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ABSTRACT
This paper is concerned with the propagation of uncertain-

ties in the values of turbulence model coefficients and parame-
ters in turbulent flows. These coefficients and parameters are de-
termined from experiments performed on elementary flows and
they are subject to uncertainty. The widely used k− ε turbulence
model is considered. It consists of model transport equations for
the turbulence kinetic energy and rate of turbulent dissipation.
Both equations involve various model coefficients about which
adequate knowledge is assumed known in the form of probabil-
ity density functions. The study is carried out for the flow over
a 2D backward-facing step configuration. The Latin Hypercube
Sampling method is employed for the uncertainty quantification
purposes as it requires a smaller number of samples compared
to the conventional Monte-Carlo method. The mean values are
reported for the flow output parameters of interest along with
their associated uncertainties. The results show that model coef-
ficient variability has significant effects on the streamwise veloc-
ity component in the recirculation region near the reattachment
point and turbulence intensity along the free shear layer. The
reattachment point location, pressure, and wall shear are also
significantly affected.

NOMENCLATURE
A1 beta distribution parameter
A2 beta distribution parameter

∗Address all correspondence to this author.

B wall function parameter
Cε1 k− ε model constant
Cε2 k− ε model constant
Cµ k− ε model constant
C f friction coefficient
C f out fully developed friction coefficient
Cp pressure coefficient
G kernal density bandwidth
h step height
hi backward-facing step inlet height
H backward-facing step channel height
IT nondimensional turbulence intensity
K kernal
k0 turbulence kinetic energy at reference time
k turbulence kinetic energy
Lc backward-facing step channel length
Li backward-facing step inlet length
n decay rate
N number of samples
p beta distribution parameter
P rate of production of turbulent kinetic energy
P0 centerline inlet pressure
q beta distribution parameter
Re Reynolds number
S mean shear rate
t time
U inlet velocity
Ui Reynolds-averaged velocity component in i direction
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U0 centerline inlet velocity
ui fluctuation of the velocity component in i direction
uτ local wall-shear velocity
xr reattachment point
y+ distance from the wall

Greek
αw Weibull distribution shape parameter
βw Weibull distribution scale parameter
δ kronecker delta
ε0 dissipation rate at reference time
ε dissipation rate
κ von Kármán constant
µ mean
µl lognormal mean
µ f dynamic viscosity
ν kinematic viscosity
νT turbulent viscosity
ρ density
σl lognormal standard deviation
σ standard deviation
σk k− ε model constant
σε k− ε model constant
τ turbulence time scale
τw wall shear stress

INTRODUCTION
Until recently, computational fluid dynamics (CFD) analy-

sis methods have been entirely deterministic meaning that single
values of the input variables and physical constants are used to
calculate single estimates of the fluid flow behavior. However, in
reality the input data are not known exactly and they contain un-
certainties [1]. In particular, such uncertainties exist for the coef-
ficients associated with turbulence model which are available for
the CFD analysis of turbulent flows.

In order to achieve a numerical solution of a turbulent flow,
the Navier-Stokes equations of motion which encompass the
physical principles of the conservation of mass and momentum
need to be solved. Direct numerical simulations (DNS) of these
equations in the case of turbulent flows are currently not feasible
for flows with high Reynolds numbers which are of practical in-
terest. The reason is that at high Reynolds numbers, the smallest
scales of the flow turbulence compared to the geometrical scale
of the flow is so small that resolving all scales is not numerically
possible with present computational resources. One commonly
used method to overcome this issue is to solve the Reynolds-
averaged Navier-Stokes (RANS) equations instead. With the use
of these equations new unknown terms arise and warrant the need
for additional relations in order to close the system of equations.
These relations are built up through turbulence models. Because

these turbulence model approximations have been tuned through
some coefficients based on elementary experiments, which are
statistical processes, uncertainties are inherent in the models.
An uncertainty quantification methodology is developed and em-
ployed in this paper to study the propagation of these uncer-
tainties in a backward facing step flow. In the context of tur-
bulence, similar studies through other methodologies have been
performed by Platteeuw et al. [2] for RANS, and Lucor et al. [3]
and Jouhaud et al. [4] for Large-eddy Simulation (LES).

There are various turbulence models available in the liter-
ature [5] with the two-equation standard k− ε model [6] being
perhaps the most popular one. The standard k− ε model can be
found in almost all commercial codes utilized for the CFD anal-
ysis of turbulent flows. In the current work we assume that there
are uncertainties in the values of coefficients used in this model
and we make use of available information in the literature about
them to construct their probability density functions (PDFs) [7].
We emphasize that this paper does not stand to prove the accu-
racy of the k− ε model but is concerned with the uncertainties
of the coefficients and subsequent effects of their propagation
through the model to flow variables as outputs.

The Latin Hypercube Sampling (LHS) technique [8–10] has
been adopted in this work for uncertainty quantification pur-
poses. LHS is a variation of stratified sampling that can be
applied to multiple variable optimizations as a method to alle-
viate the shortcomings of deterministic methods [11, 12]. The
LHS method is commonly used to reduce the number of samples
necessary in the conventional Monte-Carlo method to achieve a
reasonably accurate random distribution [13]. Whereas the con-
ventional Monte-Carlo method picks sampling points at random
within the domain, LHS method samples the entire domain in a
more systematic manner.

TURBULENCE MODEL DESCRIPTION
The k− ε turbulence model consists of a model transport

equation for the turbulence kinetic energy k and another model
transport equation for the turbulence dissipation rate ε. Using
Einstein notation these equations, respectively, read [5]

∂k
∂t

+Ui
∂k
∂xi

=
∂

∂x j

(
νT

σk

∂k
∂x j

)
+P− ε, (1)

and

∂ε

∂t
+Ui

∂ε

∂xi
=

∂

∂x j

(
νT

σε

∂ε

∂x j

)
+Cε1

Pε

k
−Cε2

ε2

k
. (2)

The turbulent viscosity νT in Eqs. (1) and (2) is calculated by

νT =Cµ
k2

ε
. (3)
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Modeling Reynolds stresses uiu j through the turbulent-viscosity
hypothesis [5] by

uiu j =
2
3

kδi j−νT

(
∂Ui

∂x j
+

∂U j

∂xi

)
, (4)

the production term P seen in Eqs. (1) and (2) and defined by

P =−uiu j
∂U j

∂xi
, (5)

can be calculated.
For applications near the viscous wall, with a considerably

lower local Reynolds number, the k− ε model has been shown
to achieve poor results. The reason is that this model is basically
derived making a high Reynolds number assumption in the tur-
bulent flow. In order to alleviate the wall issue of the k−ε model,
the use of wall function models along with this model is a com-
monly practiced. The log law of the wall due to von Kármán [14]
is

u+ =
1
κ

lny++B, (6)

where, κ is the von Kármán constant and the parameter B is an
empirical constant as a function of the smoothness of the wall.
The log-law relation has been confirmed to hold true for the re-
gion y+ > 30 [5].

Values of model constants seen in Eqs. (1-3) are given by
Launder and Sharma [15]

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (7)

The influence of uncertainties of these values and those of B and
κ seen in Eq. (6) in the flow is the main subject of current study.

PROBABILITY DENSITY FUNCTIONS OF MODEL CO-
EFFICIENTS

In order to quantify the uncertainty in the turbulence model
coefficients, their probability density functions are used. There
are a total of eight uncertain quantities including five k−ε model
coefficients, two wall function parameters, and the turbulence
intensity at the inlet boundary condition. The PDFs for the tur-
bulence model coefficients and wall function parameters are es-
timated using the data available for them in the literature [5].

In the current work, EasyFit sofware, a product of Math-
Wave Technologies, is utilized to estimate the PDF from avail-
able data for each uncertain quantity. EasyFit proposes various

estimated PDFs while ranking them according to the ‘goodness
of fit’ criteria which is measured in terms of the Kolmogorov-
Smirnov function [16]. Among the ranked PDFs proposed by
EasyFit, we choose the one with the highest possible rank which
can be given as an input to the LHS software. We use Sandia Na-
tional Laboratories LHS software in this study and not all types
of PDFs outputted by EasyFit can be given as inputs to this LHS
software .

The probability density function for the coefficient Cµ in
Eq. (3) is obtained from statistical correlations made through the
comparison of DNS and experimental results of a fully developed
turbulent channel flow [17]. The values of this coefficient are ex-
tracted from the DNS data by rearranging the turbulent viscosity
equation in terms of Cµ

Cµ =
νT ε

k2 . (8)

We only consider Cµ values in the range of y+ > 50, a condition
in which Cµ, in average, remains constant [5]. Fluctuation of Cµ
about this average is modeled by a Weibull distribution [18] with
shape αw = 45.54 and scale parameter βw = 8.77× 10−2. The
Weibull distribution is given by

f (x) =
αw

βw

(
x

βw

)αw−1

exp
[
−
(

x
βw

)αw]
. (9)

Cε2 seen in Eq. (2) is the next coefficient for which a PDF
is assigned. Experimental values reported by Mohamed and
LaRue [19] for a gird-generated decaying homogenous turbu-
lence are used to construct the PDF for this coefficient. Specif-
ically, the decay factor data found in their experiment is utilized
to obtain values for Cε2. For decaying homogenous turbulence
Eqs. (1) and (2) are, respectively, simplified to

dk
dt

= P− ε, (10)

and

dε

dt
=Cε1

Pε

k
−Cε2

ε2

k
. (11)

When considering no velocity gradients, the production is zero
and the turbulence decays. The k− ε equations take the form

k(t) = k0

(
t
t0

)−n

, (12)
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and

ε(t) = ε0

(
t
t0

)−n+1

, (13)

where k0 and ε0 are the turbulence kinetic energy and dissipation
rate, respectively, at a reference time t0

t0 = n
k0

ε0
. (14)

The decay exponent n is

n =
1

Cε2−1
. (15)

By rearranging, Cε2 is obtained as

Cε2 =
n+1

n
. (16)

Using the data from the experimental values for the decay ex-
ponent reported by Mohamed and LaRue [19], the value for Cε2
can be derived. The experimental reported values are seen to
yield a nominal value of 1.77; however, it has been shown that
Cε2 = 1.92 yields better results [5]. The distribution is appropri-
ately adjusted to yield a mean value of 1.92. Parameters associ-
ated with this distribution are A1 = 1.61, A2 = 2.49, p = 4.21,
and q = 7.66.

The uncertainty in Cε1 utilized in Eq. (2) is determined
through its relation to the model coefficient Cε2. Pope [5] dis-
cusses the relation based on the experimental observations made
in the homogeneous shear flow. According to these observations
the Reynolds stresses are self-similar in the homogenous shear
flow. Therefore, the non-dimensional parameters of Sk/ε and
P/ε become constant for a constant mean shear rate S. As a con-
sequence of this constancy one obtains

d
dt

(
k
ε

)
=

dτ

dt
= (Cε2−1)− (Cε1−1)

(
P
ε

)
. (17)

As stated by Pope [5] the model predicts that τ remains constant
for a particular value of P/ε. This value is

P
ε
=

Cε2−1
Cε1−1

≈ 2.1. (18)

It is seen in this equation that Cε1 is correlated to Cε2 and can be
expressed as

Cε1 =
1(P

ε

)k−ε
Cε2 +

(P
ε

)k−ε−1(P
ε

)k−ε
. (19)

Having sampled Cε2 via the LHS, Cε1 is calculated from this cor-
relation for each sample.

The model coefficient σk in Eq. (1), which is considered as
the ‘turbulent Prandtl number’ for kinetic energy, in general, is
set to σk = 1 [5]. There has been no data available in the liter-
ature in order to estimate a PDF for this coefficient. So in an
ad hoc manner we use a normal distribution with µ = 1.00 and
σ = 1.67×10−2 for this parameter.

The PDF for σε in Eq. (2) is determined by observing the
behavior of the flow in the log-law region and assuming a high
Reynolds-number flow in a fully developed channel flow. U , k,
and ε quantities are solely dependent on y so k and ε equations,
respectively, simplify to

0 =
d
dy

(
νT

σk

dk
dy

)
+P− ε, (20)

and

0 =
d
dy

(
νT

σε

dε

dy

)
+Cε1

Pε

k
−Cε2

ε2

k
. (21)

In the log-law region P = ε = u3
τ/κy [5]; therefore, the diffusion

term is zero implying a uniform k. The equality of P and ε in
ε equation results in a net sink equal to −(Cε2−Cε1)ε

2/k that
varies as y−2. The net sink is balanced by the diffusion of ε away
from the wall and the ε equation is satisfied by the relation

ε =
Cµ

3/4
κ3/4

κy
, (22)

leading to the following correlation for the constants

κ
2 = σεCµ

1/2 (Cε2−Cε1) . (23)

Thus, using this equation σε can be calculated from κ, Cµ, and
Cε2 for each sample of LHS.

The PDF of the wall function constant κ is found using the
log-law relation in Eq. (6). The commonly used values for the
parameters in Eq. (6) are κ = 0.41 and B = 5.20 determined from
the DNS performed by Kim et al. [17] in a turbulent channel flow.
There is some variation in literature for the experimental values
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Table 1. Turbulence Model Coefficients Distributions.

Cµ Weibull αw = 45.54 and βw = 8.77×10−2

Cε2 beta A1 = 1.61, A2 = 2.49,

p = 4.21, q = 7.66

σk normal µ = 1.00 and σ = 1.67×10−2

κ normal µ = 0.41 and σ = 4.89×10−3

B normal µ = 5.20 and σ = 0.10
!
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!
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H 

i
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Figure 1. BACKWARD-FACING STEP GEOMETRY.

for these parameters, but most authors agree within 5% of these
values. The log-law relation Eq. (6), in the region y+ > 30, is
used to obtain the PDF for κ. In order to do so, the mean value
for the smoothness parameter B = 5.20 is held constant and the
data for κ is taken from the numerical data reported by Kim et
al. [17]. As a result, the PDF for κ is determined to be a normal
distribution with µ = 0.41 and σ = 4.89×10−3.

The PDF of the wall function parameter B is also obtained
using the log-law relation Eq. (6) and the reported data of Kim
et al. [17]. κ is set to 0.41, with the same restriction of y+ > 30,
and then the values for the parameter B are obtained. The PDF
for B is set to a normal distribution µ = 5.20 and σ = 0.10.

Table 1 summarizes the PDFs considered for three coeffi-
cients of the k−ε model, the wall function parameters, and turbu-
lence intensity. We recall that model coefficient Cε1 not tabulated
in this table, depends on Cε2 and can be calculated from Eq. (19)
for each sample. σε, the other model coefficient which is not tab-
ulated in the table either, can be calculated through Eq. (23) in
terms of κ, Cµ, Cε1 and Cε2 for each sample.

We also consider uncertainty in the value turbulence inten-
sity at the inlet boundary with a mean of 5% of the mean inlet
velocity U . The considered PDF for IT is a normal distribution
with µ = 0.05 and σ = 8.33×10−4.

BACKWARD-FACING STEP FLOW
We conduct our study for a turbulent flow over a backward-

facing step displayed in Fig. 1. This configuration is considered
as an important benchmark problem for testing new develop-
ments in the area of CFD as it provides valuable information use-
ful to many practical situations. This is due to the fact that many

actual flow situations are characterized by the flow separation of
the boundary layer and the subsequent reattachment of the flow
downstream, which is a flow structure also seen in the backward-
facing step. In this study, the step expansion ratio defined as step
height to outlet channel height is h/H = 1/3 (Fig. 1). The val-
ues used in this study for the channel lengths are Li = 5h and
Lc = 30h. It has been shown that these values are large enough
so that they do not influence the main flow structure [20]. The di-
mensions of the backward-facing step configuration used in our
study is the same as that in the experimental study of Kim et
al. [21]. The Reynolds number based on the inlet centerline ve-
locity and the outlet channel height is ReH = 132000.

The process of quantifying the uncertainties is done by uti-
lizing the LHS technique in order to obtain a smaller number of
sample setups for the CFD analysis. The uncertainties in the k−ε

model coefficients along with the wall function parameters and
turbulence intensity are found by sampling from their individ-
ual PDFs. We set the number of samples in the current study to
100. Each sample is run by an open source CFD software, Open-
FOAM, a product of the commercial company OpenCFD Ltd.
Using this software and accounting for no uncertainties, we have
been able to regenerate results obtained by another study [22] on
the same backward-facing step we consider. The study reported
in [22] has found that a finite-volume method with a 200× 100
unstructured mesh yields results within 0.3% of the grid inde-
pendent solution. We have used the same resolution for all LHS
samples required for the uncertainty quantification.

RESULTS
Fig. 2 shows the profiles of the velocity component at x di-

rection at various locations past the backward-facing step. The
mean streamwise velocities are normalized by the inlet velocity.
The mean velocity profiles are indicative of the expected charac-
teristics for flow over the backward-facing step and compare well
with the experimental results obtained by Kim et al. [21]. The
uncertainty appears to be the largest in the recirculation region
and closer to the bottom wall specifically near the reattachment
point. The recirculation region is characterized by the primary
large recirculating eddy, alternating the orientation of stream-
wise velocities. At the reattachment point the streamwise veloc-
ity returns to a positive orientation and downstream of this point
returns to a boundary layer flow. Close to the bottom wall in
Fig. 2d, where the velocity profiles are displayed at x = 5.33 and
x = 6.22 which are very close to the location of the reattachment
point, the largest level of uncertainty of the streamwise velocity
component is observed.
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Figure 2. STREAMWISE VELOCITY PROFILES WITH 6σ UNCERTAINTY ERROR BARS (— COMPUTATIONS; O EXPERIMENTS OF KIM et al.,
1987).
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Figure 3. TURBULENCE INTENSITY PROFILES WITH 6σ UNCERTAINTY ERROR BARS (— COMPUTATIONS; O EXPERIMENTS OF KIM et al.,
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The profiles of the nondimensional turbulence intensity de-
fined by IT =

√
u′u′/U0, where u′ is the turbulence fluctuation

of the the velocity component at x direction, are shown in Fig.
3 at selected locations past the step. The turbulence intensities
are also normalized by the inlet velocity. The comparison be-
tween computational and experimental values of the turbulence
intensity seen in Figs. 3c and 3d reveals good agreement be-
tween them slightly deviating closer to the reattachment point in
the recirculating zone. The spatial variation of uncertainty in the
value of the computed turbulence intensity along y direction is
observed in Fig 3 to be a strong function of the x locations where
the profiles are displayed. Uncertainty in the turbulence intensity
seems to be the largest in the recirculation region as seen in Fig.
3(a) and (b). Specifically, uncertainty is much larger in a region
limited between y = 0 and y/h ≈ 1 than that for other values of
y. However, further downstream seen in Figs. 3c through 3f, the
region with high uncertainty in the value of turbulence intensity
is shifted towards the core flow in the channel.

Figs. 4a and 4b show the spatial variation of the static pres-
sure normal to the surface represented by the wall pressure coef-
ficient along with its uncertainty at the top and bottom walls past
the step, respectively. The pressure coefficient is defined by

Cp =
2(P−P0)

ρU0
2 , (24)

where P0 and U0 denote the centerline pressure and velocity at the
channel inlet, respectively. The mean pressure coefficient pro-
files compare well with the experimental results obtained by Kim
et al. [21]. The uncertainty in the pressure coefficients seems to
be the largest in the vicinity of the reattachment point on both
top and bottom walls. Interestingly, the uncertainty in the value
of CP vanishes downstream of the flow on both top and bottom
walls.

The wall shear stress can be seen in Fig. 5 at selected loca-
tions along the bottom wall past the step. The wall shear stress is
defined by

τw = µ f
∂U
∂y

∣∣∣∣
y=0

. (25)

Also, the dimensionless form of the wall shear stress C f is de-
fined by

C f =
2τw

ρU0
2 . (26)

Fig. 5 shows C f /C f out , where C f out denotes C f at the fully de-
veloped outlet, plotted against the normalized distances (x−
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Figure 4. PRESSURE COEFFICIENT ALONG THE (a) TOP WALL AND
(b) BOTTOM WALL WITH 6σ UNCERTAINTY ERROR BARS (— COM-
PUTATIONS; O EXPERIMENTS OF KIM et al., 1987).

xr)/xr [23]. The wall shear ratio profile is compared to the ex-
perimental values obtained by Driver and Seegmiller [24] who
conduct their study for an expansion ratio of h/H = 1/9 and ob-
tain a reattachment point of xr/h = 6.26. Their experimental re-
sults are scaled and then compared to our numerical results. The
uncertainty in the wall shear stress ratio along the bottom wall is
shown to be also the largest in the vicinity of the reattachment
point; however, it does not taper as much as the pressure coeffi-
cient does. It maintains significant uncertainty in its value fully
downstream.

Because of the importance of the location of the reattach-
ment point, the variation of the reattachment point is also inves-
tigated. The reattachment point is found by locating the point
where the wall shear stress becomes exactly zero. This is done
by determining the point where the streamwise velocity compo-
nent adjacent to the wall is changing its orientation from nega-

7 Copyright c© 2010 by ASME



!!!!!!!!!!!!!!!!!

!

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-1 0 1 2 3

out

f

f

C
C

!

* r

r

x-x
x =

x
!
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tive to positive [25]. It is known that the standard k− ε model
underpredicts the reattachment length by about 20% [26]. For
this reason, many have tuned the model coefficients in order to
obtain a better prediction of the reattachment point. Fig. 6 shows
the histogram as well as f (xr), the PDF of the location of the
reattachment point. Predicted by EasyFit, f (xr) is a lognormal
distribution with µl = 1.82 and σl = 0.070. A lognormal distri-
bution is defined by

f (x) =
1

xσl
√

2π
exp

[
−(lnx−µl)

2

2σ2
l

]
, (27)
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Figure 6. PDF OF THE LOCATION OF REATTACHMENT POINT.

where µl and σl are the mean and standard deviations of the vari-
able’s natural logarithm [18].

SUMMARY AND CONCLUSION
A study of the inherent uncertainties in the turbulence model

coefficients and parameters was the focus of this work. Specif-
ically, this study sets out to quantify the uncertainties in the co-
efficients and parameters of the standard k− ε turbulence model
via the Latin Hypercube Sampling method. We have been able
to statistically describe the variability of the input parameters of
interest and observe the effects that they incur on the output flow
parameters. The sampling of uncertainties of the input parame-
ters has been carried out by the LHS method which greatly re-
duces the number of required samples compared to conventional
Monte-Carlo methods.

The standard k−ε turbulence model has been applied to the
well documented configuration of the 2D backward-facing step
for which there are experimental results available. While for flow
variables of interest such as velocities at various locations com-
puted average values from CFD outputs are compared against
their experimental counterparts in the figures, their standard de-
viations are also displayed using error bars. The highest uncer-
tainties seem to occur in the recirculation region and near the
reattachment point for most of the outputs. The results of this
work provide evidence that minimal variations of the standard
k− ε model input coefficients and parameters, may yield signif-
icant uncertainties in the flow variables in the backward-facing
step.
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