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ABSTRACT 
Visualizing the state of real turbulent flow is important in 

many applications such as safe operation and fault diagnosis in 
plant or pipeline. Two approaches to this purpose exist: 
experimental measurement and numerical simulation. In 
experimental measurement, reliability of the result at measured 
point is easy to evaluate. However, information of the whole 
flow field is difficult to obtain. On the other hand, numerical 
simulation easily obtains any information of the flow field. 
However, the reliability of the result strongly depends on the 
numerical model and boundary condition and/or the initial 
condition. In general, the more precise results are needed, the 
heavier computation load we spend. None of these approaches 
is superior, and combination methods of them are subjected to 
extensive research. Above all, we particularly paid attention to 
measurement-integrated (MI) simulation proposed by Hayase et 
al. MI simulation can expect to reduce computational load. 

We have applied MI simulation to unsteady oscillatory 
airflows passing through an orifice. In our previous study, a 
standard k-ε model was used for MI simulation. Estimation 
error remained due to inadequate consideration of the feedback 
law. In our latest study, the feedback law was decided 
considering an effect of computation grid on CFD of contracted 
flow. As a result, wall pressures near the orifice plate and axial 
velocities on vena contracta estimated with MI simulation 
showed good agreement with that of measurement. 

In the present paper, we deal with visualization of unsteady 
oscillatory airflows passing through an orifice from wall 
pressure measurement based on MI simulation using a 
turbulent model. The former studies have used measured inlet 
flow rate which is unknown in many actual case. Compared 
with the flow rate measurement, wall pressure measurement is 
simple. Therefore, we consider MI simulation using only wall 
pressure are of practical use. The developed MI simulation was 
performed with unsteady flow rate with the frequency up to 10 

Hz. Computation results obtained with the developed MI 
simulation using coarse computation grid is compared with 
experimental results. It is confirmed that flow field obtained 
with the developed MI simulation is close to that of 
experiment. 
 
INTRODUCTION 

Visualizing the state of real turbulent flow is important in 
many applications such as safe operation and fault diagnosis in 
plant or pipeline.  

The methods used to visualize the flow conditions can be 
classified into two approaches. One is experimental 
measurement, and the other is numerical simulation by solving 
several equations. Experimental measurement methods include 
the use of velocity and pressure sensors and visualization 
techniques such as particle image velocimetry and particle 
tracking velocimetry. Flow conditions can be accurately 
obtained at measured points by using sensors. However, sensors 
are not suitable for obtaining velocity profiles or pressure 
distributions. By contrast, visualization techniques are able to 
obtain these distributions. However, the available flow field is 
limited because particle behavior is tracked using a laser and a 
camera. In contrast, simulation can easily obtain a flow field. 
However, a long computation time is needed to obtain good 
results, especially under turbulent conditions. None of these 
approaches is superior, and combination methods of them are 
subjected to extensive research.  

We have focused on measurement-integrated (MI) 
simulation, which was first proposed by Hayase et al [1]. MI 
simulation is a kind of observer that employs a CFD scheme as 
the mathematical model for the relevant system. The block 
diagram in Fig. 1 illustrates the concept of MI simulation. As a 
general rule for an observer, errors in the mathematical model 
will not affect the MI simulation results, since the difference 

 1 Copyright © 2010 by ASME 

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30619



between the computation and measurement results is fed back 
to the model through the feedback law. This allows us to use a 
simple model in CFD schemes, such as one that has a coarse 
computational grid or a turbulent model that is easy to apply. 
Consequently, using an MI simulation is expected to reduce the 
computational load. The effectiveness of MI simulations has 
been demonstrated in several applications, including the 
Karman vortex street behind a square cylinder [2], blood flow 
in the aneurysmal aorta [3], and the reproduction of fluctuating 
turbulent flow in a square duct [1]. 

We have applied MI simulation to unsteady oscillatory 
airflows passing through an orifice flow. In our previous study, 
a standard k-ε model was used for MI simulation [4]. 
Estimation error was remained due to inadequate consideration 
of feedback law. In our latest study, the feedback law was 
decided considering an effect of computation grid on CFD of 
contracted flow [5]. As a result, wall pressures near the orifice 
plate and axial velocities on vena contracta estimated with MI 
simulation showed good agreement with that of measurement. 

In the present paper, we deal with visualization of unsteady 
oscillatory airflows passing an orifice flow from wall pressure 
measurement based on MI simulation using turbulent model. 
The former studies [4, 5] have used measured inlet flow rate 
which is unknown in many actual case. Compared with the 
flow rate measurement, wall pressure measurement is simple. 
Therefore, we consider MI simulation using only wall pressure 
are of practical use. We confirmed the effectiveness of the MI 
simulation in flow field with constant inlet flow rate [6]. In this 
paper, the developed MI simulation was performed with 
unsteady flow rate with the frequency up to 10 Hz. 
Computation results obtained with the developed MI simulation 
using coarse computation grid is compared with experimental 
results. It is confirmed that flow field obtained with the 
developed MI simulation is close to that of experiment. 
 
NOMENCLATURE 
e : normalized error    [-] 
f : feedback signal adding to vena contracta  [-] 
k : normalized turbulent kinetic energy k=k

^

/U0
2 [-] 

KPU : proportional gain of feedback signal ∆u0 [-] 
KIU : integral gain of feedback signal ∆u0  [-] 
KPP : proportional gain of feedback signal f  [-] 
KIP : integral gain of feedback signal f  [-] 
p : normalized pressure p=P/ρU0

2   [-] 
P : pressure     [Pa] 
P1 : upstream pressure of the orifice  [Pa] 
P2 : downstream pressure of the orifice  [Pa] 
∆P : differential pressure of the orifice plate  [-] 
Q : volumetric flow rate    [m3/s] 
r : normalized radial coordinate r=R/R0  [-] 
R : radial coordinate    [m] 
R0 : pipe radius     [m] 
t : time       [s] 
u : normalized axial velocity u = U/U0  [-] 

 
Figure 1. Concept of MI simulation 

 
U : axial velocity     [m/s] 
U0 : average axial velocity at inlet of the pipe  [m/s] 
∆u0 : feedback signal to control inlet velocity [-] 
v : normalized radial velocity v=v

^

/U0  [-] 
x : normalized axial coordinate x=x

^

/R0  [-] 
X : distance from the orifice   [m] 
 
α : contraction coefficient    [-] 
β : beta ratio     [-] 
ε : normalized dissipation ratio ε=εR0/U0

3  [-] 
θ : temperature of air    [K] 
ρ : density     [kg/m3] 
µ : viscosity     [Pa·s] 
νt : normalized turbulent kinetic viscosity νt=ν

^

t/R0U0 [-] 
νeff : normalized effective kinetic viscosity 

νeff =µ/ρ +νt      [-] 
C1, C2 , Cµ, σk, στ:model constants of standard k-ε model 
 
subscript 
* : Estimated value 
^ : Dimensional value 
’ : Correction value in SIMPLE method 
exp: Measured value 
sim: Calculated value 
 
NUMERICAL MODELLING 

The axisymmetric one-hole plate in Figure 2 was modeled 
in two dimensions. Both pressures and velocities around the 
orifice have earlier been measured and were used to anchor the 
calculation. 

These measurements were carried out in a 53 mm diameter 
smooth pipe rig. The plate consists of a concentric hole with a 
diameter of 31 mm, giving a β ratio of 0.6. The plate is 2 mm 
thick. 
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Figure 2. Target flow field and computational grid around an 
orifice 

 
An actual orifice plate has edge around the concentric hole. 

In general, much computation grids are needed around an edge 
for accurate computation. Large number of computation causes 
large computation time. Therefore, we assume the orifice plate 
as a restriction to achieve short computation time, expecting a 
feedback effect to correct flow field. 

Staggered grid system is employed for stable computations. 
Grid spacing in radial direction is constant at 2.6 mm. In axial 
direction, grid spacing around the orifice plate is 2 mm, and 
increased by 1.2 times. 
 
FORMULATION 

The governing equations for the flow in a pipeline 
considered in this simulation are the non-dimensional Navier-
Stokes equations expressed in cylindrical coordinates; they 
include a feedback term and the equation of continuity and are 
given as follows: 
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The last term in Eq. (1) f represents the feedback value. The 
transport equations for k and ε are given as: 
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The model constants are selected as follows: σk = 1.0 σε = 1.3 
C1 = 1.44 C2 = 1.92 Cµ = 0.09. The temperature and physical 
properties of air were treated as constants (θ = 291 K, ρ = 1.21 
kg/m3, µ = 1.8×10-5 Pa·s). 

As the initial conditions, a uniform velocity equivalent to a 
Reynolds number of 3000 is assumed at the inlet boundary and 
an atmospheric pressure is assumed at the downstream 
boundary of the pipeline. 

At the upstream domain boundary, a uniform average axial 
velocity is imposed, whereas at the downstream boundary, the 
axial velocity gradient is assumed to be 0. 

Fine computational grids are generally required for 
computing flow in a viscous sublayer near a pipeline wall since 
there is a large velocity gradient in turbulent flow. For efficient 
computation, the wall functions are employed to reduce the 
number of the computational grid. To avoid performing 
computations in the viscous sublayer, the first grid node is 
considered to lie outside the viscous sublayer. The wall 
functions are used to form a bridge between the wall conditions 
and the first grid node. This enables near-wall boundary 
conditions for the mean flow and turbulence transport 
equations to be determined. In this paper, a log law was used 
for the wall. The wall boundary condition was specified by the 
following wall function [7]: 
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Here, UP and kp are the velocity and turbulent kinetic energy at 
a node near the wall, respectively. Y is the distance from the 
wall, τ is the shear stress on the wall, and ν is the kinetic 
viscosity. Values of 0.41 and 9.7 are assigned to the von 
Karman constant κ and the constant E, respectively. 
 
COMPENSATATION OF COMPUTATIONAL 
ACCURACY IN COARSE GRID 

The Following equation gives relation between flow rate 
through an orifice plate and differential pressure of the orifice; 

( )
ρ

βπ
β

α PRQ ∆

−
=

2

1
2

04
   (7) 

However, CFD with a coarse grid gives lower estimation of 
differential pressure caused by an orifice plate [8]. From 
consideration based on Eq. (7), this means that contraction 
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Figure 3. Feedback added to the vena contracta 

 
coefficient α is estimated larger than actual value. 

Therefore, we compensate for the estimation error by 
adding a feedback signal. In our previous study [5], the error in 
P1 between the measured and calculated values is defined in 
dimensionless form as follows: 

sim12
0

exp1
1 ,

, p
U

P
e −=

ρ
    (8) 

The feedback signal f is defined as 
( )p11p KIeeKPf ∑+−=    (9) 

A proportional plus integral (PI) controller, which is widely 
used in industrial process control, is employed as shown in Eq. 
(8). This feedback signal f is added to the control volume, as 
shown in Fig. 3. A conventional CFD that does not include f 
cannot produce results close to those of real flow using such a 
coarse computational grid. 
 
ESTIMATION OF INLET VELOCITY 

The differential pressure across the orifice ∆Psim is 
controlled by adjusting the inlet velocity. The error in ∆Psim 
between the measured and calculated values is defined in the 
same manner as for e2 as in Eq. (9). 

( ) sim
2

0exp2 pUPe ∆−∆= ρ .   (10) 
Figure 4. Computation flow chart 
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∆
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In this feedback, the proportional gain KPU must be 
normalized since the inlet velocity is used for 
nondimensionalization. Therefore, the following equations are 
expressed in dimensional form. The left-hand side of Eq. (13) gives the nondimensional 

response and it must be constant for any inlet flow rate. If the 
computation has converged, nondimensionalization using the 
inlet velocity will be valid. The nondimensional differential 
pressure ∆P will then be independent of the inlet flow rate. 

The inlet velocity increment at a certain stage of the 
calculation can be described using a constant proportional gain 
K as follows: 

( )simexp0 PPKU ∆−∆=∆ .   (11) 
Therefore, the term in parentheses in Eq. (13) will be a 

constant, so that the proportional gain can be described as: For a certain constant a, the following equality holds in 
convergent calculations: 

.constKP
P
K

==
∆

U
exp

 .               (14) 
exp2,exp 0, PaU ∆= .    (12) 

Dividing both sides of the equation, gives the following 
equation: 

The feedback signal added to the inlet velocity is given in 
nondimensional form as follows: 

( )U22expU0 KIeePKPu ∑+∆=∆ .      (15)  
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Figure 5. Apparatus of developed MI simulation 

 
FEEDBACK LAW 

The procedure of the computation is shown in Fig. 4. In 
addition to the ordinary procedure of the SIMPLE [9], 
feedback loops are added. 

Figure 5 shows the apparatus used for the developed MI 
simulation. The computed flow field that corresponds to the 
real flow field is constructed on a computer. The upstream 
pressure P1 and the downstream pressure P2 are measured for 
the MI simulation. Figure 5 shows the computation procedure 
of the proposed MI simulation. The proposed MI simulation 
uses three feedback loops: feedback control of the upstream 
pressure P1,sim , feedback control of the differential pressure 
∆Psim and line pressure. 

The upstream pressure P1,sim and the differential pressure 
∆Psim are controlled by PI controllers as outlined in the former 
chapters.  

The line pressure is controlled by a P controller with the 
feedback signal shown in Eq. (16), which calculates the error 
between the measured upstream pressure P2,exp and the 
computed upstream pressure P2,sim as shown in Eq. (9). 

( )sim2,exp2,line ppp −−=∆    (16) 
This feedback algorithm showed good results in steady 

condition. However, in unsteady condition, a computation with 
this feedback algorithm diverged. Therefore, feedback signal f 
in unsteady condition is assumed to be constant of the value 
obtained in the first time step of the computation. 
An immense over shoot phenomenon which brings longer 
computation time and unstable computation is caused when all 
feedback valuables are added from beginning of the 

 

Figure 6. Experimental apparatus 
 
computation. Therefore, feedback procedure is separated to 
four steps as described in the chapter of results and discussion. 
 
EXPERIMENTAL SETUP 

Figure 6 shows the experimental apparatus for unsteady 
flow experiments. The unsteady mass flow is generated using 
an isothermal chamber and a servo valve, as shown in Fig. 6 
[10]. A quick response flow sensor is used for the flow rate 
measurement [11]. The inlet flow rate was a sinusoidal 
oscillatory flow with an average flow rate of 8.5×10-3 m3/s, 
amplitude of 1.7×10-3 m3/s, and frequencies of 0.5 Hz to 10 Hz. 
A low-pass filter was used to process the measured data; the 
cut-off frequency of the filter was set at twice the generated 
frequency. Filtered data were used for feedback.  

Figure 7 shows the measurement points. Wall pressures 
point A to E and velocities on the center line of the pipe line 
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Figure 7. Measurement points 
 

Table 1. Feedback gains 
 KPU KIU KPP KIP

STEP 1 (Initial) 0 0 0 0 
STEP 2 (∑p’ < 100) 0.0019 0 0 0 
STEP 3 (∑p’ < 10) 0.0019 0 4 9 
STEP 4 (∑p’ < 1) 0.0019 10 4 9 

 
were measured early. A pressure at point A is P1, and a pressure 
at point B is P2. Only these two pressures were used for 
feedback. 
 
RESULTS AND DISCUSSIONS 

The effectiveness of the developed MI simulation in steady 
turbulent flow is confirmed in our former study. The 
computation without the feedback with the computation grid 
shown in Fig. 2 estimates differential pressure caused by the 
orifice about 40% lower. 

In this chapter, computation results of the MI simulation are 
compared to that of experiment in unsteady oscillatory 
condition. Feedback gains are configured by trial and error as 
shown in Table 1. The feedback gains are switched to next step 
values when the summation of correction pressures are less 
than a certain value.  

Figure 8 shows the comparisons of upstream pressure P1, 
downstream pressure P2 and center velocity at X = 40 mm 
between the MI simulation and the experiment in sinusoidally 
oscillating flow rate with the frequency of 10 Hz. In principle, 
no steady-state error of a controlled value remains in a 
feedback control with PI controller. As shown in Fig. 8, 
controlled values of upstream pressure P1 and downstream 
pressure P2 are the same values with that of the experiment. On 
the other hand, computation of velocity at X = 40 mm is no 
controlled directly. Although, a computation result of the 
velocity has minimal error. Figure 9 compares velocities at X = 
40 mm with the frequencies up to 8 Hz, and shows excellent 
agreement. The validity of the developed MI simulation in 
sinusoidally oscillating condition up to 10 Hz was confirmed. 
 
CLARIFIED PROBLEM 

However, new issues are risen. In feedback control of line 
pressure, a deviation between computed P2 and measured P2 is 
added to all computation grids. This caused a problem of  
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Figure 8. Comparisons of P1, P2 and velocity at X = 40 mm 
with the frequency of 10 Hz between experiment and the 
developed MI simulation 
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Figure 9. Comparisons of velocity at X = 40 mm up to 8 Hz 
between experiment and the developed MI simulation 
 
consistency with other feedback controls. As a result, 
convergent solutions are affected by the settings of feedback 
gains. Figure 10 shows variation of estimation of Q and 
feedback signal f against KPU. Other feedback gains are the 
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Figure 10. Variation of estimation of Q and feedback signal f 
against KPU at first computation time step 
 
same as shown in Table 1. When KPU was increased, 
estimation of inlet flow rate became larger than actual values, 
and correction effect of feedback signal f became smaller. This 
means that computation results depend on convergent speed of 
the feedback loop. 
 
CONCLUSION 

In this study, the developed MI simulation from wall 
pressure measurement using a turbulent model was evaluated in 
unsteady sinusoidal oscillating flow passing an orifice plate in 
a circular pipe. 

First, experimental measurements are conducted. Unsteady 
flow rate up to 10 Hz are generated with unsteady flow rate 
generator. Wall pressures and a center velocity are measured in 
each condition. Upstream pressure P1 and downstream pressure 
P2 are used for feedback control. 
   Then, the developed MI simulation was evaluated by 
comparing to the experiment. The effectiveness in computation 
accuracy up to 10 Hz was confirmed when feedback gains were 
configured adequately. It is clarified that computation results 
depend on convergent speed of the feedback loop. The problem 

will be fixed by developing a determination method of 
feedback gains or adding a new feedback point. They are our 
future challenge.  
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