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ABSTRACT
In Immersed Boundary Methods (IBM) the effect of complex ge-
ometries is introduced through the forces added in the Navier-
Stokes solver at the grid points in the vicinity of the immersed
boundaries. Most of the methods in the literature have been used
with Cartesian grids. Moreover many of the methods developed
in the literature do not satisfy some basic conservation proper-
ties (the conservation of torque, for instance) on non-uniform
meshes. In this paper we will follow the RKPM method orig-
inated by Liu et al. [1] to build locally regularized functions
that verify a number of integral conditions. These local approxi-
mants will be used both for interpolating the velocity field and for
spreading the singular force field in the framework of a pressure
correction scheme for the incompressible Navier- Stokes equa-
tions. We will also demonstrate the robustness and effectiveness
of the scheme through various examples.

INTRODUCTION
In the last two decades several authors have turned their atten-
tion to the immersed boundary methods (IBMs) for their ability
to handle moving or deforming bodies with complex surface ge-
ometry embedded in a fluid flow. Peskin [2] first introduced the
method by solving the flow motion over a uniform mesh (from
now on termed the Eulerian grid) while representing the im-

∗Address all correspondence to this author.

mersed surface with a set of Lagrangianmarkers. The key feature
of IBMs is the fact that the Eulerian grid is not required to con-
form to the immersed body geometry, since the no-slip boundary
conditions are enforced at the Lagrangian points by introducing
appropriate boundary forces. The boundary forces that exist as
singular functions along the surface in the continuous equations
are described by mollified delta functions that spread (regularize)
the forcing field over the neighboring Eulerian cells.

The original forcing scheme was designed for flexible bound-
aries and had some drawbacks for rigid boundaries in form of
sever restriction on the time step size. To avoid this restriction
Fadlun et al. [3] introduced a direct formulation of the force
term. The basic idea consists of modifying the entries of the
implicit matrix of the discretized momentum equation such that
the interpolated velocity at the Lagrangian points takes on the
desired values. Fadlun et al. [3] present an example of a flow in-
volving moving boundaries; however, the lack of smoothness of
the boundary force during the relative motion was recognized by
Uhlmann [4]. He presented an alternative direct-forcing scheme
where the force is computed on the Lagrangian markers and
later on spread onto the neighboring Eulerian nodes. The algo-
rithm conveys very smooth hydrodynamic forces while preserv-
ing the global order of the spatial scheme. Recently, Vanella and
Balaras [5] have presented an extension of the method that, while
keeping the simplicity of the original technique, leads to sharp
behavior similar to Eulerian direct-forcing schemes and bound-

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30529 



ary conforming methods.
Fewer applications of immersed-boundary methods to curvilin-
ear grids have been developed [6, 7]. The common argument
against using immersed-boundarymethods with curvilinear grids
is the increased cost of curvilinear codes, compared to Cartesian
ones. However, when clustering of grid points is needed close
to solid boundaries, Cartesian grids may be suboptimal, as the
refinement is extended to regions of the flow in which it is not
needed. Furthermore, in wall-bounded turbulent flows it is gener-
ally desirable to use grid cells that are longer in the flow direction
than in the other two; the use of meshes in which the grid lines
are nearly aligned with the streamlines can lead to very signifi-
cant savings. It is our goal, therefore, to develop a method that
can be applied on Cartesian (uniform or non-uniform) as well as
curvilinear meshes.
One of the reasons that has limited the use of the IBM techniques
to Cartesian grids is related with the use of discrete delta func-
tions, which cannot be trivially extended to more complex grid
systems without losing some fundamental conservation proper-
ties of the regularized force field. In particular, consider the
integral conservation of the spread force-field and of the first k
moments generated by the singular force distribution:

∑
i, j,k
f(xi, j,k) Δvi, j,k = ∑

m
F(Xm) ΔVm, (1)

∑
i, j,k
xki, j,k× f(xi, j,k) Δvi, j,k = ∑

m
Xkm×F(Xm) ΔVm. (2)

In equations (1) and (2) the sum on the left-hand-side is per-
formed on all the Eulerian grid nodes xi, j,k (over which the force
has been spread), while the one on the right is over all the La-
grangian markers located at Xm. The sums are the discrete coun-
terparts of three-dimensional integrals, Δvi, j,k being the volume
of the (i, j,k) Eulerian cell and ΔVm the volume defined about the
m-th Lagrangian marker. The identities (1) and (2) are verified if
the regularized delta function δh(s) verifies [8]:

∑
i, j,k

δh(xi, j,k−X)) Δvi, j,k = 1 (3)

∑
i, j,k

(xi, j,k−X)) ·δh(xi, j,k−X)) Δvi, j,k = 0. (4)

While conditions (3) and (4) are easily met on an uniform Carte-
sian grid by a number of regularized delta functions available in
the literature, some correction terms must be introduced in the
delta approximant if reproducing-conditions (3) and (4) have to
be satisfied on any other underlying mesh.
In this paper we will follow the ideas originated by Liu et al. [1]
to build locally regularized functions that verify a number of in-
tegral conditions. These local approximants will be used both

for interpolating the velocity field and for spreading the singular
force field in the framework of a pressure correction scheme for
the incompressible Navier-Stokes equations.

MATHEMATICAL FORMULATION
The time advancement method
The solution of Navier-Stokes equation is advanced in time with
a fractional step scheme [9, 10];

u∗ −un
Δt

= −Nl(un,un−1)−G φn−1+L (u∗,un) (5)

L φ =
1
Δt

Du∗ (6)

un+1 = u∗ −ΔtG φn, (7)

where u∗ is the predicted (non-solenoidal) velocity field, un is
the solenoidal velocity field at time-step n, Δt is the time step,
Nl is the discrete non-linear operator, G is the discrete gradient
operator, L is the discrete Laplacian, φ is a projection variable
(related to the pressure field).
Following Uhlmann [4], in order to impose the boundary values
on the embedded boundary the advancement of the momentum
equations is carried out in two stages. First, a fully explicit ver-
sion of (5) is advanced in time from tn to tn+ Δt without impos-
ing any value on the embedded boundary:

u∗ = un−Δt
[
Nl(un,un−1)−G φn−1+L (un)

]
(8)

The velocity field obtained from (8) is interpolated on the em-
bedded geometry Γ, which discretized through a number of
markers of coordinates Xk, using an interpolation operator (to
be described later) I :

U∗(Xk) = I (u∗) (9)

The value of U∗ allows to determine a distribution of singular
forces along Γ that would restore the prescribed boundary values
UΓ(Xk,t) on the embedded boundary:

F∗(Xk) =
UΓ −U∗(Xk)

Δt
. (10)

The singular force field defined over Γ is then transformed by
a spreading operator C into a volume force-field defined on the
mesh points xi, j,k:

f∗(xi, j,k) = C (F∗(Xk)) . (11)
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Finally, the time-advancement of the momentum equations (in
its explicit or semi-implicit version) is undertaken including the
computed force field given by (11):

u∗ −un
Δt

= −Nl(un,un−1)−G φn−1+L (u∗,un)+ f∗ (12)

At this point the algorithm continues with the usual solution of
the pressure Poisson equation and the consequent projection step
(7). The key points in the algorithm concern the proper definition
of the interpolation operator I and of the convolution kernel
involved in C . This will be the subject of the next section.

Interpolation and convolution: Dirac’s delta approxi-
mants
To define the specific kernel of the interpolation and convolution
operators that has been selected and justify such a choice, some
basic notions about the Reproducing Kernel Particle Method
(RKPM) are reviewed. We will just focus on the concepts and
results that have a direct use in the context of the present method-
ology. A complete review and analysis of the method con be
found in [1, 11]. Applications of the RKPM embedded domain
technique in a finite element framework is illustrated in [12].
The approximation f a(x) of the value of a given smooth func-
tion f (s) at a certain point of coordinate x can be generated by a
kernel approximation:

f a(x) =

∫
Ω
wd(x− s) f (s)ds (13)

wherewd(x−s) > 0 is the kernel or a weighting function, and the
subscript indicates that the kernel also depends on an additional
parameter d, the dilatation parameter. The kernel function is as-
sumed to be of compact support (i.e., nonzero in a sub-domain
ΩI of Ω and zero outside in Ω\ΩI). The sub-domain ΩI is de-
termined by the dilatation parameter d. Note that if the kernel
function is the delta function, f a(x) = f (x) and the function is
said to be reproduced exactly. A possible approximation to the
exact delta function that we will use in the following, is the one
suggested by Roma et al. [8]:

wd(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
6

(
5−3|r|−

√
−3(1−|r|)2+1

)
, 0.5≤ |r| ≤ 1.5

1
3

(
1+

√
−3r2+1

)
, |r| ≤ 0.5

0, otherwise,
(14)

where r= (x− y)/d. The function in (14) was determined by re-
quiring that a certain set of properties be satisfied by the discrete
version of Dirac delta function [8]:

1. wd(r) is continuous for all real numbers r;

2. wd(r) ≥ 0, |r| ≥ 1.5;
3. ∑l wd(r− l) = 1, ∀r;
4. ∑l(r− l) ·wd(r− l) = 0, ∀r;
5. ∑l (wd(r− l))2 = 1/2, ∀r;
The last three properties involve values l ∈ N and, therefore, al-
low meeting conditions (3) and (4) only if the nodes are equis-
paced. In order to comply with the above-mentioned conditions
on a non-uniform sequence of nodes, following Liu et al. [11],
we introduce a modified version of (14) as

w̃d(x− s) = [b0(s,d)+b1(s,d)(x− s)+

b2(s,d)(x− s)2+ ...] ·wd(x− s) (15)

where the polynomial coefficients b0(s,d),b1(s,d),b2(s,d)... are
determined by imposing the reproducing conditions

∫
Ω
w̃d(x− s)ds = 1 (16)∫

Ω
(x− s)i · w̃d(x− s)ds = 0 (i= 1,2, ..) (17)

which are the continuous equivalent of the third and fourth con-
ditions met by wd(x− s) on an uniform mesh. It can be shown
that the moment conditions:

m̃0(x) =

∫
Ω
w̃d(x− s)ds= 1 and

m̃i(x) =
∫

Ω
(x− s)i · w̃d(x− s)ds= 0 (18)

(for i = 1,2, ...) are equivalent to the polynomial reproducing
conditions:

xi =
∫

Ω
si · w̃d(x− s)ds, i= 0,1,2... (19)

If we insert in (18) the definition of the polynomial correc-
tion (15), it is possible to write the conditions on the modi-
fied moments m̃i(x) in terms of the original moments mi(x) =∫

Ω(x− s)i ·wd(x− s)ds:

m̃0(x) =

∫
Ω
w̃d(x− s)ds=

n

∑
i=0
bi(x)mi(x) = 1

m̃1(x) =

∫
Ω
(x− s) · w̃d(x− s)ds=

n

∑
i=0
bi(x)mi+1(x) = 0

· · · = · · ·
(20)

m̃n(x) =

∫
Ω
(x− s)n · w̃d(x− s)ds=

n

∑
i=0
bi(x)mi+n(x) = 0
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By using any quadrature technique in (20), a symmetric linear
system:

⎛
⎜⎜⎜⎜⎝
m0 m1 · · · · · · mn
m1 m2 · · · · · · mn+1
· · · · · · · · · · · ·
· · · · · · · · · · · ·
mn mn+1 · · · · · · m2n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
b0
b1
·
·
bn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
0
·
·
0

⎞
⎟⎟⎟⎟⎠ (21)

is obtained for the unknown polynomial coefficients bi,
i= 0,1,2....

Modified window functions that verify the reproducing condi-
tions in higher dimensions can be obtained by imposing the
exact representation of a complete polynomial basis. In 2D
all the second order polynomials are linear combinations of{
1,x,y,xy,x2,y2

}
, and the mother window function can be given

as a Cartesian product of (14) with itself: wδ ,η (x− s,y− t) =
wδ (x− s) ·wη (y− t). Here, δ and η are the dilatation parame-
ters in the two coordinate directions. Next we look for corrected
window functions

w̃δ ,η (x− s,y− t) =
[
b0+(x− s)b1+(y− t)b2+(x− s)

(y− t)b3+(x− s)2b4+(y− t)2b5
]×wδ ,η(x− s,y− t) (22)

(where bi = bi(δ ,η ,x,y) for i = 0, ...,5) in 2D. By imposing the
exact representation of the members of the polynomial basis, a
symmetric linear systemM2D�b=�e1 is obtained. Where�b is the
vector of unknown polynomial coefficients (same order as the
one in the definition of the given correction polynomials) and�e1
is the first unit vector of the canonical basis in R

6 in 2D. The
elements of the matrices are:

mi, j =
∫

ΩI
(x− s)i(y− t) j ·wδ ,η(x− s,y− t)dsdt in 2D (23)

To ensure that the linear system is well behaved some precautions
must be taken in the choice of the discrete support for ΩI and in
the solution of the linear system. These topics together with more
implementation details are given in the following section.

Interpolation and convolution: discrete approach
We now discuss the implementation of RKPM method in a dis-
crete, generalized-coordinate finite-difference or finite-volume
code. As a first step the embedded boundary curve is discretized
into a number of nodes XI , I = 1..Ne. Around each node XI we
define a rectangular cage ΩI (Figure 1) with the following prop-
erties: (i) it must contain at least three nodes of the underlying
mesh (from now on termed “the mesh”) for each direction; (ii)

FIGURE 1. Definition of the support cage. • are the nodes on the
embedded curve, are the grid points, are the grid points within the
support; the dashed line is the embedded curve and the dashed rectangle
is ΩI centered about XI (the center of the rectangle).

the number of nodes of the mesh contained in the cage must be
minimized. The modified kernel will be identically zero outside
ΩI . With reference to the definition of the window function pro-
posed by Roma et al. [8], the edges of the rectangle will measure
3δ in x direction and 3η in y. The reason to have at least three
nodes in each direction within the cage is related with avoiding a
singular moment matrix when considering second order polyno-
mials for the correction of the original window function.
In order to determine the dimensions of the rectangular support
centered in XI , first we look for the mesh node xî, ĵ = (xî, ĵ,yî, ĵ)
closest to XI , next we consider (in a structured mesh) the nodes
neighboring xî, ĵ (i.e.,NI =

{
xî+k, ĵ+l

}
, k = −1,0,1, l = −1,0,1)

and evaluate h±x and h±y as:

h+
x (XI) = max

{|xi, j− xi−1, j| : xi, j,xi−1, j ∈ NI
}

, (24)
h−x (XI) = min

{|xi, j− xi−1, j| : xi, j,xi−1, j ∈ NI
}

, (25)
h+
y (XI) = max

{|yi, j− yi, j−1| : yi, j,yi, j−1 ∈ NI
}

, (26)

h−y (XI) = min
{|yi, j− yi, j−1| : yi, j,yi, j−1 ∈ NI

}
. (27)

Based on these values, we define the length of the edges of the
rectangle (3δI and 3ηI) through the local dilatation factors:

δI =

(
5
6
h+
x (XI)+

1
6
h−x (XI)+ εx(XI)

)
(28)

ηI =

(
5
6
h+
y (XI)+

1
6
h−y (XI)+ εy(XI)

)
(29)

where εx(XI) and εy(XI) are small fractions of the typical local
mesh spacing. Those terms are added to avoid the eventuality
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of the support boundary touching some of the support nodes (to
be defined later) since in this case the window function would
take on zeros values on those nodes, thus making the discretized
moment matrix singular.
As a final step, we need to determine a set of grid nodes within
the support cage:

SI =

{
xi, j : |xî, ĵ− xi, j| <

3
2

δI , |yî, ĵ− yi, j| <
3
2

ηI
}

. (30)

We have verified that with this particular choice the set of nodes
within the support is nine almost anywhere when the underlying
mesh is reasonably smooth.
To assemble the local window function centered in XI , the ele-
ments of the moment matrixMI = {mIi, j}

mIi, j =
∫

ΩI
(x− s)i(y− t) j ·wδ ,η(x− s,y− t)dsdt (31)

must be evaluated numerically. To this end we approximate the
entries in the moment matrix relative to node XI = (XI,YI) using
the mid-point quadrature rule:

mIi, j = ∑
k,l∈SI

(xk,l−XI)i(yk,l−YI) j×wδI ,ηI (xk,l−XI,yk,l−YI)ΔAk,l ,
(32)

where ΔAk,l is the area of the cell centered about xk,l . The ex-
tension of such an approximation to the elements of the moment
matrix in the three-dimensional case is an easy task.
Once the discrete counterpart of the moment matrix is assembled
for each XI node, the coefficients of the correction polynomials
are found by solving

MIb I = e1, I = 1, ...,Ne (33)

(i.e., a 6×6 symmetric linear systems in a two-dimensional case
with a second order correction polynomial). A word of caution
about the solution of these linear systems is necessary. Due to
the very low values that the window function may take at the
nodes close to the boundary of the support cage, the moment
matrix may become ill-conditioned, giving inaccurate values of
the polynomial coefficients. A possible way of limiting round-
off errors is to rescale the linear system by solving the equivalent
system

HIMI(HI)−1 b I = e1 (34)

in two stages:

HIMIc I = e1, and b I =HIc I, with

HI = diag
(
1,
1
δI

,
1
ηI

,
1

δIηI
,
1

δ 2I
,
1

η2I

)
. (35)

The coefficient matrix of the first linear system can be equiv-
alently obtained by normalizing the distances (xk,l − XI) and
(yk,l −YI) appearing in (32) with the dilatation parameters (δI
and ηI). The matrix product that follows is needed to undo the
scaling.
The methodology developed so far allows the definition of a lo-
calized window function w̃δI ,ηI (x−XI) to be used in the convo-
lution integrals appearing in the time advancement scheme of the
Navier-Stokes algorithm. In particular, given a component of the
velocity field ui(x,y) known at the mesh nodes xi, j, the interpo-
lated value at nodeXI on the embedded line can be approximated
numerically by:

Ui(XI) = ∑
k,l∈SI

ui(xl,k) · w̃δI ,ηI (xk,l−XI,yk,l−YI)ΔAk,l (36)

having used the same quadrature rule as in (32). Conversely,
once the force component for each momentum equation on each
embedded node Fi(XI) has been found by forcing the desired
boundary values, the distribution of the singular forces over the
mesh nodes can be obtained using as a discrete convolution op-
erator the quadrature formula:

fi(xl,k) =
Ne

∑
I=1
Fi(XI) · w̃δI ,ηI (xk,l−XI,yk,l −YI) εI ΔsI (37)

where ΔsI is length of the arc joining XI+1/2 to XI−1/2, and εI is
a characteristic length related to the local dilatation coefficients
of the window function w̃δI ,ηI (xk,l −XI,yk,l −YI) and to the dis-
tribution of the markers on the embedded boundary line. The
conservations properties concerning the spread values of forces
and torques are verified independently of the value assigned to
εI , whose role is only to control the intensity of the spread force
field.

The Navier-Stokes solver
The immersed-boundary method discussed has been imple-
mented in a three-dimensional curvilinear finite-volume solver
for the incompressible Navier-Stokes equations. The time-
advancement follows the procedure described above [Equations
(5–7)].
The incompressible Navier-Stokes equations are discretized on a
non-staggered grid using a curvilinear finite volume code. The
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method of Rhie and Chow [13] is used to avoid pressure os-
cillations. Both convective and diffusive fluxes are approxi-
mated by second-order central differences. A second-order semi-
implicit fractional-step procedure [14] is used for the tempo-
ral discretization. The Crank-Nicolson scheme is used for the
temporal discretization of wall-normal diffusive terms, and the
second-order Adams-Bashforth scheme for all the other terms.
Fourier transforms are used to reduce the three-dimensional Pois-
son equation into a series of two-dimensional Helmoltz equa-
tions in wavenumber space, which are then solved iteratively
using the biconjugate gradient stabilized (BiCGStab) method.
The code is parallelized using the MPI message-passing library
and the domain-decomposition technique, and has been widely
tested [15–18] in simulations of turbulent flows using curvilin-
ear, body-fitted grids.

RESULTS
In this section the accuracy, convergence and robustness of the
scheme will be established. We consider first the laminar flow
over a circular cylinder; we then examine the flow over a two-
dimensional hill to show the implementation of the scheme on
non-uniform and non-orthogonal grids.

Flow over a circular cylinder
The steady flow over a circular cylinder is considered at two
Reynolds numbers, ReD = 30 and ReD = 185, (based on the
free-stream velocity U∞ and the cylinder diameter D). The low
Reynolds number flow remains steady, while at ReD = 185 peri-
odic vortex shedding is expected. In the latter case the results
depend critically on the accurate reproduction of the vorticity
field in the vicinity of the cylinder, which, in turn, depends on
a correct prescription of pressure and shear forces at the cylinder
boundary.
The steady-state flow over a cylinder at ReD = 30 is simulated
with a domain of dimensions [−9D,40D] in the streamwise (x)
direction and [−17D,17D] in the vertical (y) direction; the centre
of the cylinder is at (0,0). The dimensions of the domain are
comparable to those used in other numerical studies [4, 5]. A
steady uniform flow field is given at the inlet plane and at the
outlet plane convective boundary condition are specified. A free-
slip condition is applied on the top and the bottom walls.
The grid is uniform near the cylinder, in the region−0.6D≤ x≤
D and−D≤ y≤D. Outside this region, the grid is stretched with
a stretching ratio of less than 1.02. Four different grids (with
Δx = Δy = 0.0025D, 0.005D, 0.01D and 0.02D in the uniform
region) are considered with 1260, 629, 316 and 153 uniformly
spaced Lagrangian points on the boundary of the cylinder. The
results for the finest grid are considered accurate, and the L2 and
L∞ norms of the error obtained on the coarser grids are calculated
and shown in Figure 2. The results demonstrate the second-order
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t||
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Δx2
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FIGURE 2. Grid convergence study. (a) L2 and (b) L∞ norms of the
error.

θ

a

b

l

FIGURE 3. Definition of different parameters of the wake.

accuracy of the method.
The simulation results are also compared with the experimen-
tal data. The most important physical feature of this flow is the
presence of a recirculating region in the wake of the cylinder.
The important parameters associated with the wake are shown
in Figure 3; l is the length of the wake, a is the distance from
the cylinder to the centre of the wake vortex, b is the distance
between the centres of the wake vortices, and θ is the angle of
separation measured from x-axis. Another important flow pa-
rameter is the drag coefficient, CD = 2D/ρU2∞D2 (where D is
the drag force). In the current scheme interpolation and spread-
ing operators conserve the force therefore the drag force D can
be calculated directly from the summation of the forces at all
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FIGURE 4. Streamlines and vorticity contours for the steady-state flow over a cylinder at ReD = 30.

Lagrangian points:

D = ∑
n
F∗
x (Xn)ΔAn. (38)

where F∗
x (Xn) is the x-component of the force at Lagrangian

point, resulting from u-momentum equation and ΔAn is the area
associated with the Lagrangian point.
The streamlines and vorticity contours for this flow are shown
in Figure 4. The figure shows the expected flow topology, and
the wake parameters computed from the simulation are in good
agreement with the experimental data, as shown in Table 1.

TABLE 1. Comparison of wake parameters and drag coefficient for
steady-state flow over cylinder at ReD = 30 with experimental data

l/D a/D b/D θ CD

Present 1.70 0.56 0.52 48.05o 1.80

Coutanceau [19] 1.55 0.54 0.54 50.00o —

Tritton [20] — — — — 1.74

We then examined a higher ReD case, to verify that the unsteadi-
ness of the flow could be captured correctly. The domain and the
boundary conditions for the higher Reynolds number case were
similar to the low-ReD case. Only two grids were considered,
with Δx= Δy= 0.01D and 0.005D, respectively, in the region of
interest (−0.6D≤ x≤ D and D≤ y≤ D).

Figure 5 shows instantaneous vorticity contours and a time se-
ries of the drag and lift coefficients, CD and CL (where CL =
2L /ρU2∞D2, and L is the lift force on the cylinder) obtained
using the finer grid. The periodic fluctuations of drag and lift
co-efficients indicate a stable vortex shedding behind the cylin-
der. The instantaneous vorticity contours for this flow are shown
in Figure 5(b). The numerical simulation captures the Kármán
vortex street formed in the wake. The coefficients of drag, lift
and Strouhal number St =Dω/U∞ (where ω is the shedding fre-
quency) are compared with the values reported in the literature
in Table 2. The results obtained with the present method are well
within the range of values obtained by other researchers.

TABLE 2. Comparison of coefficients of drag, lift and Strouhal num-
ber for flow over cylinder at ReD = 185.

CD CrmsL St

Present Δx= 0.005D 1.430 0.423 0.196

Present Δx= 0.01D 1.509 0.428 0.199

Vanella and Balaras [5] 1.377 0.461 -

Guilmineau and Queutey [21] 1.280 0.443 0.195

Lu and Dalton [22] 1.310 0.422 0.195

Williamson [23] - - 0.193
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FIGURE 5. Flow over a cylinder at ReD = 185. Left: Time-series of lift and drag coefficients; right: instantaneous vorticity contours and streamlines.
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FIGURE 6. Comparison of vorticity for flow over the hill. (a) Body-fitted non-orthogonal grid. (b) Non-orthogonal grid with immersed boundary.
(c) Non-uniform orthogonal grid with immersed body. (d) Uniform orthogonal grid with immersed boundary. 21 equally spaced contour levels from 2
to -8 are shown here.

Flow over a two-dimensional hill
An important property of the current forcing scheme is its appli-
cability to non-uniform and non-orthogonal grids without loss of
accuracy. To demonstrate this property a two dimensional flow
over a small hill in a channel is considered here with a Reynolds
number of Re= 600 based on the channel heightH. The shape of
the hill is defined by yh = 0.15H sin2[π(x−2.0)]; thus, the max-
imum height is 15% of the channel height; its peak is at x= 2.5.
The no-slip boundary condition is enforced on the top and bot-
tom walls of the channel and a periodic boundary condition is
assumed in the streamwise direction. The domain, however, is
long enough that the flow returns to a fully developed state, with
a parabolic profile, before the end of the computational domain.
In this study four different grids are considered. First a non-
orthogonal body-fitted grid is used, which conforms to the hill.
In this case hill becomes an integral part of the domain bound-
ary and direct no-slip boundary condition is applied. The max-

imum grid size in the region 2H ≤ x ≤ 4H and 0 ≤ y ≤ 0.25H
is 0.01H. This is the region of interest for this flow, since it
covers the hill and the recirculation zone. The second grid is
also a non-orthogonal grid, but the hill does not coincide with
a grid line, and the no-slip conditions on the hill itself are im-
posed by the immersed-boundary method. The maximum grid
size in the region of interest for this case is also 0.005H. The
third grid is a non-uniform orthogonal grid, is clustered near the
top and bottom of the hill in the y-direction and near the lead-
ing and trailing part of the hill in the x-direction. In the central
part of the hill the grid is stretched in both directions. Here the
grid size in the region of interest varies between 0.0025H and
0.0075H. The fourth grid is a uniform orthogonal grid, also with
a grid size Δx= Δy= 0.005H in the region of interest. The hill is
defined as an immersed boundary with 650 uniformly distributed
Lagrangian points along the geometry. The no-slip condition on
the hill is applied through the forcing described previously.
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FIGURE 7. Comparison of velocity profiles at x = 2.5, x = 2.75 and
x= 3.2 over the hill. (a) u, (b) v.

The vorticity contours on the hill and in the recirculation region
for the four grids are shown in Figure 6. The non-orthogonality
and non-uniformity of the grid has no significant effect on the
forcing as far as large scale flow features are concerned. The vor-
ticity contours for all the three grids with forcing are in accord
with the body-fitted non-orthogonal grid. A detailed compari-
son of different grids is also shown in Figure 7 through u and v
velocity profiles. The velocity profiles are shown at three loca-
tions, x= 2.5 (peak of the hill), x= 2.75 (50% down the hill) and
x= 3.2 (in the recirculation region). The u and v velocity profiles
for all the four grids are in very good agreement with each other.

CONCLUSIONS
We have extended an immersed-boundary method based on the
Reproducing Kernel Particle Method (RKPM) proposed by Liu
et al. [1] to non-orthogonal, non-uniform grids. The method sat-
isfies the integral conservation properties for the first two mo-
ments of the force field. This makes the calculation of the drag
and lift forces exerted by the fluid on the body straightforward,
as it becomes a simple integration. No corrections are necessary,
as required by other methods.
We have applied this method to the simulation of the flow around
a 2D cylinder, both in the steady and unsteady flow regimes. The
simulation results compare very well with the data in the liter-
ature. We have also performed calculations of the flow over a
two-dimensional bump, to verify that the IBM proposed main-
tained its accuracy on non-orthogonal and non-uniform meshes.
The IBM compares very well with the results of a simulation
performed using a body-fitted grid. Extensions of the method to

three-dimensional flows and moving bodies are ongoing.
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