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ABSTRACT 
      Breakup of a liquid jet issuing from an orifice is one of the 

classical problems in fluid dynamics due to its theoretical and 

practical importance. The main application of the process is in 

spray and droplet formation, which is of interest in the 

combustion in liquid-fuelled engines, ink-jet printers, coating 

systems, medical equipment, and irrigation device. The 

complexity of the breakup mechanism is due to the large 

number of parameters involved such as the design of injection 

nozzle, and thermodynamic states of both liquid and gas. In 

addition, different combinations of surface tension, inertia, and 

aerodynamic forces acting on the jet, define main breakup 

regimes. Effects of nozzle geometry on the behavior of liquid 

jets have been overlooked in the literature. Elliptic jets have 

never been investigated theoretically since mostly circular jets 

or liquid sheets have been analyzed; while experiments have 

shown that by using elliptical nozzles, entrainment and air 

mixing of fuel in combustion will be increased. 

      In this article, instability of an elliptic liquid jet under the 

effect of inertia, viscous, and surface tension forces has been 

studied using temporal linear analyses. The effects of the 

gravity and the surrounding gas have been neglected. 1-D  

Cosserat equation (directed curve) has been used which can be 

considered as simplified form of Navier-Stokes equations. 

Results are comparable with classical Rayleigh mode of 

circular jet when the aspect ratio (ratio of major to minor axis) 

is one. Growth rate of instability on an elliptic liquid jet under 

various conditions has been compared with those of a circular 

jet. Results show that in comparison with a circular jet, the 

elliptic jet is more unstable and by increasing the aspect ratio 

the instability grows faster. In addition, similar to the circular 

case, the effect of viscosity is diminishing the growth rate for 

the elliptic jet. 

INTRODUCTION 
      Sprays are important in many practical applications such as 

combustion of liquid fuels, ink-jet printing, coatings, painting 

and agriculture. The dispersion of spray drops in a gas is 

important in order to bring about efficient heat and mass 

transfer between liquid and gas phases.  

      The breakup of a liquid jet emanating into another fluid has 

been quantitatively studied for more than a century. Plateau 

(1873) observed that the jet tends to break into segments that 

the spherical drop formed from each segment gives the 

minimum surface energy. Rayleigh (1879) showed that the jet 

breakup is the consequence of hydrodynamic instability. 

Neglecting the viscosity of the jet liquid, the ambient fluid, and 

gravity, he demonstrated that a circular cylindrical liquid jet is 

unstable with respect to disturbances of wavelengths larger than 

the jet circumference. Linear temporal analyses which have 

been established by Rayleigh remain as the fundamental bases 

of liquid jet instability studies. Weber (1931) considered the 

effects of the liquid viscosity as well as the density of the 

ambient fluid. Chandrasekhar (1961) took into account the 

liquid viscosity and the liquid density, and showed 

mathematically that the viscosity tends to reduce the breakup 

rate and increase the drop size.  

      Three-dimensional equations describing the nonlinear 

motion of free-surface flow are hopelessly complicated if 

analytical solutions are to be obtained. Therefore generating 

simplified equations that still capture the essential nonlinear 

physics of the problem is interesting. This is possible in 

situations where the fluid thread is long and thin, so that the 

fluid flow is directed mostly along the axis and the velocity 

field is effectively one-dimensional. In particular, this so-called 

slenderness assumption turns out to be generically valid close 
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to breakup and becomes exact asymptotically close to pinch-off 

(Eggers, 1994).    

      Green and Naghdi (1976) used the basic theory of a one-

dimensional Cosserat continuum and presented nonlinear one-

dimensional theory for a straight, circular, viscous jet. Rather 

than start with a three-dimensional theory based on a three-

dimensional continuum model, one starts at the outset with a 

one-dimensional continuum model, called a Cosserat 

continuum that has structure provided by deformable vectors, 

called "directors", which are kinematically independent of the 

displacement and its derivatives. Then the principles of 

continuum physics such as invariance requirements and 

constitutive assumptions are employed to derive the one-

dimensional equations and appropriate boundary conditions. 

Caulk and Naghdi (1979), using the Cosserat theory of Green 

and Naghdi (1976), considered the more general temporal 

stability of a noncircular viscous jet that also included the 

effects of a rigid rotation. Using incompressibility to eliminate 

the director velocity, and after eliminating the stress quantities, 

Bogy (1978a) listed the axisymmetric Cosserat jet equations. 

The Cosserat equations were used in a series of papers (Bogy 

1978a, 1978b, 1979a, 1979b) focusing on linear stability. 

      Few studies have considered noncircular orifices, though 

there has been interest in them since the nineteenth century. In 

many instances when a fluid exits an elliptical orifice, the free 

jet behavior is oscillatory; from elliptical the cross-section 

becomes circular down the jet, then again elliptical but with 

major axis perpendicular to that of the elliptical orifice, then 

circular, then elliptical with major axis in the original direction 

and so on. Once the shape of the jet cross-section becomes 

circular, inertia continues to change the shape of the cross-

section towards an ellipse. Oscillations occur due to the 

competing surface tension and inertial force. The single 

transformation behavior occurs in the absence of the surface 

tension. The axis-switching phenomenon of an elliptical jet can 

be used for the measurement of dynamic surface tension. 

Rayleigh developed a model to calculate the dynamic surface 

tension from the wavelength of axis-switching of an elliptical 

jet. Rayleigh's model was based on the assumption that the 

departure from circularity of the elliptic cross section of the jet 

is small, and his model did not incorporate the viscosity of the 

liquid. This was further improved by Bohr (1909) by including 

the viscosity into the model. Geer and Strikwerda (1983) 

developed asymptotic models and approximations for slender 

free surface jets. Their work begins with the three-dimensional 

equations for potential flow in the context of an inviscid one-

dimensional director theory. They numerically studied the 

slender nonaxisymmetric equations. However, the issue of drop 

formation was not addressed.  

       In the context of breakup of elliptical liquid jets, the 

experiments carried out by Hoyt and Taylor (1962) show that it 

is not possible to identify any kind of regular breakup process 

as observed in the case of circular orifice liquid jets. Ho and 

Gutmark (1987) have shown that with an elliptical nozzle, the 

mass entrainment was three to eight times higher than an 

axisymmetric jet in combustion process. Kasyap et al. (2009) 

presented experimental results on the breakup of liquid jets 

issuing from elliptical orifices. They described the visual 

observations on elliptical jets by the characterization of the 

axis-switching process and described the breakup curves of 

elliptical and circular jets. They found that a liquid jet 

emanating from an elliptical orifice exhibits more unstable 

behavior or a faster breakup process than a corresponding 

circular liquid jet in a specific range of flow were axis 

switching was observed. Furthermore they found that 

increasing the orifice aspect ratio of the elliptical orifice in 

some ranges makes the elliptical liquid jet more unstable. 

      Although elliptical orifices have been used for practical 

applications such as liquid propellant rocket injectors, spray 

painting, pesticide spraying, and irrigation devices, a systematic 

study on the breakup behavior of liquid jets emanating from 

elliptical orifices has not yet been reported. The objective of 

this research is to investigate instability of liquid jets issuing 

from elliptical nozzles in Rayleigh mode and comparing its 

behavior with circular jets. Regarding complexity of equations 

for asymmetric geometry, 3-D Navier-Stokes will be simplified 

to derive 1-D equations. Linear solution will be performed by 

perturbation methods considering viscous and inviscid case.  

 

NOMENCLATURE 
A          wave amplitude 

F          free surface of ellipse  

I           identity tensor               

Oh       Ohnesorge number 

T          stress tensor 

V          velocity 

e           ratio of minor to major axis 

k           wave number      

n          unit outward normal to the interface 

p          pressure 

pa         ambient pressure 

ta          boundary stress vector in ambient 

tf           boundary stress vector in jet 

α          growth rate 

β          dimensionless growth rate 

κ           mean curvature 

λ           wavelength 

μ           dynamic viscosity of liquid 

ρ           liquid density 

σ surface tension  

φ1         semi-major axis 

φ2         semi-minor axis 

 

 

JET STABILITY ANALYSIS 
      Jet stability theory considers a liquid jet issuing from an 

orifice into a stationary, incompressible gas. The stability of 

liquid surface to perturbations is examined and ultimately leads 

to a dispersion equation that relates the growth rate, α, of an 

initial perturbation of infinitesimal amplitude to its wavelength, 
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λ. The governing equations for mass and momentum 

conservation are solved subject to boundary conditions at the 

interface that include a kinematic jump condition, a tangential 

stress balance, and a normal stress balance. The normal stress 

balance accounts for surface tension, dynamic pressure 

(inertia), and viscous (normal) force. In the tangential stress 

balance the gas is typically assumed to be inviscid. Solution of 

the dispersion equation shows predicted wave growth rate 

versus wave number as a function of Ohnesorge number. 

      The maximum wave growth rate, αmax, and the 

corresponding wavelength, λmax, characterize the fastest 

growing (or most probable) waves on the liquid surface that are 

eventually responsible for the breakup. Any arbitrary form of 

disturbance can be constructed by superposition of all Fourier 

components. Each Fourier component has the form 

Aexp(ikz+αt) where A is the wave amplitude, k=kr+iki, is the 

complex wave number whose real and imaginary parts give, 

respectively, the number of waves over a distance 2π and the 

exponential spatial growth rate per unit distance in the axial z-

direction, and α=αr+iαi is the complex wave frequency, the real 

and imaginary part of which give, the exponential temporal 

growth rate and the frequency of the Fourier wave, respectively. 

(Lin and Reitz, 1998) 

 

One-dimensional approximation 
      Bechtel et al. (1988) developed a one-dimensional model 

for three-dimensional viscoelastic free jets based on the 

assumption that the jet is slender. They started from the Navier-

Stokes equation with assuming lowest order velocity field. 

Equations of motion are then derived, which depend only on 

the axial variable. They found that allowing the velocity profile 

to be an infinite power series in the x and y directions (figure 1) 

and applying the slender jet asymptotic, the same lowest order 

equations will be obtained. The leading-order versions of this 

procedure lead to a set of equations well known as the Cosserat 

equations. Their work is summarized as follows. 

 

                                  

Fig.1. Liquid jet with elliptic cross section  

Navier-Stokes equation is written as: 

 

( ( . ) )
V

V V g divT
t

 


   


                                                (1)  

 

where . Here V is velocity, T is stress tensor, T’ is 

determinant part of the stress tensor, p is constraint pressure, ρ 

is the mass density (assumed constant) and ρg
 
is gravitational 

body force (ignored here due to the rather high velocities). 

 

The following assumptions were made; (a) cross section 

remains elliptical, (b) aerodynamic force from gas side is 

negligible, and (c) the velocity profile is assumed according to 

equation 

 

1 1 2 2 3[ ( , )] [ ( , )] [ ( , )]V x z t e y z t e v z t e                  (2)   

 

Where 
1  and 

2  are unknown functions and v is velocity 

component in z direction. Continuity equation gives,     

 

1 2 0zv                                       (3)    

                                  
The first boundary condition is convection of free surface 

described below. 

 

( . ) 0V F
t


  


                          (4)    

                 
where F is free surface of ellipse  

 
2 2

2 2

1 2

( , , , ) 1 0
( , ) ( , )

x y
F x y z t

z t z t 
                                  (5) 

 

and 
1 and 

2 are semi-major and semi-minor axes 

respectively. From (4) and (5) following equations are derived. 

 

1 1 1 1 2 2 2 20 , 0t z t zv v                                   (6) 

 

The second boundary condition is continuity of normal stress at 

interface described in equation (7).    

 

f at t n                                                                       (7)   

 

Where tf and ta 
are the boundary stress vectors in the jet and 

ambient material, respectively. n is the unit outward normal to 

the interface and κ is mean curvature. In addition the ambient 

has been assumed to exert a constant pressure pa, so 

.
 
Integrating momentum equations in the three directions 

on cross section, using Leibniz’ rule for differentiation of 

integrals and divergence theorem, results in equation (8) for the 

three directions.                                  
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                      (8)                  

 

      It is important to note that compared to the original 

Bechtel’s equation the viscous terms in equation (8) are 

modified according to Caulk and Naghdi (1979). This 

modification is mainly due to the fact that the perturbation 

method used in this work is similar to that of Caulk and 

Naghdi’s (1979). 

 

Linear solution 
      As the perturbation is small, the products of its magnitude 

can be neglected, resulting in a linear analysis. Furthermore, 

temporal analyses consider the growth of the perturbation 

magnitude with time rather than along the jet axis, as is 

considered in spatial analyses.  Linear expansion will result in 

equation (9). 

 
(0) (0) (0)

0 0 1 1 2 2

(0)

0 0

, ,v v v a b

p p p

    



     

 

               (9) 

                                                                  

where a and b are initial semi-major and semi-minor axes 

respectively. Pressure and velocity terms will be eliminated 

among equation (3), (6), and (8). With a selected frame of 

reference one may write v0=0. For simplicity   Ф1
(0) has been 

written as  Ф1 and Ф2
(0) as Ф2

(0). Coefficients have been listed in 

Annex. Linearization of terms in (8) is as follows. 
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(10) 

 

 

and 
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(11) 

Additionally, surface tension term in (8) is linearized as, 

 

1 2 1 2 1 3 2 4 1 5 2( , ) zz zzh k k k k k             
 

2 1 1 2 2 3 1 4 2 5 1( , ) zz zzh l l l l l                                (12) 

 

Replacing following terms 

 

1 1 2 2( ) ( )(0) (0)

1 2( , ) , ( , )i t k z i t k zz t ae z t be    
              (13)

 

 

in equations (10) and (11) results 
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and 
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RESULTS AND DISCUSSION 
       By solving quadratic equations (14) and (15) which belong 

to the major and minor axes, respectively, the following 

dispersion equation will be derived, 

 
3 22

4 8 2

R M N
i M





                          (16) 

 

where for the major axis, 
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                           (17) 

 

and 

2 22 1 3

2 24 5 4 5
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1
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k R
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                (18)  

and for the minor axis,
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                      (19) 

and       
2 2

2 22 1 3

2 25 4 5 4
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(3 2 3 )

( )
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8

e e F E e E
k R

E F e E F
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
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
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
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            (20) 

These equations have been plotted in figures 2 to 5. R is the 

radius of a jet which has the same cross sectional area of an 

ellipse, and e is the ratio of minor axis to major axis (i.e. 

inverse of aspect ratio). Ohnesorge number, Oh, and 

dimensionless growth rate, β, are defined as follows, 

 
3

,
R

Oh
R


 


 

      

                                           (21) 

 

      Based on dispersion equation, results have been plotted for 

elliptic jets with different aspect ratios. Figure 2 shows that the 

disturbance growth rate in the elliptical case is larger and 

smaller than circular case for major and minor axis, 

respectively. By increasing the aspect ratio this difference 

becomes greater. Since the maximum growth rate is responsible 

for breakup, one can conclude that breakup length of elliptic jet 

is shorter than that of the circular jet which confirms the results 

obtained experimentally by Kasyap et al. (2009). In addition, 

these results show that in comparison with a circular jet, the 

elliptic jet is more unstable and by increasing the aspect ratio, 

the instability grows faster. Furthermore, as can be seen from 

figure 2, the range of unstable wave numbers in elliptic jet is 

larger than circular jet.  

 

 
 

Fig.2. Growth rate β versus wavenumber kR for different aspect 

ratios in inviscid case (j: major axis, n: minor axis). 

Figure 3 which had been presented by Caulk and Naghdi 

(1979) shows the effect of viscosity on the growth rate of 

disturbances on a circular jet. Figures 4 and 5 show the same 

effects on the major and minor axes of an elliptical jet. As can 

be seen, for both elliptical and circular jets the effect of 

viscosity is diminishing the growth rate and shifting the 

maximum growth rate to longer wavelengths. These results are 

comparable with those of Rayleigh (1879) and Weber (1931). 

Figure 3 shows that in the inviscid case, the difference between 

the results of one-dimensional model and Rayleigh’s 

axisymmetric analysis is almost negligible (less than 0.25 %) 

which can serve as the validation for the 1-D modeling. 

 

 
 

Fig.3. Comparison of the growth rate obtained by 1-D model 

with Rayleigh (1879) and Weber (1931) in circular case for 

different Oh numbers. 

 

 
 

Fig.4. Growth rate of major axis for different Oh numbers for 

an ellipse with e=0.7 
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Fig.5. Growth rate of minor axis for different Oh numbers for 

an ellipse with e=0.7 

 

 

 

CONCLUSION 
      Directed curve one-dimensional equation for liquid jet with 

elliptic cross section has been solved linearly with perturbation 

methods. The associated dispersion equation has been derived. 

Results show that in comparison with a circular jet, the elliptic 

jet is more unstable and by increasing the aspect ratio the 

instability grows faster and the range of unstable wave numbers 

is increased.  Similar to the circular case the effect of viscosity 

is diminishing the growth rate and shifting the maximum 

growth rate to longer wavelengths. 
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