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ABSTRACT 
To simulate the initial formation of sedimentary bedforms, 

constrained to be in hydraulically smooth turbulent flows under 

bedload conditions, a numerical model based on Large Eddy 

Simulation (LES) in a doubly periodic domain has been 

developed. The numerical model comprises three parts. Given 

the instantaneous bed geometry, the bed shear stress 

distribution is obtained from a Large-Eddy-Simulation (LES) 

method coupled with an Immersed-Boundary-Method (IBM). 

Flux is estimated by the van Rijn’s formula [1]. Finally, 

evolution of the bed surface is described by the Exner equation. 

“Two-dimensional bed” [2] and “three-dimensional bed” 

models employ, respectively, transversely averaged bed shear 

stress and instantaneous local shear stress to estimate the 

bedload flux. Based on this model, the evolution of an initial 

sand wave has been successfully computed. Compared to the 

“two-dimensional”[2] model, the three-dimensional model 

leads to a slightly slower propagation and a smaller sand wave. 

The tendency of the sand wave evolution in three-dimensional 

model is two-dimensional during the simulated interval. 

 

INTRODUCTION 
Subaqueous sand wave evolution is a common process, 

but there is still little understanding on the physics of this 

problem. Also there are important practical motivations for 

researchers to pursue this topic:  

 The presence of sand waves in river beds increases the 

flow resistance, which in turn changes flow fluxes and 

water levels. 

 Knowledge of sand wave sizes and propagation may help 

to estimate the rates of “bed load” transport of sediment. 

When the Froude number is subcritical, both “ripple” and 

“dune” are observed. These sand waves have a similar shape, 

i.e. a gentle gradually varying upstream slope and an abrupt 

downstream, but are distinguished from each other by their 

relation to the flow characteristics. Ripples are considerably 

smaller than dunes, and their size is essentially independent of 

the flow depth while dune height is strongly dependent on the 

depth of the flow [3]. 

The transport of sediment particles by a flow can be in the 

form of bed-load and suspended load, depending on the size of 

the bed material particles and the flow conditions [1]. Bedload 

is “the part of the total load which has more or less continuous 

contact with the bed.” Suspended load is “the part of the total 

load which is moving without continuous contact with the bed 

as the result of the agitation of the fluid turbulence.”[5]  

A conventional model for studying of bedload transport on 

a sediment bed includes a model to solve the flow field and 

thence the stress distribution on the bed surface, a model to 

transport the sediment along the bed, and a model to describe 

the evolution of the bed elevation according to the transport of 

the sediment.[6] 

The most difficult part seems to be how to solve the flow 

field, as one has to balance between the accuracy of the 

solution and the cost and complexity of the model. Among 

available methods which explicitly represent the turbulence, 

hence which can satisfy the above requirements, DNS (Direct 

Numerical Simulation), LES and RANS (Reynolds-Averaged 

Navier-Stokes equations) can be considered. DNS is far too 

costly, leaving LES and RANS as feasible candidates ([7], [8]) 

at present. Keylock et al [7]suggested that LES is preferable for 

fluvial geomorphic and sedimentological research, since most 

RANS models are intended for accurate representations of the 

mean flow field only. For example, Chang & Scotti [9] 

comparing LES and with a RANS k- model for separating 

flows over ripples, reported that RANS substantially under-

predicted Reynolds stress and over-predicted vertical velocity, 

while LES agreed very well with DNS and experiment. 

In this paper our attention is mainly focused on the initial 

evolution of subaqueous sedimentary ripples, based on 

computing a highly reliable simulation of the turbulent flow 

field. The numerical model has three parts: 1) bed shear stress 

distribution obtained from flow solution by a Large-Eddy-

Simulation (LES) method coupled with an Immersed-

Boundary-Method (IBM), 2) bedload flux estimated by the van 

Rijn’s formula [1], 3) evolution of the bed surface according to 

the Exner equation. Our “two-dimensional bed” and “three-

dimensional bed” models employ, respectively, transversely 

averaged bed shear stress [2] and instantaneous local shear 

stress to estimate the bedload flux. We simulated the formation 

process of the first ripple under hydraulically smooth 

conditions (grain Reynolds number Re 0.5p  ) in the 2D and 

3D models. We found that smaller-scale “microforms” appear 

on the bed surface in the three-dimensional model. Results of 

the 2D and 3D models are compared. 
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NUMERICAL MODEL 
To build a computational model to study the initiation and 

evolution of ripples, simplifying assumptions are unavoidable. 

The present work assumes that 

 The flow is hydro-dynamically smooth (the grain 

Reynolds number Re 2.5p  ), i.e. roughness of the bed is 

neglected [3];  

 Suspended sediment may be neglected, as only bedload 

transport is observed to dominate ripple formation 

[10][11][12][13]; 

 Time scale of flow development is much shorter than that 

of the bedform development [14]. Accordingly, the bed 

surface is treated as fixed while the flow field is solved in 

an interval of 100 time steps to allow the flow field to 

adapt to the new bed profile. 

 

The Governing Equations of Flow. 
The governing equations for LES coupled with IBM are 

the incompressible N-S equations, as filtered by a low-pass 

spatial filter. In IBM an artificial body force f is added to 

impose the no-slip condition of solid boundaries: 
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where “ ” indicates the filter operator, iu  is the filtered 

velocity component in i direction, i = 1, 2, 3, 

and     1 2 3, , , ,x x x x y z ,   is the fluid density, p is the 

dynamic pressure, ij is the sub-grid stress(SGS), and   is 

the fluid kinematic viscosity. 

The subgrid stress model is the Shear-Improved 

Smagorinsky model proposed by Lévêque et al. [15]: 
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,   and x y z    are the local grid spacings in the x, y, z 

directions, respectively. < > denotes “local ensemble average”, 

which is performed in the spanwise direction for models of 

two-dimensional bedload, and in both spanwise direction and 

along time in models of three-dimensional bedload. 

In IBM, the computational domain includes both the solid 

portions, s , and the fluid portions, f , on a fixed Cartesian 

grid system, and the same governing equations are applied on 

the whole domain; see Figure 1. The artificial body force f is 

added to the Navier-Stokes equation to account for the presence 

of the solid portions. IBM simplifies grid generation, and 

avoids regenerating the computational grid as the solid domain 

changes shape.  

The artificial force f is used to represent the solid parts. 

Therefore, f should exist only on the solid portion, i.e. 

0 in i ff    

There are many strategies for the artificial body force f. 

Fadlun et al. [16] proposed a linear velocity interpolation 

method. The velocity of the point nearest to the solid surface is 

computed via a linear interpolation so that it satisfies 

0iu  right on the solid boundary (fixed bed). As shown in 

Figure 2, let   and   be the grid spacing and the distance 

from the point outside but nearest to the solid surface, 

respectively; ,i computedu be the velocity obtained from equation 

(1a) and (2a) at the point outside, but nearest to the solid 

surface; and ,i forcedu is the imposed velocity at the point inside 

but nearest to the solid surface. According to Fadlun et al. [16], 

,i forcedu  can be computed as following: 

, ,i forced i computedu u





           (4) 

The governing equation (1a) and (2a) are 

nondimensionalized by fluid density  , mean friction velocity 

0u and total flow depth H. Each variable in equation (1a) and 

(2a) is nondimensionalized as followings: 

 
Figure 1 An example of IBM grid for computing flows over a 

wavy bed 

 
 

Figure 2 Forcing strategy in IBM 
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where “ ” indicates a nondimensionalized parameter. The 

governing equations become: 
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Boundary Conditions 
Periodic boundary conditions are applied in the stream (x) 

and span (z) directions. No-slip conditions are applied at lower 

boundary and free-slip conditions on upper boundary.  

The artificial force f by IBM can be replaced by an 

implicit boundary condition: The velocities at the points inside 

s  but nearest to the bed surface are computed by equation 

(4). 

Sediment Motion 
In the present model, the shear velocity u  is computed 

from the shear stress, as averaged during an interval of 100 

LES time steps: 
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where u  is the time-averaged velocity component along the 

bed surface, and   is the surface-normal direction. In our 

model, we use two definitions of u : transversely averaged 

velocity in two-dimensional bed model and local velocity in 

three-dimensional bed model.  

0  is the mean Shields number: 

 

2
0

0

1

u

s gd


 


,        (6) 

where s is the ratio of grain density to fluid density, d is the 

grain diameter, and Re p  is the grain Reynolds number: 
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The local Shields number   is: 
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There are a number of formulae for bedload transport 

proposed in the literature [17]. Most of them are valid only for 

high grain Reynolds numbers. To our knowledge, the only 

formula that is also valid for low grain Reynolds numbers is the 

equilibrium bedload flux equation by van Rijn [1]: 
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where eqq  is the equilibrium bedload flux, and d  is the 

particle mobility parameter: 
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and T is the transport stage parameter 
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T
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and c  is the critical Shields parameter. Kovacs and Parker 

[18] proposed a vectorial formulation for c  on combined 

transverse and longitudinal sloping beds: 
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where 0c  is the critical Shields number for zero-slope bed, 

ŝ  is the direction of shear stress, nk  (respectively, tk ) is the 

component of the unit vertical vector normal (tangent) to the 

tangent plane to the bed surface. The friction angle s  is 

reported in the range of tan s =[0.35-0.72] with an average of 

tan s =0.63[14].  

According to Kennedy [19] and Nakagawa & Tsujimoto 

[20], one of the principal causes of the bed instability is a phase 

lag between the sediment transport and the bed shear stress. To 

model this lag, or the non-equilibrium nature of sediment 

transport, “the rate of sediment exchange between bed and flow 

was assumed proportional to the difference between the actual 

instantaneous sediment load and the equilibrium sediment load, 

and related to the so called non-equilibrium adaptation length, 

which characterizes the distance for sediment to adjust from a 

non-equilibrium state to an equilibrium state” [21]. Quantifying 

this concept, Bui et al. [22] proposed a two-dimensional non-

equilibrium bed-load transport equation: 
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where bq  is the local bedload transport rate, x is the 

longitudinal direction, z is the transverse direction,  ,   are 

the direction cosines determining the components of bq , i.e. 

the direction cosines of ŝ  in x and z directions, determined by 

equation (12);  =1,  =0 in two-dimensional bedload model. 

eql  is the adaption length. Significant dependence of results on 

the adaptation length parameter has been reported[23], [24], 

[25]; here we adopt the adaption length taken as the average 

saltation step length proposed by van Rijn [1]: 
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Evolution of the bed surface is described by the Exner 

equation  
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where h  is the evolution of the bed surface and n is the 

porosity of the bed material. 

Figure 3 shows the main computational procedure of the 

model. The three-dimensional flow field is solved by LES 

coupled with IBM while the bed surface is fixed. Governing 

equations are solved in staggered grid with 4th order central 

discretization in space and 2nd-order Adams-Bashforth method 

for time marching [26]. After solving this hydrodynamic model 

over 100 time steps, the time- averaged flow field is applied to 

compute the bed shear stress. Then the bedload flux is 

estimated by van Rijn’s formula [1], and the bed surface is 

updated by the Exner equation. We use both the two-

dimensional model proposed by Nguyen & Wells [2], in which 

transversely averaged bed shear stress is applied to estimate the 

sediment flux, and the three-dimensional model according to 

our recent research, applying local shear stress which is non-

uniform in the spanwise direction. These three steps are iterated 

continuously. 

 

MODEL VALIDATION  
The time-averaged bed shear stress distribution computed 

by the present LES+ IBM code for flows over fixed sinusoidal 

beds in which there is strong separation, has been compared to 

the body-fitted DNS results by De Angelis et al [27] for which 

the wave length 01.04 ,  Re 170H    , wave height 

0.5H  . The grid is (256 × 96 × 64) or (128 × 72 × 64) points 

in a domain of   ( 4xH H ) × ( yH H ) × ( zH H ), 

with x
   30.0,  z

   minand 0.93y
  . The boundary 

conditions are the same in both the LES+IBM and the DNS. In 

the  x and z directions, the flow is assumed periodic. The 

lower wall is no-slip, while the upper one is free-slip. The 

computed bed shear stress distributions are plotted in Figure 4 

together with the DNS results. The LES+IBM code is tested 

with two different grid resolutions; good agreement can be 

observed. Comparing the results between the two 

computational methods, the agreement is seen to be excellent in 

this test. More details and validation of the two-dimensional 

model can been found in Nguyen & Wells [2]. 

Another test of the first wave evolution from an initial bed 

profile with one sinusoidal half-wave in two-dimensional 

model has been studied [2]. H = 300, and 0  = 0.55 the 

grid is (256 × 72 × 32) points in a domain of   ( 7.68xH H ) 

× ( yH H ) × ( 0.96zH H ) with 

30.0,  x z
      minand 0.93y

  . The depth of sand is 0.05H 

and the height of the initial sand wave is 0.002A H . The time 

step is 41.0 10t    , and it takes about 50 hours to compute a 

series of 52.0 10  time steps on a standard workstation. 

In the two-dimensional model by [2], Re p  was varied in 

the range [0.5, 2.5]. The wave lengths of the ripples obtained at 

each Re p  are plotted in Figure 5, together with the 

experimental results by Kuru et al. [28], Coleman and Melville 

[11], Coleman et al. [12], and Langlois and Valance [13]. That 

the computed points are distributing on the lower limit of the 

experimental ones shows the agreement between them. Results 

differ since we are at present short of some factors that 

determine sediment transport, such as the friction angle s , and 

the development time varies between the experiments. 

 
Figure 3 Computational procedure 

 

Figure 4 Shear stress distribution over fixed sinusoidal beds, 

LES+ IBM, with two different grids, vs. body-fitted DNS 

results by De Angelis et al [27]. (Figure from Nguyen & Wells 

[2]) 

 

Equation (1b) & (2b) 

Equation (5) 

Equation (13) 

Equation (15) 
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NUMERICAL RESULTS AND DISCUSSION 
Figure 6(a) shows an example of the evolution from an 

initial bed profile of the second test above [2] when Re p =0.5. 

The bed profile is plotted at different nondimensionalized 

times, 0 /t tu H . From the crest of the initial wave, shown 

in Figure 6(a), the crest of the initial wave first grows in height, 

as in Figure 7. The wave crest then broadens streamwise until 

the downstream end of the wave starts being eroded strongly, 

with the scoured sediment deposited further downstream, at 

5.3t  in this example. Once two troughs can be identified fore 

and aft of the wave, the wave is identified as “sand-wavelet”. 

Figure 8 is the profiles of sediment flux bq , bed shear 

stress 0 / < 0 > , and bed level Y
+
 over the “sand-wavelet” 

when 6.0t  , at which the first sand wavelet has appeared and 

begins to propagate downstream. Nguyen & Wells [2] 

suggested that the peaks of the friction velocity distributions are 

always before the peaks of the “sand-wavelet”. In Figure 8, the 

peaks of the curves are distinguished, but we can see the trough 

of the shear stress occurs before the trough of the bed surface, 

i.e. there is a phase lag between the two. The lag eql  between 

the shear stress and the sediment flux is barely distinguishable 

in this figure. We can also see from the figure that such a “sand-

wavelet” does not cause flow separation, i.e. the shear stress is 

positive everywhere. The waves growth in height is also due to 

the phase lag between the bed shear stress and the bed profile. 

The peak of the bed shear stress distribution is upstream of the 

peak of the bed profile. After the peak of the bed shear stress, 

the longitudinal gradient of bed shear stress gradient turns 

negative, which helps the peak of the wave in bed height 

amplify further. 

 
Figure 5 Length of the first sand wave developing from a flat 

bed: numerical [2] vs. experimental results.  

a)  

 
b) 

Figure 6 Initial bed shape for the two-dimensional model (a) 

and three-dimensional model (b). The height of the initial sand 

wave is y =1. 

 

 Section A 

Figure 7 Profiles of the first sand wave developing at bed 

with an initial perturbation of one sinusoidal wave in two-

dimensional model. Flow from left to right. From bottom: 

0.2,  4.0,  5.3,  6.0.t   The first sand wave is identified at 

5.3t  . 

 



 6 Copyright © 2010 by ASME 

A three-dimensional bedload model has also been applied 

to compute the sediment transport. Again, we employ a fully 

3D turbulent flow solver. The difference between these two 

models is that we use the local shear stress instead of the shear 

stress averaged in the z direction over the entire width, to 

estimate the fluxes of three-dimensional bedload transport. 

Also, a fourfold wider domain is adopted to weaken the 

periodicity constraint. With a domain of   ( 7.68xH H ) × 

( yH H ) × ( 3.84zH H ), the number of grid points is about 

250,000(256 × 72 × 128). And it takes about 150 hours to 

compute a series of 52.0 10  time steps.  

As shown in Figure 6(b) the initial three-dimensional sand 

wave occupies the center of the domain, and the height of the 

sand wave is y =1. Figure 10 shows the three-dimensional 

bed planform of the first sand wave developing from the three-

dimensional wave in Figure 6(b); we can see small three-

dimensional perturbations appear on the bed surface when 

0.2t  . Like the two-dimensional model, the sand wave grows 

in height at the beginning, then at 4.0t  the downstream 

trough (the blue region) becomes deeper with the growing of 

the crest (the yellow-red regions. Also, by checking the 

downstream ends (right side) of the trough and crest when 

 6.0t  , we can see the propagation of the ripple is not 

symmetrical in the z direction.  

Continuing from Figure 9, Figure 10 shows the subsequent 

development of the three-dimensional bed planform at 

8.0,  16.0,  24.0t  . The width of the ripple keeps growing 

stream-wise, but the downstream end of the trough is 

approximate parallel to the z direction. Any three-dimensional 

quality of ripple propagation becomes unclear at this stage. 

Figure 11 compares the instantaneous bed surfaces in the 

central x-y plane (blue lines), surfaces averaged in z-direction 

(green lines) and results from the two-dimensional model (red 

lines) when 8.0,  16.0,  24.0t  . As in Figure 8 the upstream 

face (left side) of the sand wave experiences a strong positive 

gradient of the bed shear stress, or equivalently of the bedload 

flux, leading to bed erosion according to the Equation (15). 

After maintaining positive gradient, the bed shear stress reaches 

a peak and then experiences negative gradient before returning 

to the average value. Due to the negative gradient of the bed 

shear stress, sediment is deposited. This explains the fact that 

the scoured sediment is deposited over the area just 

downstream of an existing wave to form a new wave. The more 

the sediment is scoured around, the deeper that trough becomes, 

which the stronger the gradient of the bed shear stress. 

Accordingly, the sand wave is continuously fed and grows 

gradually. The sediment is scoured over the upstream face 

where the gradient is positive and deposited in the lee where the 

 

 
Figure 9 Three-dimensional bed planform of the first sand 

wave developing at the three-dimensional sand wave in Figure 

6(b). From bottom: 0.2,  4.0,  6.0t  . 

 

 

 

 
Figure 8 Profiles of sediment flux and bed shear stress over 

the “sand-wavelet” when 6.0t   (Section A in Figure 7) 

From top to bottom: sediment flux bq ; bed shear stress 0 / 

< 0 > , bed level Y
+
.  
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gradient is negative. This process makes the wave propagate 

downstream. Compared to the two-dimensional model, the 

three-dimensional model yields a slightly slower propagation 

and smaller sand wave during the duration simulated.  

The difference between the instantaneous bed surface in 

the central x-y plane and the z-averaged surface reflects the 

non-uniform profiles in the span direction. We can see from 

these figures that the instantaneous bed surface in the central x-

y plane and the surface averaged in the z-direction match better 

when 24.0t  , which means the tendency of the ripple growth 

is two-dimensional.  

 

CONCLUSIONS  

A numerical model has been developed to simulate the 

initial formation of ripples, in hydraulically smooth turbulent 

flows under bedload conditions. A simulation of the evolution 

of the initial bed profile with small perturbations has been 

studied. Two kinds of bed models, “two-dimensional”[2] and 

“three-dimensional” have been applied. 

The initiation and propagation of ripples from flat beds 

with a half-sinusoidal wave have been simulated. The 

relationship of sediment evolutions and bed shear stress has 

been discussed and results are compared between “two-

dimensional”[2] and “three-dimensional” models, and to the 

authors’ knowledge, this is the first work ever reported on the 

numerical simulation of initial evolutions of three-dimensional 

ripples. The three-dimensional model leads to a slightly slower 

propagation and a smaller sand wave. But the tendency of the 

sand wave evolution in three-dimensional model is two-

dimensional during the interval simulated So the two-

dimensional model could be reasonable. Further results are still 

needed to check the validity of the two-dimensional model. 

Up to the present, our 3D bed model has just been tested with 

a representative value grain Reynolds number Re p =0.5. As 

shown in Figure 3, Re p =0.5 is near the smallest experiment 

value in available literature. However, more tests with Re p  

varying in the range [0.5, 2.5] are needed. Beyond that, it is 

important to extend the LES-IBM technique to handle 

transitional roughness, i.e. Re p  > 2.5. 
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