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ABSTRACT 

When small particles (e.g., flour, pollen, etc.) come in 
contact with a liquid surface, they immediately disperse. 
The dispersion can occur so quickly that it appears 
explosive, especially for small particles on the surface of 
mobile liquids like water. This explosive-like dispersion is 
the consequence of capillary forces pulling particles into 
the interface causing them to accelerate to a relatively 
large velocity. The maximum velocity increases with 
decreasing particle size; for nanometer-sized particles 
(e.g., viruses and proteins), the velocity on an air-water 
interface can be as large as 47 m/s. We also show that 
particles oscillate at a relatively-high frequency about 
their floating equilibrium before coming to stop under 
viscous drag. The observed dispersion is a result of 
strong repulsive hydrodynamic forces that arise because 
of these oscillations. 
 
INTRODUCTION 

The following experiment can be easily performed in 
any reasonably well-equipped kitchen. Fill a dish partially 
with water, wait for a few minutes for the water to become 
quiescent, and then sprinkle a small amount of wheat 
flour or corn flour onto the water surface. The moment the 
flour comes in contact with the surface it quickly 
disperses into an approximately circular shaped region, 
forming a monolayer of dispersed flour particles on the 
surface (see figure 1). The interfacial forces that cause 
this sudden dispersion of flour particles are, in fact, so 
strong that a few milligrams of flour sprinkled onto the 
surface almost instantaneously covers the entire surface 
of the water contained in the dish. The same dynamics 
were observed for more viscous liquids except that the 
dispersion speeds were smaller.  

The fluid dynamics of the attractive phase are well 
understood, but to our knowledge, there is no mention in 
the past studies of the initial violent dispersion despite the 
fact that this dispersion is ubiquitous, and occurs for 
many common liquids and particles. 

 

   
FIGURE1. Sudden dispersion of flour particles sprinkled onto 

water in a Petri dish. 

RESULTS 
It is shown in [1] that when small particles, e.g., flour, 

pollen, etc., come in contact with a liquid surface they 
immediately disperse. This is due to the fact that when 
particles come in contact with a liquid surface they are 
pulled inwards, towards their equilibrium position within 
the interface, causing them to accelerate to a relatively 
large velocity in the vertical direction. The observed 
dispersion is a result of the repulsive lateral 
hydrodynamic forces that arise. Furthermore, particles 
induce a flow on the interface that causes particles 
already present on the interface to move apart. These 
interactions between the newly-adsorbed particles and 
those already on the interface may alter the distribution of 
particles on the interface, especially when there is a 
continuous influx of particles to the interface. 
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 Experiments show that when a test particle is trapped 
at the air-water interface, all of the nearby tracer particles 
on the interface (placed for flow visualization) move 
outward away from the test particle. The velocity of tracer 
particles decreases with increasing distance from the test 
particle. This implies that the test particle induces a flow 
away from itself on the interface, the strength of which 
decreases with increasing distance from the particle (see 
figure 2). Furthermore, the velocity of tracer particles was 
maximal shortly after the test particle came in contact with 
the interface and then it decreased with time. For a tracer 
initially at a distance of 2.05 mm from the center of the 
test particle, the velocity decayed to approximately zero 
at t=0.8 s (see figure 3). The results obtained for a 
mixture of 60% glycerin in water were qualitatively similar 
except for that the velocity of tracer particles was smaller. 
This was expected since the viscosity of the glycerin 
mixture is larger than that of water and the interfacial 
tension is smaller. 
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Figure 2. The velocity of tracer particles on the air-water 
interface is plotted as a function of the distance d from the 
center of a glass test particle. The velocity distribution plotted 
here was recorded at a time 0.033 s after the particle was 
trapped at the interface. The data was taken for 7 different test 
particles of the same approximate diameter of 850 μm.  
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Figure 3. The velocity of a tracer particle on the air-water 
interface initially at a distance of 2.05 mm from a glass test 
particle of diameter 850 μm is shown as a function of time. The 
velocity became negligibly small at t = ~0.8 s. 
 

When two test particles were dropped together, they 
moved away from each other along the line joining their 
centers. Figure 4 shows that the separation velocity 
decreased with increasing time, and the velocities of the 

two particles were approximately equal in magnitude. The 
relative velocity with which particles separated decreased 
with increasing initial distance between them. 
Furthermore, after some time, larger-sized particles 
reversed their direction to come back to cluster under the 
action of attractive lateral capillary forces that arise 
because of the particles’ buoyant weight. The velocity 
with which they came back, however, was significantly 
smaller than the velocity with which they dispersed. 
Micron (less than 10 μm) sized particles for which lateral 
capillary forces are negligible, however, remained 
dispersed. 
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Figure 4. The velocity of two glass particles of diameter 850 μm 
dropped simultaneously onto the air-water interface is shown as 
a function of time. The initial distance between the particles was 
1.21 mm. After becoming trapped in the interface, they moved 
apart approximately along the line joining their centers. The 
magnitude of the velocities of the two particles was 
approximately equal. 
 
 This behavior of particles was also seen in direct 
numerical simulations in which the particle centers were 
initially at a height of 0.95R above the undeformed 
interface. The particles were pulled downwards by the 
vertical capillary forces leading to vertical oscillations. The 
amplitude of the oscillations decreased with increasing 
time. The particles also moved apart as shown in figure 5.  
 

 

 
Figure 5. Direct numerical simulation of the motion of two 
particles released above their equilibrium height in the interface. 
 
 The main driving forces for the motion of a particle 
normal to the interface (after it comes in contact with the 
interface) are the vertical capillary force and the particle’s 
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buoyant weight. The viscous drag resists the particle’s 
motion. The acceleration of the particle under the action 
of these forces can be written as: 

 gDst FFF
d
d

++=
t
Vm ,  (1) 

where m is the effective mass of the particle which 
includes the added mass contribution, V is the particle 
velocity, stF  is the vertical capillary force, DF is the drag, 

and gF  is the gravity force.  

The right hand side of the above equation was 
approximated in [1] by assuming that the particle is 
spherical, the contact angle is equal to its equilibrium 
value, the drag force is given by the Stokes formula, and 
the buoyancy force depends on the particle’s vertical 
position, to obtain  

=
t
Vm

d
d ( ) ( )αθγθπ +− ccR sinsin2 12 )(R6 sVζμπ− + 

( )  g-Q cp ρρ . (2) 

Here )(sζ  is a factor that accounts for the dependence 
of the drag on the fraction s of the particle that is 
immersed in the lower and upper fluids and on the 
viscosities of the fluids involved, Q is the particle volume, 

cρ  is the effective fluid density which changes with s 
while the particle moves normal to the interface, and pρ  
is the particle density. 

Equation (2) was solved numerically in [1] to obtain the 
particle’s position as a function of time.  The obtained 
solution was qualitatively similar to that obtained using 
the DNS approach (see figure 1). Equation (2) can be 
linearized about the particle’s equilibrium position to show 
that it is equivalent to a spring-dashpot system. Assuming 

that 
2
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where Z is the particle’s position. The solution of the 
above ordinary differential equation can be written as: 
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solution depends on the sign of D. If the sign is positive, 
then k is real and negative for both of the roots. In this 
case, the solution decays exponentially with time to zero. 
This is expected to be the case when the fluid viscosity is 
sufficiently large. If the sign of D is negative, then k is 
complex and the solution is oscillatory. In this case, the 
frequency of the oscillation is given by 
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The real parts of both roots are negative and so both of 
the solutions decay exponentially to zero. The frequency 
of oscillation (ω) in Hz is plotted as a function of the 
particle radius in figure 2; it increases with decreasing 
particle radius. 
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Figure 6. The frequency (ω) of oscillation of the solution given 
by equation (16) is plotted as a function of the particle radius. 
The parameter values were assumed to be: 001.0=μ  Pa.s, 

0.1000=pρ  kg/m3, 1.0=− cp ρρ  kg/m3 and 07.012 =γ  N/m.  

The particle velocity when it reaches its equilibrium 
position for the first time can be obtained by integrating 
Eq(2) 
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The above equation implies that the maximum velocity 
attained by a particle increases with decreasing particle 
radius (see figure 3). For example, a particle of diameter 
200 μm (which is roughly the size of a sand particle) can 
accelerate to a velocity of the order of 1 m/s at the water 
surface, and a particle of diameter 10 nm, which is 
roughly the size of a virus or a protein molecule, to a 
velocity of ~40 m/s. In the limit of R approaching zero, the 
velocity is given by  

 
μ
γ

3
2

=V . (6) 
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This is the maximum velocity that can be attained by a 
particle under the action of the vertical capillary force, 
which for the air-water interface is 46.7 m/s.  
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Figure 7. The velocity of a spherical particle normal to the 
interface given by equation (5) is plotted as a function of the 
particle radius. The parameter values are the same as in figure 
2.  
 
Conclusions  

It is shown that when a particle comes in contact with 
a liquid surface it is pulled into the interface towards its 
equilibrium height by the vertical capillary force and that 
during this process the particle can accelerate to a 
relatively large velocity normal to the interface. For 
example, a particle of radius 100 μm sprinkled onto the 
water surface may attain a velocity of the order of 1 m/s. 
The maximum velocity on an air-water interface, which 
increases with decreasing particle size, can be as large 
as ~47 m/s. It is also shown that a particle being 
adsorbed oscillates about its equilibrium height before 
coming to rest under viscous drag. These oscillations of 
the particle cause the fluid around it to move away, which 
in our experiments was measured using smaller tracer 
particles that were present on the liquid surface.  

When two or more particles are dropped 
simultaneously onto the surface their motion in the 
direction normal to the interface (and to the line joining 
their centers) gives rise to the strong repulsive 
hydrodynamic forces which cause them to move apart. 
The velocity with which particles move apart increases 
with an increasing number of particles. Also, smaller-
sized particles disperse more readily because the 
importance of interfacial forces increases with decreasing 
particle radius. An analysis of the particle’s equation for 
the vertical motion is used to determine the dependence 
of the velocity on the factors such as the fluid viscosity, 
the change in the interfacial energy due to the adsorption 
of the particle, the particle radius, and the buoyant weight. 
The viscous drag causes the oscillatory motion of 
particles about their equilibrium heights to decay with 
time, and thus the repulsive hydrodynamic forces that 
arise because of this motion also decrease with time. As 

a result, after reaching a maximum value, the velocity 
with which particles move apart decreases with time. 
Furthermore, if the buoyant weight of particles is not 
negligible, e.g., 200 μm sized sand particles used in 
Figure 1, they also experience attractive lateral capillary 
forces that arise because of the deformation of the 
interface. Although these attractive lateral forces are 
relatively weaker, after the repulsive hydrodynamic forces 
become smaller they cause particles to come back to 
cluster. However, the velocity with which particles come 
back to cluster is much smaller. Micron- and nano-sized 
particles, on the other hand, remain dispersed since for 
them the attractive capillary forces are negligible. 
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