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1. ABSTRACT 
The non-Newtonian properties of blood, i.e., shear thinning 

and viscoelasticity, can have a significant influence on the 
distribution of Cerebral Blood Flow (CBF) in the human brain. 
The aim of this work is to quantify the role played by the non-
Newtonian nature of blood. Under normal conditions, CBF is 
autoregulated to maintain baseline levels of flow and oxygen to 
the brain. However, in patients suffering from heart failure 
(HF), Stroke, or Arteriovenous malformation (AVM), the 
pressure in afferent vessels varies from the normal range within 
which the regulatory mechanisms can ensure a constant 
cerebral flow rate, leading to impaired cerebration in patients. It 
has been reported that the change in the flow rate is more 
significant in certain regions of the brain than others, and that 
this might be relevant to the pathophysiological symptoms 
exhibited in these patients. We have developed mathematical 
models of CBF under normal and the above disease conditions 
that use direct numerical simulations (DNS) for the individual 
capillaries along with the experimental data in a one-
dimensional model to determine the flow rate and the methods 
for regulating CBF. The model also allows us to determine 
which regions of the brain would be affected relatively more 
severely under these conditions. 
Keywords: 

Arteriovenous malformation, Cerebral blood flow, Direct 
numerical simulation, Heart failure, Shear thinning, 
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2. INTRODUCTION 
According to the American Heart Association and the 

National Institute of Health, about 5.7 million people in the 
United States are living with heart failure which results in about 
300,000 deaths each year. The number of people with heart 
failure is growing, and each year an additional 670,000 people 
are diagnosed for the first time.  

The brain is a vital organ in the human body, and stable 
perfusion is necessary to maintain its functionality. The human 
brain is especially sensitive to the circulatory changes that 
reduce oxygen and glucose delivery. Patients with heart failure 
are generally considered to have reduced CBF and suffer from 
neuropsychological problems such as cognitive impairment 
with lethargy, confusion, memory problems, and dizziness 
which may increase morbidity in patients with severe chronic 
heart failure (CHF). Cerebral circulation, which is a significant 
portion of the cardiac output, is regulated to maintain a 
relatively-constant value of the perfusion pressure in response 
to metabolic and physiological demands. Cerebral circulation 
depends on many parameters, one of which is the mean arterial 
pressure (MAP). 

Stroke ranks third among the leading causes of death and is 
the leading cause of disability in older adults [1]. More than 
700,000 new and recurrent strokes occur each year, resulting in 
over 163,000 deaths in the United States. 

A stroke occurs when a blood vessel that brings oxygen 
and nutrients to the brain either bursts (hemorrhagic stroke) or 
is clogged by a blood clot or some other mass (ischemic 
stroke). Most of these strokes occur when a cerebral aneurysm 
or brain AVM ruptures. When a rupture or blockage occurs, 
parts of the brain do not get the blood and oxygen they need. 
Without oxygen, nerve cells in the affected area of the brain 
cannot work properly, and die within minutes—usually within 3 
to 4 minutes. The ultimate effect of hemorrhagic strokes is 
either death or a major disability.  

The flow characteristics of blood depend on the 
concentration of red blood cells (RBCs), the blood vessel 
diameter and the flow rate. At low shear rates (< 100 s−1), the 
RBCs cluster to form a rouleaux which disperses as the shear 
rate increases, reducing the viscosity of blood. The resulting 
shear-thinning behavior caused by rouleaux disaggregation in 
blood plasma is responsible for the non-Newtonian behavior of 
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blood. However, with further increase in shear rate, at least in 
the devices that have simple shear flows, the shear-thinning 
characteristics disappear [2-7]. 

The goal of our research work is to develop a 
comprehensive mathematical model for the human cerebral 
circulation for both normal and pathological conditions, which 
can be used to predict the blood flow rates in different regions 
of the brain for different pathological conditions, such as AVM, 
Heart Failure, and Stroke.  
 
3. METHOD 
3.1 Structure 

The anatomical structure of the brain model is comprised 
of a network of blood vessels (Fig. 1). A group of identical 
vessels, referred to as a compartment in earlier studies [8-11], is 
used as an element in our model. 

 

 
 
 
 
 
 
 
 
 
3.2 Mathematical and computational approach 
 

The governing mass and momentum conservation 
equations for the motion of a shear-thinning Oldroyd-B liquid, 
which will be used to model blood, can be written as 

 ∇.u = 0, (1)  
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These equations are subjected to velocity boundary conditions 
at the solid boundaries. The evolution of the configuration 
tensor A, which gives the viscoelastic stress, is given by 
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the extra stress tensor, ρL is the density, D is the symmetric part 
of the velocity gradient tensor, c is a measure of viscoelasticity 
in terms of its contribution to the zero shear viscosity, and λr is 
the relaxation time. The fluid viscosity η = ηs + ηp, where ηp = 
c ηs is the viscoelastic contribution to viscosity and ηs is the 
purely viscous contribution to viscosity. The fluid-retardation 

time is equal to 
c

r

+1
λ . This model has been used in several 

previous studies to model the viscoelastic nature of blood. 

Shear thinning is incorporated into the Oldroyd-B model 
by assuming that the total viscosity varies according to the 
Carreau–Yasuda model [12-16]:  
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Here γ&  is the strain rate defined in terms of the second 
invariant of the symmetric part of the velocity gradient 
tensor DD :2=γ& , μ0 is the zero shear viscosity, ∞μ  is the 
minimum value of viscosity which is achieved when the shear 
rate approaches infinity, n is a parameter between 0 and 1, and 

3λ is a parameter. The values of these parameters used in [10] 
for blood were: μ0 = 0.022 Pa.s, ∞μ =0.0022 Pa.s, =3λ 0.11 s, 
a=0.644, and n=0.392.  

The flow in the MVGs will be modeled as a porous 
medium flow and incorporated at the end of each of the efferent 
tubes. The flow resistance of the MVGs will be varied to model 
the autoregulation mechanism.  

The above equations can be made dimensionless by 
assuming that the characteristic length, velocity, time, stress 
and angular velocity scales are D, U, D/U, ηU/H and U/D, 
respectively. It is easy to show that the governing 
dimensionless parameters in the above equations are: the 

Reynolds number Re =
η

ρ UDL , the Deborah number De 

=
D
Urλ , and the parameters in the Carreau–Yasuda model. 

Notice that the physical problem is governed by several 
dimensionless parameters and it is important that each of these 
parameters be matched to its corresponding value for the flow 
in the circle of Willis (CoW).  

The well-known approximation for single-vessel 
hemodynamics is the Hagen-Poiseuille equation which is used 
in our models to calculate the volumetric flow rate of blood 
through different compartments of the network of blood vessel 
at different pressure gradients [12]. 

Figure 1: Schematic diagram of the model of the intracranial blood 
vessel network. A thicker line represents a compartment that contains 
several identical vessels in parallel. The numbers indicate the nodes. 
There are 20 microvessel groups (MVG) between the arteries and the 
veins, each of which consists of 5000 microvessels. A thinner line 
between a MVG and a vein does not represent a compartment, but a 
connection between the two compartments.  
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where Q is the volumetric blood flow rate through the vessel, 
ΔP is the pressure drop across the vessel, D is the inner 
diameter of the vessel, L is the length, and μ is the blood 
dynamic viscosity (= 0.0035 Pa.s for normal, heart-failure and 
stroke models).  

The effect of elasticity on the vessel diameter is modeled 
using the approach described in Ornstein et al. [17]. If the 
internal pressure of the vessel is P, the relation between D and P 
is given by 

(0)(1 )D D mP= + ,        (3)  

where D(0) is the vessel radius at P = 0, and m is the elastic 
coefficient of the vessel. This equation is used to simulate the 
flow in different compartments for which the elastic 
coefficients are different.  

The entire intracranial cerebral tissue and its perfusing 
microvessels were divided into 20 identical segments or micro 
vessel groups (MVGs), each of which is perfused by three 
smaller conductance arteries. Using the Hagen-Poiseuille law, 
the wall shear stress of each of the vessels in the network was 
expressed in terms of the volumetric flow rate [18] 

3

32 Q
Dπ
μ

τ = .             (4)  

It has been observed clinically that a conductance blood 
vessel dilates if there is additional blood flow through the 
vessel. Although the mechanisms of vessel dilation remain 
unclear, the shear stress on the vessel wall is considered to be 
one of the possible factors [19, 20].  

The model described in figure 1 consists of 113 elements, 
and each element has a diameter and a length. In order to 
determine the effect of a small AVM on the flow rate, we added 
three more elements in the model for the AVM compartment. 
The meeting junction of two or more elements is called a node. 
Each node has a unique number that is given in Fig. 1. The 
model has 90 nodes, except for the model that includes an AVM 
in which case there are 92 nodes. 

In our model, the heart is the pump which drives the flow 
through the vessels. The pressure is assumed to be 120/80 mm 
Hg for the normal case, 220/120 mm Hg for the stroke case and 
80/30 mm Hg for the heart-failure case.  

The model allows us to compute the circulation of blood in 
the brain, i.e., it gives the volumetric flow rate and the wall 
shear stress in the elements, and the pressure at the node under 
normal and disease conditions 
 
4. RESULTS  

In Fig. 2 we show the pressure distribution in the middle 
cerebral artery (MCA) of the brain for the non-Newtonian case 
under normal conditions. Here E denotes node 7; I denotes 
node 11; T denotes node 23; H is the halfway point between T 

and the feeding artery (node 90); aM denotes the arterial side of 
the microvessels (node 37); vM denotes the venous side of the 
microvessels (node 74); Sv denotes the small vein (node 59); 
Mv denotes the medium vein (node 51); Lv denotes the large 
vein (node 53); and E, I, T, H are the vascular zones taken from 
Fogarty-Mack et al. [21].  

In Fig. 3 we show the pressure distribution for the same 
region of the brain when a small AVM is included in the model. 
For the AVM model, the pressure at zone E, T, vM are about 
88.1 mm Hg, 73.6 mm Hg, 28.9 mm Hg, respectively, whereas 
in the normal model it is about 95.1 mm Hg, 77.9 mm Hg, 10.4 
mm Hg respectively. Due to the presence of the AVM, the 
pressure in some of the regions is higher than for the normal 
model, and in some of the regions it is lower.  
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Figure 2: Pressure distributions of the middle cerebral artery 
(MCA) for the normal case in the various vascular zones of 
Figure 1. 
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Figure 3: Pressure distributions of the middle cerebral artery 
(MCA) for the normal case with a small AVM in the various 
vascular zones of Figure 1, showing the effect of a small AVM.  
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The model also allows us to determine the shear stress in 
each of the vessels due to the blood flow under the normal 
condition and when an AVM is present. The shear stress values 
determined from this model are comparable with the published 
data by Lipowsky, 1995 [22]. In Fig. 4, we show the shear-
stress distribution for the middle cerebral artery (MCA), its 
branches, and the draining veins.  Here LA denotes large MCA 
arteries; SA denotes small arteries; Mic denotes the 
microvessels; SV denotes small veins; LV denotes large veins. 
The maximum shear stress is in the small arteries at about 29.5 
dyne/cm2, and the minimum shear stress in the large veins 
which is about 2.3 dyne/cm2. Except for the large arteries, the 
calculated shear stresses are close to previously reported 
results. 
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Figure 4: The shear stresses on the wall of the middle cerebral 
artery (MCA) and its branches, and in the draining veins in the 
normal model. 
 

Figs. 5 and 6 show the change in the blood flow rate in the 
left and right MVG regions for the normal model, the dilated 
normal model, the normal model with a small AVM, the heart-
failure model, and the stroke model. From these figures we note 
that the right and left MVG regions are getting an increased 
flow for the stroke model and decreased flow in the heart 
failure model, except for the model with added AVM in MCA2. 
For the latter case, MVG is not getting any flow and MCA1 and 
MCA3 are getting less flow than that for the HF model. Due to 
the presence of this particular AVM in the model, the right 
MCA1 is receiving about 48.6% less flow than for the normal 
model and on the other side, the left ACA3 is receiving about 
15.6% more flow than for the normal model. In the model for 
the heart-failure case, the right and left ACA1 and ACA2 are 
very much affected and these MVGs are receiving about 
144.5% less flow than for the normal model. On another end, 
the right and left MCA1 in the stroke model are receiving about 
90.4% more flow than in the normal model.   
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Figure 5: Cerebral blood flow distribution in the right MVG 
region for the normal and dilated models, the model with a 
small AVM, the Heart Failure model, and the Stroke model.  
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Figure 6: Cerebral blood flow distribution in the left MVG 
region for the normal model, the dilated model, the model with 
a small AVM, the Heart Failure model, and Stroke model.  

5. CONCLUSIONS 
Our one-dimensional model allowed us to compute the 

pressure and the shear-stress distribution for the network of 
blood vessels in the brain under different physiological 
conditions, as well as the change in the flow rate due to the 
vessel elasticity and the presence of an AVM. The Heart-Failure 
model reveals that in the MVG region, the decreases in the 
blood flow rate is maximal in the left and right ACA1 and 
ACA2, and that the decrease is about 59.1%. In the MCA, the 
blood flow decreases by 36.2% and by about 37.7% in the 
PCA. In the ACA region, it decreases by about 52.1%. The 
Stroke-patient model shows that in the MVG region, the 
maximum increases in the blood flow rate are in the left and 
right MCA1 where the increase is about 90.4%. In the MCA 
region, the blood flow increases by 89.7% and in the PCA by 
88.1% region. In the ACA region, the increase is 44.7%.  
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