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ABSTRACT 

 
We present our progress toward setting initial conditions in 

variable density turbulence models. In particular, we 
concentrate our efforts on the BHR turbulence model [1] for 
turbulent Rayleigh-Taylor instability. Our approach is to predict 
profiles of relevant variables before fully turbulent regime and 
use them as initial conditions for the turbulence model. We use 
an idealized model of mixing between two interpenetrating 
fluids to define the initial profiles for the turbulence model 
variables. Velocities and volume fractions used in the idealized 
mixing model are obtained respectively from a set of ordinary 
differential equations modeling the growth of the Rayleigh-
Taylor instability and from an idealization of the density profile 
in the mixing layer. A comparison between predicted profiles 
for the turbulence model variables and profiles of the variables 
obtained from low Atwood number three dimensional 
simulations show reasonable agreement.  

 
INTRODUCTION 
 

The Rayleigh-Taylor (RT) instability is an interfacial fluid 
instability that leads to turbulence and turbulent mixing. It 
occurs when a light fluid is accelerated into a heavy fluid [2, 3] 
because of misalignment between density and pressure 
gradients. It is characterized by the Atwood number, 

   lhlhA   , that describes the density contrast 

between the heavy  h  and light  l  fluid. The Rayleigh-

Taylor instability plays a key role in a wide variety of naturally 
occurring events such as supernovae explosions [4], salt dome 
formation [5], atmospheric inversions, as well as in 
technological applications such as heat exchangers and sprays 

in internal combustor [6] or in the implosion phase of Inertial 
Confinement Fusion (ICF) [7]. Traditional research in 
turbulence assumes that turbulent flows have no memory of the 
initial conditions, and turbulence quickly develops to a 
universal self-similar state. However, recent research has 
established that the growth of the turbulent Rayleigh-Taylor 
instability depends on initial conditions [8, 9]. This important 
finding offers an opportunity for turbulence control, which 
could be profitable on the condition that turbulence models can 
be started with the proper initial conditions. 

The overall objective of this research is to provide a 
rational basis for initial conditions in turbulence models. We 
seek to predict profiles of relevant variables before the fully 
turbulent regime and use them as initial conditions for the 
turbulence model. In this paper, we expose our approach and 
illustrate the performance of our model in the case of a low 
Atwood number Rayleigh-Taylor instability. In the next 
section, we present the variables we want to model and our 
strategy to model them. The three following sections present 
the details of the procedure to determine the turbulence model 
variables’ profiles and comparisons with numerical 
simulations. Finally, the concluding section provides a brief 
summary of the results and a discussion. 

TURBULENCE MODEL VARIABLES 
 
We consider the Besnard, Harlow and Rauenzhan (BHR) 

turbulence model [1]. Designed for variable density turbulence, 
the BHR turbulence model is a well-suited model for studies of 
turbulent Rayleigh-Taylor instability. In this single-point 
turbulence transport model, kinetic energy, k , normalized 

mass flux, a


, density-specific volume correlation, b , 
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turbulence length scale, S , and turbulent viscosity, t , are the 

key variables that need to be initiated for each simulation. 
These variables are defined by: 
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where, iu  is the fluctuation of velocity component i ,  is the 

density fluctuation,   is the average density, v  is the specific 

volume fluctuation,   is the turbulent kinetic energy 

dissipation and C  a constant coefficient. Turbulence model 

variables are typically set up across the computing domain as a 
single value representative of the problem of interest. These 
values are usually determined by calibration runs, results from 
experiments or scaling arguments. Instead, we propose to 
provide the turbulence model with a profile for each of these 
variables. The advantages of having an initial profile are two-
fold: first, the profiles depend on the initial conditions that 
drive the flow to turbulence and second, the turbulence model 
benefits from a local characterization of the flow. In the context 
of turbulent Rayleigh-Taylor mixing, we obtain the initial 
profiles for the turbulence model variables following this 
simple procedure: 
 

1. Predict heights and velocities of the bubbles and 
spikes. 

2. Predict the fluids volume fraction profiles as functions 
of the bubble and spike heights. 

3. Predict the initial profiles of the turbulence model 
variables as functions of the bubbles and spikes 
velocities and the fluids volume fraction profiles. 

BUBBLE AND SPIKE PREDICTION 
 
A reasonably successful model that describes the growth of 

single mode RT instability from the exponential growth rate 
given by linear stability analysis until the nonlinear terminal 
bubble (blob of light fluid penetrating into the heavy fluid) 
velocity is that of Goncharov [10]. The Goncharov model is a 
potential flow model, based on an extension of Layzer’s theory 
for 1A  [11]. Consider two incompressible fluids, the heavy 
fluid sitting on top of the light one. In a three-dimensional 

axisymmetric geometry, the interface between the two fluids is 
approximated near the tip of the bubble by: 
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where 0  is the bubble’s amplitude. The assumption is made 

that the fluids are irrotational in the vicinity of the bubble tip. 
As a consequence, Goncharov [10] defined velocity potentials 
as: 
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where lh /  is the potential of the heavy/light fluid, 0J  is the 

Bessel function of order 0 , k
~

 is the wave number of the 

single mode initial perturbation, 
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. Upon substitution of 

the velocity potentials in the equations describing the 
conditions at the fluids interface and expanding them to the 
second order in r , one obtains a set of ordinary differential 
equations governing the dynamics of the tip of the RT bubbles 

until late in the nonlinear regime (  )(0 t , where   is the 

wavelength of the perturbation): 
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The set of equations governing the dynamics of the tip of the 
RT spike (blob of heavy fluid penetrating into the light fluid)  is 

obtained from equations    129   by substituting   , 

AA  , and gg  . According to figure 3 in 

Goncharov’s publication [10], this nonlinear model captures 
with some success the penetration of the bubble for 

10  A , but fails to predict accurately the penetration of the 

spike for 4.0A  [10, 12].  
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Based on the Goncharov model for single mode RT 
problems, we build a multimode model defined by: 
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where  th sb / is the height of the bubbles/spikes front at time 
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tth    is the height of the 

bubble/spike generated by a single mode initial perturbation of 

wave number k  at time t . Equation  13  simply models the 

height of the bubbles/spikes front of a multimode RT growth as 
the height of the highest bubble/spike at a given time if each 
mode in the initial spectrum were to grow isolated from one 
another. Therefore, this model does not take into account the 
mode coupling phenomenon. This is a point of current 

investigation. Velocities of spikes and bubbles fronts, sbv / , are 

obtained by taking a time derivative of their respective heights  

( dtdhv sbsb ///  ) given by the multimode model. 

 
Figure 1. Initial amplitude spectrum. 

 
Figure 1 shows the initial perturbation spectrum we choose 

to evaluate the overall performance of our method for 
predicting initial profiles of the turbulence model variables. 
This type of banded initial perturbation spectrum is of interest 
because the growth rate of the instability is modified at “late-
time” under the influence of the low wave number band [9] that 
has slower initial growth rate. It is a valuable and challenging 
study case for the influence of initial conditions. We compare 
profiles obtained by our ODE-based method with “exact” 
profiles generated by a three-dimensional finite volume solver, 
RTI3D [13, 14]. RTI3D is an incompressible three-dimensional 
code that solves Euler equations and uses numerical dissipation 
as an artificial viscosity that smoothes out sharp gradients 
characteristic of Euler equations solutions. Codes that use this 
type of numerical techniques are referred to as MILES 
(Monotone Integrated Large Eddy Simulation) codes, and have 
proven to be particularly effective in simulation of flows with  

 
Figure 2. Height of the bubbles front as a function of time 
predicted by the multimode model and RTI3D simulation. 
Black solid lines are heights of single mode bubbles as 
predicted by Goncharov’s model [10] for the modes composing 
the initial perturbation spectrum. 01.0A , 40g , and 

 2  is the width of the computational domain. 

 
Figure 3. Growth rate,  , as defined by Ristorcelli and Clark 
[18] as a function of time. Black solid lines are growth rate of 
single mode bubbles for modes composing the initial 
perturbation spectrum.  
 
discontinuities such as Rayleigh-Taylor instabilities [8, 9, 12, 
15-17]. Simulations are performed at low Atwood number, 

01.0A , so that our method remains in its domain of 

validity, and with a constant acceleration of 2/40 smg  to 

reach an advanced state of transition to turbulence in a  
relatively short physical time.  

Figure 2 illustrates the performance of our multimode 
model for bubbles front prediction at low Atwood number. For 
clarity, we do not show the evolution of the spikes front as it is 
almost perfectly symmetric to the bubbles front evolution 
because of a low Atwood number. We can see in figure 2 that at 
all time the bubbles front in the RTI3D simulation is higher 
than the one from our multimode model. This discrepancy in 
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height is due to the lack of a model for mode coupling in our 
current multimode model. Interactions between nearby modes, 
in particular superposition of modes, increase the overall height 
of the bubbles front. At about st 3 , our multimode model 
predicts that bubbles associated with the low wave number 
band takes the lead of the bubbles front. This event is 
characterized by a change of slope in the curve given by our 
model. This significant change in dynamics is seen more 
clearly in figure 3 that shows a jump in the bubbles front 
growth rate at about st 3 . The corresponding change in 
growth rate in the RTI3D simulation occurs more smoothly and 
peaks later, at about st 6 ,. The smooth evolution is due to 
mode interactions that progressively fill the entire spectrum 
(not taken into account in our model), such that modes that lead 
the bubbles front are consecutive modes. Addition of the 
generated low wave numbers to those existing in the initial 
perturbation spectrum produces this “extra kick” in the growth 
rate of the bubbles front observed around st 6  in the RTI3D 
simulation. To summarize, figure 2 and 3 show that although 
incomplete our multimode model captures in a reasonable 
fashion the evolution of the height of bubbles and spikes fronts 
at low Atwood number. Discrepancy at very early time between 
the growth rates predicted by the model and RTI3D simulation 
is grossly amplified because of the relatively coarse grid 
(64x64x128 grid cells for a domain of size 2π x 2π x 4π) used 
for this study.  

VOLUME FRACTION PROFILE 
 

 
Figure 4. Density profiles in the vertical direction predicted by 
the model and RTI3D simulation. Vertical dashed lines indicate 
bubbles and spikes fronts as predicted by RTI3D, and  2   
is the width of the computational domain. 

 

We consider volume fraction, lhf / , i.e. non-dimensional 

density, defined by: 
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We assume the volume fraction is distributed in a linear fashion 
inside the mixing layer. To hold into account the asymmetry 
between the bubbles and spikes penetrations that appears with 
increasing Atwood number, we take the volume fraction as 
piecewise linear between the bubbles or spikes front and the 
position of the initial perturbation. Placing the initial 
perturbation at 0z , the volume fraction profile for the 
heavy fluid is defined by: 
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The light fluid volume fraction profile is: 
 

hl ff  1   16  

 
 Figure 4 shows a comparison between the density profiles 
obtained with use of the idealized volume fraction profiles and 
RTI3D simulations. The density is computed from the volumes 
fraction profiles using the relation: 
 

hhll ff     17  

 
The modeled density profile matches well the density profile 
given by the RTI3D simulation. This simple description of the 
volume fraction profile as a piecewise linear function of the 
position in the RT mixing layer seems to hold on a large range 
of Atwood numbers. Indeed, at 5.0A , the density profile at 
different stage of the evolution of the multimode RT instability 
always display the nearly piecewise linear shape between the 
density of the heavy and light fluid [19].  

TWO-FLUID MODEL 
 
We choose to use a two-fluid model [20] to predict the 

profiles of the turbulence model variables as functions of the 
mixing layer width, the velocities of the bubbles and spikes 
fronts and the volume fraction distribution. This model is based 
on an idealization of the mixing interface between two 
interpenetrating fluids. Following the two-fluid model, 
fluctuating quantities at a given altitude can be expressed as 
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deviations from the corresponding average quantities at that 
same altitude, when moving horizontally within the mixing 
layer. For example, one can express the density fluctuation, 

 , as  h  or  l  depending on whether we are in 

the heavy or the light fluid, where llhh ff   . 

Similarly, the velocity fluctuation iu  can be expressed by 

either  ih uu   or  il uu  depending on whether we are in 

the heavy or the light fluid, where  illhhi ufufu  , and 

hu  and lu  are averaged velocities of respectively the heavy 

fluid and the light fluid at a given altitude in the mixing layer. 

Upon substitution of these expressions in equations     31   

and some algebra, it is found [20]:  
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where kC  , 
zaC , and bC  are coefficients equal to 1 at this 

stage of our research. Equation  18  assumes isotropy, which 

is not valid for Rayleigh-Taylor instabilities but is necessary at 
this point in our approach since we only know of vertical 
velocities of the bubbles and spikes fronts. The formulation for 

S  is motivated by the relation TDSkk  2/12  , where 

TD  is the turbulent diffusivity. In a self-similar state and at 

low Atwood number, the bubbles/spikes front evolves as  
2

/ Agth sb  , hence the relation Agtvv sb 2  for 

velocities. We then substitute fronts velocities in equation 

 18 , and, using TD , we can write a self-similar equation for 

 , tgAC 22
   where ,...),,( hlh fffC   . Finally, 

using equation  4  and 22 Agthh sb  , we obtain: 

 

   2/14 lhsbS ffhhCS    21  

 

where sC  is a coefficient equal to 1 at this point. 

Figures 5 - 7 show profiles for the turbulence model 
variables predicted by the two-fluid model and by RTI3D 
simulations at a late time in transition toward fully developed 
turbulence. Overall, the two-fluid model offers reasonable  

 
Figure 5. Kinetic energy profiles in the vertical direction as 

predicted by the model and RTI3D simulation. Vertical dashed 
lines indicate bubbles and spikes fronts as predicted by RTI3D, 
and  2  is the width of the computational domain 

 

 
Figure 6. Normalized mass flux profiles in the vertical direction 
as predicted by the model and RTI3D simulation. Vertical 
dashed lines indicate bubbles and spikes fronts as predicted by 
RTI3D, and  2  is the width of the computational domain. 
 
predictions of the turbulence variables profiles at the time of 
interest within the mixing layer at a low Atwood number. All 
predicted initial profiles display greater maximum values than 
the initial profiles obtained by numerical simulation, but they 
remain roughly of the same order of magnitude. Variables k  

and za  are predicted with good accuracy. In the mixing layer, 

the assumption that the average velocity of the light/heavy fluid 
is about that of the bubbles/spikes front seems to be a valuable 
hypothesis. This hypothesis has been verified for the light fluid 
in the case of single mode RT instability [12]. Improvement on 

k  and za  could be done if one could model the average 

velocity profiles for the heavy and light fluid in the mixing 
layer. Variable b  is the one that display the largest discrepancy 
with the numerical simulation results, figure 7. For this 
variable, the idealized piecewise linear volume fractions might 
be too simplistic to give an accurate quantitative description in 
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this model, although it allows for a precise description of the 
average density profile. Also, the two-fluid model is a highly 
idealized description of the mixing process between two fluids. 
Our model does not take into account viscosity and important 
mechanisms such as diffusion and mode coupling are still 
lacking. Addition of more physics in the model as we move 
forward in our research for should improve prediction of the 
profile of variable b quantitatively and qualitatively. We cannot 

compare the profile of variable S  predicted by our model with 
a profile from RTI3D. Indeed, one cannot have a clear 
definition of S  in a MILES code due to the absence of an 
explicit viscosity.  

In general, the predicted turbulence variables profiles 
presented in figures 5 - 7 capture well the general shape of the 
profiles obtained by numerical simulation. But, we have to 
keep in mind that we are presenting a low Atwood number 
case. At high Atwood numbers, the variables profiles do not 
remain symmetrical [19]. Introduction of an asymmetry in the 
idealized volume fraction profiles as a function of the Atwood 
number might be an answer to this issue.  

 
Figure 7. Density-specific volume correlation profiles in the 
vertical direction as predicted by the model and RTI3D 
simulation. Vertical dashed lines indicate bubbles and spikes 
fronts as predicted by RTI3D, and  2  is width of the 
computational domain. 

CONCLUSIONS 
 
We presented our progress toward setting initial conditions 

for RT simulations in the BHR turbulence model. Our approach 
is to provide the turbulence model with profiles of its key 
variables as initial conditions. These profiles present the 
advantage of carrying local information on the flow as well as 
“knowledge” of the initial conditions of the instability leading 
to turbulence. The determination of the turbulence variables’ 
initial profiles are made in 3 stages: 
 

1. Prediction of the heights and velocities of the bubbles 
and spikes front using an ordinary differential equation 
modeling the evolution of RT instability. 

 
2. Prediction of the fluids volume fraction profiles using 

a piecewise linear function between the bubbles front, 
the initial perturbation position and the spikes front. 

 
3. Prediction of the turbulence model variables initial 

profiles using a two-fluids model and the results from 
steps 1 and 2 . 

 
This approach gives reasonable profiles predictions with a 
banded spectrum at low Atwood number.  

Several points may be improved. First, the evaluation of 
the bubbles and spikes penetration in the case of multimode RT 
instability is not accurate for large Atwood numbers 
( 4.0A ) and does not take into account mode coupling. 
Second, bubbles and spikes front velocities are used in the two-
fluid model formulation of the turbulence model variables in 
lieu of average velocity profiles of the heavy and light fluids in 
the mixing layer. A model for the velocity profiles would 
probably improve the predicted profile from a quantitative 
point of view. Finally, we might need to introduce more physics 
in the model for variable b  to improve its prediction. All these 
points are under current investigation. 

However, all the profiles shapes given by our current 
model are reasonable approximations. Then, the simplest way 
to improve the current model is to adjust the coefficients in 

equations    2018  .  
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