagrangian
grid. From this the total force and torque acting on the parti-
cle can be determined. Substituting these expressions into Eqns
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(3a)-(3b) yields [2]:

ρpVc
duc
dt = −ρ f ∑

l
Fn+1/2 (X l) ∆Vl

+ρ f
d
dt

(

∫

V
udV

)

+
(

ρp−ρ f
)

Vcg , (6a)

Ic
dωc
dt = −ρ f ∑

l
(X l − xc)×Fn+1/2 (X l) ∆Vl

+ρ f
d
dt

(

∫

V
[X − xc]×udV

)

(6b)

Here the volume integrals are over the entire volume of the
sphere and account for the inertia of the fluid in the space occu-
pied by the sphere. It is remarked that for pressure-driven flows
an additional force on the right-hand side of Eqn. (6a) must be
included to account for the buoyant force from the associated
background pressure stratification. From Eqns (6a)-(6b) the ve-
locity of the centroid and the angular velocity of the sphere can
be computed. Next, the desired particle velocity distribution U d
at the next time step can be calculated from Eqn. (2).

4. MODIFIED IBM
In a recent paper [1] I have shown that the method of

Uhlmann [2] is approximately first-order accurate for Stokes
flow through a regular array of fixed spheres. I have modified
the method by implementing the multi-direct forcing scheme of
Luo et al. [7] and by a slight retraction of the Lagrangian grid
towards the interior of the sphere. It was shown that by these
modifications the accuracy has drastically improved and second-
order accuracy could be obtained [1]. Below the modifications
to the original method are explained in more detail.

4.1 Multi-direct forcing scheme
Consider a particular Eulerian grid point (i, j,k) with veloc-

ity u∗ close to the surface of a particle. After the interpolation
and spreading steps, Eqns (5a) and (5c), a diffuse force distri-
bution results that involves a lot more grid points than just this
one particular grid point. Similarly, grid point (i, j,k) is involved
in the forcing required for its neighbors. A consequence of this
is that the resulting IBM force distribution will not exactly en-
force the surrounding fluid to the desired particle velocity. Luo
et al. [7] and Kriebitzsch et al. [8] proposed a multi-direct forcing
scheme as a remedy for this problem. The idea is to iteratively
determine the IBM forcing until the desired accuracy is achieved.
In between Eqns (4b) and (4c) the following iterative scheme is
included:

do q = 1,Nq

U∗∗
(q−1) = ∑

i jk
u∗∗(q−1)δd∆x3 , (7a)

Fn+1/2
(q)

= Fn+1/2
(q−1)

+
Ud −U∗∗

(q−1)

∆t , (7b)

f n+1/2
(q)

= ∑
l

Fn+1/2
(q)

δd∆Vl , (7c)

u∗∗(q) = u∗ +∆t f n+1/2
(q)

, (7d)

enddo
where Nq is the total number of iterations and u∗∗(0) is the second
prediction velocity as computed from Eqn. (4b). The original
method of Uhlmann [2] corresponds to the case of Nq = 0. The
value of Nq can be chosen at will, but for retaining the computa-
tional efficiency of the method it should preferably be kept low.
Simulation results suggest that 2 iterations are optimal [1].

4.2 Retraction of Lagrangian grid
The use of the regularized Dirac delta function δd in the in-

terpolation and spreading operations results in a diffuse particle
interface as seen by the fluid phase. In fact, the interface of a
particle is surrounded by a porous shell, which for the particu-
lar delta function of Roma et al. [6] has a width of three grid
cells. Consequently, the effective particle diameter is larger than
the actual particle diameter and this tends to an overestimation
of the drag force experienced by the fluid. To correct for this
the Lagrangian grid points are slightly retracted from the surface
towards the interior of the particle with a fraction of the grid
spacing ∆x [1, 9, 10]. This is illustrated in Figure 2. I found
that retraction has a strong influence on the accuracy of the IBM.
Simulation results suggest that a retraction distance of 0.3∆x is
close to optimal. For Stokes flow through a regular array of fixed
spheres it was found that at this retraction value the method is
second-order accurate. At a grid resolution of 2R/∆x = 16 the
error in the permeability of the array of spheres was about 1.5 %,
almost 7 times smaller than the error of 9.8 % at zero retraction
distance as in the original method of Uhlmann [1].

4.3 Direct account of fluid inertia within particle
For reasons of computational efficiency, Uhlmann [2] as-

sumed rigid-body motion of the fluid inside the space occu-
pied by the particles in order to simplify the volume integrals
in Eqns (6a) and (6b). When this assumption holds, the sec-
ond term on the right-hand side of Eqn. (6a) can be replaced
by ρ f Vcduc/dt and the second term on the right-hand of Eqn.
(6b) by (Ic/ρp)dωc/dt. However, apart from a loss in accuracy
associated with this assumption, this causes a singularity in the
Newton-Euler equations for a density ratio ρp/ρ f → 1. It is for
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width porous zone

retraction
distance

FIGURE 2. ILLUSTRATION OF THE RETRACTION DISTANCE.
THE DOTS INDICATE THE POSITION OF THE LAGRANGIAN
GRID POINTS, WHICH ARE RETRACTED FROM THE ACTUAL
SURFACE (THE SOLID LINE) WITH A FRACTION OF THE
EULERIAN GRID SPACING (ABOUT 0.3∆x IN THIS CASE).
THE CIRCLE SHOWS THE EXTENT OF THE INTERPOLA-
TION/SPREADING KERNEL AND IS INDICATIVE FOR THE
WIDTH OF THE POROUS ZONE SURROUNDING THE PARTI-
CLE’S SURFACE.

this reason that Uhlmann found that for spheres his method is
only stable for density ratios larger than about 1.2 [2].
Kempe et al. [11] recognized the singularity problem caused by
the assumption of rigid-body motion. They proposed to directly
evaluate the volume integrals by means of a second-order ac-
curate midpoint quadrature rule. For instance, the momentum
integral in Eqn. (6a) is computed as:

∫

V
udV = ∑

i jk
u
(

xi jk
)

αi jk ∆x3 . (8)

Here αi jk is the solid volume fraction of the particle in grid cell
(i, j,k). Kempe et al. [11] determine αi jk from a level-set func-
tion φ given by the signed distance to the particle surface ∂V
with φ < 0 inside and φ > 0 outside the particle. The solid vol-
ume fraction is calculated from:

αi jk =
∑8

n=1−φnH (−φn)

∑8
n=1‖φn‖

, (9)

where the sum is over all 8 corner nodes of the grid cell volume
and H is the Heaviside step function. Kempe et al. [11] validated
the second-order accuracy as well as the computational efficiency
of the above method.

nδ _uu_ b a

n_ ab

_ ab,nF

_ ab,nu

FIGURE 3. ILLUSTRATION OF THE SOFT-SPHERE MODEL
FOR HEAD-ON COLLISION BETWEEN TWO EQUAL SPHERES.

I have implemented the above method in my IBM for direct eval-
uation of the volume integrals in the Newton-Euler equations.
As shown by Kempe et al. [11], it is also my experience that the
IBM is now stable for particle-fluid density ratios down to values
much smaller than 1. Although not thoroughly investigated, it
is expected that for very light particles the method will still be-
come unstable as a result of the weak (explicit) coupling of the
Navier-Stokes and Newton-Euler equations [12].

5. COLLISION MODEL
To model inter-particle and particle-wall contact forces, the

present IBM is combined with a soft-sphere model [3]. The soft-
sphere model is widely used in discrete particle models. In this
model particles are allowed to slightly overlap with each other
and the contact force is computed from the overlap between the
particles and their relative velocity. The contact force is decom-
posed into a normal and a tangential component. The normal
component of the contact force acting on particle a when in con-
tact with particle b is parameterized as:

Fab,n = −knδnnab −ηnuab,n , (10)

where kn is the normal spring stiffness, ηn is the normal damp-
ing coefficient, δn is the overlap between the particles, nab is the
unit normal and uab,n is the relative velocity between the parti-
cles. The soft-sphere model is illustrated in Fig. 3 for a head-on
collision between two equal spheres. In this paper no results are
shown for tangential collisions, so therefore the discussion of the
model is restricted to normal collisions only.
Input parameters of the soft-sphere collision model are the dry
coefficient of restitution, ed, and the time duration of a collision
given as the number, Nc, of computational time steps. The coef-
ficient of restitution, e, is defined as the change in the overlap at
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the end of contact (t = Nc∆t) divided by the change in the overlap
at the start of contact (t = 0):

e = −
dδn/dt|t=Nc∆t

dδn/dt|t=0
. (11)

The dry coefficient of restitution is the coefficient of restitution
for a collision where viscous dissipation of particle kinetic en-
ergy by the surrounding fluid can be neglected. The parameters
kn and ηn are related to ed and Nc∆t according to [3]:

kn =
me

(

π2 +[lned ]
2
)

[Nc∆t]2
, (12a)

ηn = −
2me [lned ]

Nc∆t , (12b)

where me = (1/ma +1/mb)
−1 is the effective mass of the two

particles.
In the soft-sphere model the contact time (Nc∆t) is chosen much
larger than the time predicted by Hertz contact theory [13] to
avoid severe constraints on the numerical time step. However,
with kn and ηn given by Eqns (12a)-(12b) the model still yields
the desired coefficient of restitution for dry collisions. As dis-
cussed by Van der Hoef et al. [3] the contact time should not be
too large on the one hand to avoid severe overlapping between
particles, but on the other hand it should not be too small in or-
der to accurately resolve a collision in time. In the simulations
shown in section 8 the contact time was fixed at 8∆t (Nc = 8).

6. NUMERICAL IMPLEMENTATION
Both the Navier-Stokes and the Newton-Euler equations are

integrated in time with a third-order, three-step Runge-Kutta
scheme [14], except for the pressure-gradient term in Eqn. (1b)
for which the second-order Crank-Nicolson scheme is used.
Conservation of mass of the fluid phase, Eqn. (1a), is enforced
by a pressure-correction scheme similar to the scheme given by
Eqns (4a)–(4e). This scheme is combined with the multi-direct
forcing scheme given by Eqns (7a)–(7d) with the number of iter-
ations fixed at Nq = 2. The retraction distance is fixed at 0.3∆x.
For the simulations shown in this paper, efficient, FFT-based,
direct solvers could be used to compute the correction pressure
from the associated Poisson equation. The Navier-Stokes equa-
tions are discretized on a uniform, staggered Cartesian grid with
the finite-volume method in which spatial derivatives are ob-
tained from the second-order central-differencing scheme.
As mentioned before, the coupling of the Navier-Stokes and the
Newton-Euler equations is explicit/weak. Given the particle po-
sitions and velocities at time step n, first the Navier-Stokes equa-
tions are integrated to time step n+1 and then the Newton-Euler

equations.
A few remarks about the numerical implementation of the soft-
sphere model. The normal contact force is added as an extra
force to the right-hand side of Eqn. (6a). The second-order
Crank-Nicolson scheme is used to integrate this force in time.
This scheme requires the contact force at time step n+1, which
is iteratively determined as function of the particle positions and
velocities at n+1 using under-relaxation with a relaxation factor
of 0.5. The iterations are stopped until the changes in all parti-
cle positions are smaller than 10−5∆x. I have tested this scheme
for the dry collision of a sphere onto a plane wall (with the lu-
brication force turned off): the computed value of the restitution
coefficient (particle velocity at rebound divided by velocity at
impact) is in excellent agreement with the model parameter ed .
The iterative scheme appears robust and convergence is fast; typ-
ically only a few iterations are needed. In case a particle collides
with more than one particle at the same time, the contact forces
are computed for each particle pair and added together compo-
nentwisely at each iteration.
The computational algorithm is coded in Fortran with the MPI
extension for parallel execution on multi-processor machines
with distributed memory. For the parallelization of the Navier-
Stokes equations a standard domain-decompositioning technique
is used, while for the particles I make use of a master-and-slave
technique that is implemented in a similar fashion as described
by Uhlmann [15].

7. RESULTS FROM LUBRICATION STUDY
In this section I explore the accuracy of the IBM for simulat-

ing the hydrodynamic interaction / lubrication between 2 equal
spheres and the normal approach of a sphere towards a plane
wall.

7.1 Normal approach between 2 equal spheres
Fig. 4 illustrates the flow field for the case of a normal ap-

proach between 2 spheres with equal radius and opposite veloc-
ity. The dimensions of the flow domain used for this simulation
are 16R in the x and y-direction and 32R in the z-direction. Pe-
riodic boundary conditions are used in the z-direction, while in
the x and y-direction free-slip and zero-pressure boundary con-
ditions are imposed. Fig. 1 shows the Eulerian and Lagrangian
grids used for this simulation. The resolution of the Eulerian
grid is 2R/∆x = 16, so the total number of Eulerian grid points is
equal to 128x128x256 ≈ 4.19 ·106. The number of Lagrangian
grid points on the retracted surface of each sphere is 746 with the
retraction distance set to 0.3∆x. The particle Reynolds number,
Rec ≡ ‖uc‖2R/ν f , is set to 0.1. For such low particle Reynolds
number the flow field can be considered as quasi-steady. There-
fore in all simulations discussed in this subsection the positions
of the spheres are fixed and the sphere velocities are kept con-
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FIGURE 4. A CROSS-SECTION OF THE FLOW FIELD AT Y = 0
FOR THE CASE OF A NORMAL APPROACH BETWEEN 2 EQUAL
SPHERES WITH RADIUS R AND OPPOSITE VELOCITY AT A
PARTICLE REYNOLDS NUMBER Rec = 0.1. THE GRID IS UNI-
FORM WITH RESOLUTION 2R/∆x = 16. THE GAP WIDTH IN BE-
TWEEN THE SPHERES IS EQUAL TO 0.25R.

stant. Note that in this case the Newton-Euler equations do not
need to be solved. Furthermore, after the initial transient the sim-
ulated flow field reaches a steady state. The computational time
step is fixed at ∆t‖uc‖/(2R) = 0.5 · 0.1375Rec(∆x/2R)2 based
on the diffusion criterion for numerical stability of the three-step
Runge-Kutta scheme [16].
A series of simulations like shown in Fig. 4 has been conducted
in which I varied the gap width between the spheres as well
as the grid resolution. From the simulations the force on the
spheres has been determined. It is convenient to write this force
as F = −λ (ε)6πµ f Ruc, where λ is the Stokes amplification
factor that is a function of ε , the gap width between the spheres
normalized by the radius of the spheres. The hydrodynamic in-
teraction between the spheres vanishes for ε → ∞ and thus in this
limit λ → 1; the force on each sphere is then equal to the Stokes
drag experienced by a single sphere in free space. Brenner [17]
derived an exact solution for λ as function of ε under the assump-
tion that the flow is in the Stokes regime, that is for sufficiently

exact analytical solution (Brenner, 1961)

gap width normalized by sphere radius
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e

sp
ac

e

0 0.1 0.2 0.3 0.4 0.50

10

20

30

40
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FIGURE 5. NORMALIZED FORCE ACTING ON 2 EQUAL
SPHERES AT A NORMAL APPROACH WITH OPPOSITE VELOC-
ITY AT A PARTICLE REYNOLDS NUMBER Rec = 0.1, SHOWN AS
FUNCTION OF THE NORMALIZED GAP WIDTH AND DIFFER-
ENT GRID RESOLUTIONS.

exact analytical solution (Brenner, 1961)
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FIGURE 6. IDEM AS FOR FIG. 5, BUT WITH THE CORREC-
TION GIVEN BY EQNS (13a)-(13b) FOR ε < εss.
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low particle Reynolds number as in the present simulations. In
Fig. 5 the simulation results for λ are compared against the ex-
act solution over a range of ε . The simulated force is in close
agreement with the exact solution for ε & 0.25, which substan-
tiates the accuracy of the IBM. For ε smaller than ≈ 0.25 the
simulated force starts to deviate from the exact solution at reso-
lution 2R/∆x = 16, which at this resolution corresponds to a gap
width smaller than 2 grid cells. Doubling the grid resolution to
2R/∆x = 32 improves the simulated force, which at this resolu-
tion is in good agreement with the exact solution down to a gap
width of ε ≈ 0.025. This is quite remarkable since it corresponds
to a gap width of 0.4∆x, thus significantly smaller than ∆x. For
gap widths smaller than ε ≈ 0.025, the drag force is underesti-
mated in the simulations. This might also be expected since at
such small gap widths the grid is too coarse to resolve the flow
inside the gap. Refining the grid improves the estimate of the
drag force somewhat, but not much. As a remedy I propose to
add a correction term to the right-hand side of Eqn. (6a) to com-
pensate for the error in the simulated drag force at very small gap
widths [18, 19]. For simplicity this correction term is given here
for the case of two equal spheres with exactly opposite velocity:

∆F ss = −6πµ f Ruc [λss(ε)−λ ss(εss)] , (13a)

where for both grid resolutions εss = 0.025, which is the thresh-
old value below which the correction term is turned on. λ ss(ε) is
the asymptotic expansion of Brenner’s exact solution accurate to
O(ε) [19]:

λss(ε) =
1

2ε
−

9
20 logε −

3
56ε logε +1.346+O(ε) . (13b)

Fig. 6 shows the simulation results for the Stokes amplification
factor including this asymptotic analytical correction for ε < εss.
In particular at resolution 2R/∆x = 32, the corrected results are
in good agreement with the exact solution over the whole range
of ε .

7.2 Side-by-side approach of 2 equal spheres
Similar to Fig. 4, Fig. 7 illustrates the flow field for the case

of a side-by-side approach of 2 equal spheres with opposite ve-
locity and at a particle Reynolds number of Rec = 0.1. Sim-
ulations have been executed for two different cases: the case
of non-rotating spheres and the case of freely-rotating spheres
with a net zero torque at steady state. Fig. 7 corresponds to
the case of freely-rotating spheres at a gap width of ε = 0.25.
The dimensions of the flow domain used for this simulation are
24R in the x and y-direction and 30R in the z-direction. Free-
slip and zero-pressure boundary conditions are used in the x and
z-direction, while periodic boundary conditions are imposed in

x/(2R)
z/

(2
R)

5 6 7
6
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FIGURE 7. IDEM AS FOR FIG. 4, BUT NOW SHOWING THE
SIDE-BY-SIDE APPROACH OF 2 EQUAL SPHERES WITH RA-
DIUS R AND OPPOSITE CENTROID VELOCITY. THE SPHERES
ROTATE FREELY.
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exact analytical solution (Brenner, 1961)
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FIGURE 9. IDEM AS FOR FIG. 5, BUT NOW FOR THE CASE OF
THE NORMAL APPROACH OF A SINGLE SPHERE TO A PLANE
SOLID WALL.

the y-direction. The spheres are fixed in space and a constant
sphere centroid velocity is imposed. In the case of freely-rotating
spheres, the sphere angular velocity is determined from Eqn.
(6b). All other simulation parameters are the same as for the
case shown in Fig. 4.
A series of simulations like shown in Fig. 7 has been executed for
both the non-rotating and the freely-rotating case. Fig. 8 depicts
the Stokes amplification factor (λ ) as a function of the normal-
ized gap width (ε). The results are compared against the exact
series solutions from O’Neill [20]. Interestingly, the simulated
force on the spheres is in excellent agreement with the exact so-
lutions for almost all ε . It is only for the non-rotating case that the
results deviate at very small gap widths at which the exact solu-
tion for this case diverges to infinity. However, the more relevant
case of freely-rotating spheres shows perfect agreement over the
whole range up to zero gap width. It is remarked that in this case
the analytical solution predicts that the force remains finite for
ε → 0; at zero gap width the velocity at the point of contact is
equal to zero as the rotation of the spheres then exactly cancels
their centroid velocity. The conclusion here is that the present
IBM is capable of accurately simulating the side-by-side transla-
tion of 2 spheres. No corrections are needed for the realistic case
in which they are allowed to rotate freely.

exact analytical solution (Brenner, 1961)
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FIGURE 10. IDEM AS FOR FIG. 9, BUT WITH THE CORREC-
TION GIVEN BY EQNS (14a)-(14b) FOR ε < εsw.

7.3 Normal approach of sphere towards plane wall
Similar to the case of a normal approach between 2 spheres,

a series of simulations has been conducted of the normal ap-
proach of a sphere towards a plane wall. Again the particle
Reynolds number is set to 0.1, so the flow is in the Stokes regime
and can be considered as quasi-steady. The flow domain is a
cube with dimension 16R. Periodic boundary conditions are im-
posed in the lateral directions, free-slip and zero-pressure bound-
ary conditions at the top boundary and no-slip boundary condi-
tions on the wall at the bottom boundary. Fig. 9 shows the sim-
ulated force (λ ) as a function of the gap width (ε). The results
are compared against the exact solution derived by Brenner [17].
Excellent agreement with the analytical solution is found for a
gap width of ε & 0.1. As expected, the simulations underesti-
mate the drag force for very small gap width. The higher the grid
resolution, the smaller the error. Similar to the case of a normal
approach between 2 spheres, I have implemented a correction
term on the right-hand side of Eqn. (6a) to compensate for the
error in the force on a sphere approaching a plane wall:

∆F sw = −6πµ f Ruc [λsw(ε)−λ sw(εsw)] , (14a)

where εsw = 0.075 at 2R/∆x = 16 and εsw = 0.05 at 2R/∆x = 32
with εsw the threshold value below which the correction term is
turned on. λ sw(ε) is the asymptotic expansion of Brenner’s exact
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FIGURE 11. ILLUSTRATION OF THE COMBINED LUBRICA-
TION / SOFT-SPHERE MODEL FOR THE COLLISION OF A
SPHERE ONTO A PLANE SOLID WALL.

solution accurate to O(ε) [21]:

λsw(ε) =
1
ε
−

1
5 logε −

1
21ε logε +0.9713+O(ε) . (14b)

Fig. 10 shows the simulation results for the Stokes amplification
factor including this asymptotic analytical correction for ε < εsw.
For both resolutions the corrected results are in good agreement
with the exact solution over the whole range of ε .
The case of a sphere moving parallel to a plane wall has not yet
been investigated in detail. However, similar to the case of the
side-by-side motion of 2 spheres, it is anticipated that the present
IBM is accurate down to very small gap width and therefore that
this case does not require any corrections to the method.

8. RESULTS FROM COLLISION STUDY
Fig. 11 illustrates how the soft-sphere model is implemented

into the present IBM and combined with the lubrication force
corrections discussed in the previous section. Considering the
case of a sphere-wall collision, the lubrication force correction
given by Eqn. (14a) is switched on when the gap width becomes
smaller than εswR. Note that the lubrication force correction
holds for the case of fully rigid / inelastic particles, which do not
deform and for which the Stokes amplification factor diverges to
infinity for ε → 1. When this would be true the particle would
never touch (nor rebound at) the wall and would come to halt at
finite gap width. However, for a particle and wall that are allowed
to deform, the Stokes amplification factor will remain finite. Fur-
thermore, surface roughness effects come into play at gap widths
on the order of the typical roughness height [22] and in this
regime the lubrication force correction loses its validity. To acco-
modate actual contact in the present collision model, the Stokes
amplification factor is fixed to a constant value λsw = λsw(ε1)
when the gap width becomes smaller than a specified threshold

value of ε1R. For ε < 0 the particle is in contact with the wall
and the soft-sphere model becomes active. To avoid excessive
energy dissipation by the lubrication force correction during con-
tact time (which is arbitrarily set in the soft-sphere model), the
lubrication force correction is turned off for an overlap between
particle and wall larger than ε2R. The threshold values ε1 and
ε2 have to be determined from test simulations such as discussed
below.
In this section simulation results are shown for the gravity-driven
wet collision of a sphere onto a plane wall. The collision is called
wet for it takes place in a viscous fluid and as a consequence part
of the particle kinetic energy is dissipated by the fluid during
collision. The coefficient of restitution for wet collisions is thus
smaller than for a dry collision. According to the elastohydro-
dynamic collision theory of Davis et al. [23], the coefficient of
restitution of wet collisions is primarily determined by the Stokes
number. This number is a measure for the change in the particle
inertia by the viscous drag force from the surrounding fluid:

St =
ρpVc‖uc‖

6πµ f R2 . (15)

Legendre et al. [24] assembled data from many different exper-
iments on the bouncing of both drops and solid particles on a
plane wall. Interestingly, the experimental results for the coeffi-
cient of restitution scatter around a curve given by:

e/ed = exp(−35/St) . (16)

A series of simulations has been carried out to test whether the
combined IBM / soft-sphere collision model is capable of re-
producing the experimental results. A steel sphere with radius
R is released in a closed rectangular box filled with RV20 sil-
icone oil. In the simulations the sphere radius is varied from
R = 0.625 · 10−3m till R = 2.75 · 10−3m. The dimensions of
the rectangular box are 24 radii in the horizontal directions and
48 radii in the vertical direction. At release the centroid of the
sphere is positioned in the center of the box at 1,5 radii from the
top wall. The mass density of the silicone oil is 953 kg·m−3 and
the kinematic viscosity of the oil is equal to 2.1 · 10−5 m2s−1.
The steel / oil mass density ratio is 8.18. The gravitational ac-
celeration is 9.81 ms−2. The grid resolution in the simulations is
2R/∆x = 16 and the retraction distance is 0.3∆x. The following
values for the collision parameters are used: (1) the dry coeffi-
cient of restitution is set to 0.97; (2) the collision contact time is
fixed at 8∆t with ∆t equal to half the maximum allowed time step
for stability of the Runge-Kutta scheme [16]; (3) ε1 = 10−3 and
ε2 = 10−2.
From the simulations the restitution coefficient is computed as
the ratio of the maximum velocity at the end of collision contact
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FIGURE 12. NORMALIZED CENTROID VELOCITY AS FUNC-
TION OF NORMALIZED TIME OF A STEEL SPHERE FALLING IN
SILOCONE OIL ONTO A PLANE WALL. THE SPHERE RADIUS IS
EQUAL TO R = 1.25 ·10−3M.

to the maximum velocity just prior to collision impact. Fig. 12
illustrates this definition of the restitution coefficient for the sim-
ulation in which the sphere radius is equal to R = 1.25 ·10−3m.
Fig. 13 depicts the ratio e/ed at first rebound as function of the
Stokes number together with the experimental fit given by Eqn.
(16). The Stokes number is based on the maximum velocity just
prior to impact. The agreement between the simulations and the
experiments is good over the whole range of Stokes numbers, in
particular when considering the scatter in the experimental data.
For a Stokes number smaller than about 10, the coefficient of
restitution becomes almost zero and the sphere does not detach
from the wall after impact.
The numerical results are sensitive to the choice of the collision
parameters ε1 and ε2. Numerous test simulations were carried
out to determine which values are appropriate; the results shown
in Fig. 13 are for values of ε1 and ε2 for which the agreement is
good. It is planned to investigate in more detail how these values
are related to the other collision model parameters, in particular
the collision contact time. Nonetheless, the conclusion that can
be drawn here is that with the appropriate choice of the colli-
sion parameters the combined IBM / soft-sphere collision model
indeed captures the observed behavior in the experiments.
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FIGURE 13. NUMERICAL RESULTS FOR THE RESTITUTION
COEFFICIENT OF A STEEL SPHERE IN SILICONE OIL AT FIRST
IMPACT ON A PLANE WALL. THE COEFFICIENT IS NORMAL-
IZED WITH THE DRY COEFFICIENT OF RESTITUTION AND
SHOWN AS FUNCTION OF STOKES NUMBER BASED ON THE
SPHERE IMPACT VELOCITY. THE NUMBERS REFER TO THE
SPHERE DIAMETERS (IN MM) USED IN THE SIMULATIONS.
THE BLACK SOLID LINE IS A FIT FROM EXPERIMENTAL DATA
GIVEN BY EQN. (16).

9. MAIN CONCLUSIONS
A combined IBM / soft-sphere collision model has been de-

veloped. In a lubrication study the hydrodynamic interaction has
been studied between non-touching particles at close distance
from each other. The numerical results for the drag force act-
ing on the particles agree well with exact analytical solutions,
except for a gap width between the particles that is significantly
smaller than the numerical grid spacing. For such very small
gap widths, lubrication force corrections are incorporated in the
model for the normal approach between two particles and for
the normal approach of a particle towards a wall. Results have
been shown from a numerical study of sphere-wall collisions in a
viscous fluid. The simulated behavior of the coefficient of resti-
tution as function of the Stokes number based on the particle
impact velocity, is in good agreement with experimental data.
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