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ABSTRACT
In this paper, we investigate the transport of resolved turbu-

lent stresses in a plane channel flow subjected to spanwise rota-
tion using the method of large-eddy simulation (LES). We present
both the general and simplified transport equations for the re-
solved turbulent stresses, which are essential for understanding
the unique pattern of turbulent kinetic energy production in a ro-
tating system. Numerical simulations are performed using a dy-
namic nonlinear model (DNM) for closure of the filtered momen-
tum equation. The turbulent flow field studied in this research
is characterized by a Reynolds number Reτ = 150 and various
rotation numbers Roτ ranging from 0 to 7.5. In order to validate
the LES approach, turbulent statistics obtained from the simula-
tions are thoroughly compared with the available experimental
and direct numerical simulation results.

NOMENCLATURE
CS , CW , CN SGS stress model coefficients
L1, L2, L3 channel length, height, and width, respectively
Lij Leonard type stress tensor
Mij , Wij , Nij differential tensors
p pressure
Reτ Reynolds number based on wall friction velocity: u τδ/ν
Roτ rotation number: 2Ωδ/uτ

S̄ij resolved strain rate tensor: (∂ūi/∂xj + ∂ūj/∂xi)/2
|S̄| norm of S̄ij : (2S̄ijS̄ij)1/2

∗Address all correspondence to this author.

s dimensionless parameter: −2Ω/(d〈ū1〉/dx2)
ui velocity components: i = 1, 2, 3
uτ wall friction velocity
αij , λij , ζij base stress tensor functions at the test-grid level
βij , γij , ηij base stress tensor functions at the grid level
δ half channel height
δij Kronecker delta
Δ mesh or filter size
εijk Levi-Civita symbol
ν kinematic viscosity
Ω angular velocity
Ω̄ij resolved rotation rate tensor: (∂ūi/∂xj − ∂ūj/∂xi)/2
ρ density
τw wall shear stress
τij grid-level SGS stress tensor
(·)1, (·)2, (·)3 streamwise, wall-normal, and spanwise compo-

nents, respectively
(·)p quantity near pressure side
(·)s quantity near suction side
(·)ij second-order tensor: i, j = 1, 2, 3
(·)∗ij trace-free tensor: (·)∗ij = (·)ij − (·)kkδij/3
(·)w value at the wall
(̄·) grid level filter; or resolved quantity
(̃·) test-grid level filter
[·] ensemble-averaged quantity
〈·〉 time- and plane-averaged quantity
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INTRODUCTION
Turbulent flows subjected to a system rotation are of con-

siderable interest in a variety of engineering, geophysical and
astrophysical applications. The prediction and analysis of the ef-
fects of rotation on a flow field is critically important in design-
ing high-performance rotating devices such as the internal blade
cooling system in gas turbines, rotary compressors, multi-stage
cyclone separators, centrifugal pumps and rotating heat exchang-
ers. The Reynolds numbers for the flow in these engineering
rotating devices are typically high, and the mean flow and turbu-
lence level are affected by the Coriolis and centrifugal forces as-
sociated with the system rotation. In response to the Coriolis and
centrifugal forces, large secondary flows are induced which dra-
matically alter the turbulent flow structures. As a consequence,
the physical mechanisms underlying the transport of momentum
in rotating flows are subject to further dynamical complexities,
which impose additional challenges on the predictive accuracy
of turbulence models.

The effects of rotation on the flow field in a plane channel

can be quantified by a parameter s
def= −2Ω/(d〈ū1〉/dx2). As

shown in Fig. 1, the system is rotating in the spanwise direction
with an angular velocity Ω (which is a positive constant in this
study). According to the conventional stability criterion [1–3],
the effect of rotation is destabilizing if −1 < s < 0, and sta-
bilizing if s > 0. Tritton [4] has elaborated on this issue using
a ‘displaced particle analysis’, although his research was related
to the stability of laminar shear flows rather than turbulent flows.
More specifically, turbulent mixing is enhanced on the side of the
channel where the streamwise momentum is unstably stratified
(this side being referred to also as the destabilized or pressure
side), whereas turbulent mixing is reduced on the opposite side of
the channel where the streamwise momentum is stably stratified
(this side being referred to also as the stabilized or suction side).
The terms ‘destabilized’ and ‘stabilized’ sides refer to the action
of the Coriolis instability on the shear layers on the two sides
of a channel. Owing to the existence of the Coriolis force, the
mean streamwise velocity is larger on the stabilized side than on
the destabilized side, and correspondingly, the static pressure de-
creases on the stabilized side and increases on destabilized side.
As a result, the flow on the destabilized (pressure) side tends to
become more turbulent and the boundary-layer tends to become
thinner, whereas the flow on the stabilized (suction) side tends
to become more laminarized and the boundary-layer tends to be-
come thicker. These physical phenomena are of fundamental in-
terest and have been reported in a variety of experimental and
numerical studies [1, 3, 5–9].

In their experimental study of a rotating channel flow, John-
ston et al. [1] observed large longitudinal roll cells associated
with the secondary flow induced by the Coriolis force on the
pressure side of the channel, whereas a nearly total suppres-
sion of turbulence was observed on the suction side. These

large longitudinal roll cells appear in pairs and are interpreted
as Taylor-Görtler (T-G) vortices analogous to those arising from
the centrifugal instability mechanism associated with streamline
curvature [10–12]. Unfortunately, as indicated by Johnston et
al. [1], laboratory investigations of turbulence in a rotating chan-
nel can be challenging because it is difficult to achieve the fully-
developed flow condition within a finite laboratory space.

Direct numerical simulations (DNS) and large-eddy simula-
tions (LES) have been used to provide deeper physical insights
into the effects of rotation on turbulence [3, 5–9]. Based on their
DNS study, Kristoffersen and Andersson [3] pointed out that the
T-G vortices are intrinsically unstable and are free to wander in
the spanwise direction. Furthermore, these researchers devel-
oped an approximate correlation between the number of the T-G
vortex pairs and the aspect ratio of the computational domain.
Wu and Kasagi [13, 14] studied turbulent channel flow under an
arbitrary directional system rotation using DNS. They found that
the effect of spanwise rotation dominates the entire channel if
spanwise rotation exists with comparable streamwise rotation or
comparatively weak wall-normal rotation simultaneously. Fur-
thermore, Wu and Kassagi [13, 14] observed that the combined
action of streamwise and wall-normal rotation results in effects
that are similar to that of spanwise rotation. Miyake and Ka-
jishima [15,16] investigated the effect of the Coriolis force on the
mean flow and turbulent structures using a LES method. How-
ever, the size of the computational domain in their numerical
study was too small, and inevitably, their LES failed to repro-
duce one single persistent pair of T-G vortices.

Turbulent stress components under the influence of the Cori-
olis force play a significant role in the transport of the turbulent
kinetic energy (TKE) and the interactions between small-scale
flow structures. As demonstrated by Johnston et al. [1], the pa-
rameter s is actually the ratio of the production due to the rota-
tional stresses to that due to the mean shear stresses. The DNS
study of Kristoffersen and Andersson [3] further confirmed that
the production terms associated with the Coriolis force have a
significant influence on the absolute value and the distribution of
both the normal and shear components of the turbulent stress. In
this paper, we will present both the general and simplified trans-
port equations for the resolved turbulent stresses in the context
of LES, and report thoroughly the effects of spanwise system ro-
tations on the transport of the resolved TKE.

To date, the novel dynamic nonlinear model (DNM) pro-
posed by Wang and Bergstrom [17] for modelling the subgrid-
scale (SGS) stress tensor has only been tested using a few canon-
ical test cases such as Couette and Poiseuille flows, and mixed
natural and forced convection flows in horizontal and vertical
channels [17–20]. In this paper, we further aim at examining
the predictive performance of this advanced dynamic nonlinear
SGS stress model in the context of a new type of the body force
(i.e., the Coriolis force) in a rotating channel flow.
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SGS STRESS MODEL
In LES, the filtered continuity and momentum equations

take the following form for an incompressible flow in a domain
subjected to a system rotation:

∂ūi

∂xi
= 0 (1)

∂ūi

∂t
+

∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
− ∂τij

∂xj
+ 2εij3Ωūj

(2)
where p̄ represents the effective pressure combined with the cen-
trifugal force, εijk is the Levi-Civita symbol. In this paper,
we use x1, x2 and x3 to denote the streamwise, wall-normal
and spanwise coordinates, respectively (see Fig. 1). The last
term on the right hand side of Eqn. (2) represents the Coriolis
force term induced by a spanwise system rotation. As a conse-
quence of the filtering process, the so-called SGS stress tensor
appears in the above filtered momentum equation and is defined

as τij
def= uiuj − ūiūj . The SGS stress tensor needs to be mod-

eled in order to close the above system of governing equations.
In this study, the dynamic nonlinear model (DNM) of Wang

and Bergstrom [17] is used to conduct our numerical simula-
tions. The constitutive relation for the DNM is based on an ex-
plicit nonlinear quadratic tensorial polynomial constitutive rela-
tion originally proposed by Speziale [21] (see also Gatski and
Speziale [22]) for modelling of the Reynolds stress tensor in a
Reynolds-averaged Navier-Stokes (RANS) approach. By anal-
ogy, the SGS stress tensor can be modelled using the following
functional form within the context of a LES approach:

τ∗
ij = −CSβij − CW γij − CNηij (3)

where an asterisk represents a trace-free tensor, i.e. (·)∗ij def=
(·)ij − (·)kkδij/3, and the base tensor functions are defined

as βij
def= 2Δ̄2|S̄|S̄ij , γij

def= 4Δ̄2(S̄ikΩ̄kj + S̄jkΩ̄ki) and

ηij
def= 4Δ̄2(S̄ikS̄kj − S̄mnS̄nmδij/3). Here, Δ̄ is the grid-

level filter width; δij is the Kronecker delta; S̄ij
def= (∂ūi/∂xj +

∂ūj/∂xi)/2 and Ω̄ij
def= (∂ūi/∂xj − ∂ūj/∂xi)/2 are the re-

solved strain and rotation rate tensors, respectively; and, | S̄| =
(2S̄ijS̄ij)1/2 is the norm of the resolved strain rate tensor. It can
be shown [17] that the values of the three model coefficients CS ,
CW and CN can be obtained by minimizing the residual of the
Germano identity following the dynamic procedure of Lilly [23],
viz.⎡⎣MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

⎤⎦ ·
⎡⎣ CS

CW

CN

⎤⎦ = −
⎡⎣L∗

ijMij

L∗
ijWij

L∗
ijNij

⎤⎦ (4)

where Lij
def= ˜̄uiūj − ˜̄ui ˜̄uj is the resolved Leonard type stress;

Mij
def= αij − β̃ij , Wij

def= λij − γ̃ij and Nij
def= ζij − η̃ij

are differential tensors, respectively; and αij
def= 2 ˜̄Δ2| ˜̄S| ˜̄Sij ,
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FIGURE 1. COMPUTATIONAL DOMAIN FOR A SPANWISE RO-
TATING CHANNEL FLOW. SPECIFIC TO THIS ROTATING CHAN-
NEL FLOW, THE PRESSURE (DESTABILIZING) SIDE WALL IS
LOCATED AT x2/δ = −1.0, AND THE SUCTION (STABILIZING)
SIDE WALL IS LOCATED AT x2/δ = 1.0.

λij
def= 4 ˜̄Δ2( ˜̄Sik

˜̄Ωkj + ˜̄Sjk
˜̄Ωki) and ζij

def= 4 ˜̄Δ2( ˜̄Sik
˜̄Skj −

˜̄Smn
˜̄Snmδij/3) are test-grid level base tensor functions. Here,

quantities filtered at the grid level are denoted using an overbar
and those filtered at the test-grid level are denoted using a tilde.

The design of the constitutive relation of Eqn. (3), in terms
of the choice of the three constituent tensorial base components
(i.e., βij , γij and ηij ) is not arbitrary: (i) the first term βij is the
well-known Smagorinsky component which primarily relates to
the SGS dissipation and forward scatter of kinetic energy (KE)
from the resolved to subgrid scale motions; (ii) the second term
γij does not make any contribution to the KE transfer between
the resolved and subgrid scales, but according to a recent sys-
tematic a priori LES study of Horiuti [24], it significantly im-
proves the correlation between the exact τij extracted from a
DNS database and that predicted by the nonlinear model; and,
(iii) as demonstrated previously [17, 19, 20], the third term η ij

contributes significantly to the backscatter of KE from the sub-
grid to the resolved scales. The three features mentioned here
are among the most important criteria for evaluation of a SGS
stress model. Speziale’s constitutive relation on which the DNM
is based, offers an effective representation to model individually
these three important physical features using three independent
terms. Further successful applications of the DNM can be found
in Wang et al. [19] on the study of the topological features of
wall-bounded turbulent flows, in [25, 26] on the study the geo-
metrical properties of the SGS stress tensor and resolved vorticity
vector, and in [20] on the study of an unstably stratified turbulent
channel flow.

TEST CASE AND NUMERICAL ALGORITHM
Figure 1 shows the computational domain of the rotating

plane channel and coordinate system used in the numerical simu-
lation. The plane channel rotates with a constant positive angular
velocity, Ω, parallel to the x3 direction. Because this research fo-
cuses on examining the rotation effects on the resolved turbulent
stresses, only one Reynolds number will be used in this paper;
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and for this fixed Reynolds number, a series of different rotation
numbers representing a wide range of angular velocities will be
thoroughly tested and compared. The flow is characterized by a

Reynolds number of Reτ
def= uτδ/ν = 150 and various rotation

numbers Roτ ranging from 0 to 7.5. The dimensions of the com-
putational domain are L1 × L2 × L3 = 5πδ × 2δ × 2πδ in the
streamwise (x1), wall-normal (x2) and spanwise (x3) directions,
respectively. Characteristic of a conventional implicit filtering
LES approach, the levels of the resolved and subgrid scale com-
ponents in a numerical simulation rely on the filter size at the
grid level (which is also the characteristic size of a control vol-
ume). A grid system with 48×32×48 control volumes is used to
discretize the computational domain. The grid is uniform in the
streamwise and spanwise directions, and stretched in the wall-
normal direction using a hyperbolic-tangent function in order to
provide a greater resolution in the near-wall region.

A finite volume method based on a collocated grid system
was applied to the discretization of the governing equations.
The nonlinear advection term was discretized using a second-
order explicit Adams-Bashforth scheme and the viscous diffu-
sion term was discretized using a second-order Crank-Nicolson
scheme [27]. A second-order central difference scheme was ap-
plied for the spatial discretization as it represents a good com-
promise between accuracy, simplicity and efficiency [28]. At
each time step, the pressure field was updated by solving a Pois-
son type pressure correction equation using a multi-grid method.
The checkerboard effect in the pressure field arising from the
pressure-velocity decoupling on a collocated grid system was re-
moved using a nonlinear momentum interpolation scheme [29]
for the evaluation of cell-face velocities from the nodal values.

No slip and impermeable boundary conditions are imposed
on the velocity components at the walls. Periodic boundary con-
ditions are employed in the streamwise and spanwise directions
since the flow and temperature fields are assumed to be statisti-
cally homogeneous in both these directions. Statistics of various
flow variables are calculated based on 80,000 time steps after the
fluid field has become turbulent and fully-developed.

In the presentation of the numerical results, quantities non-

dimensionalized using the wall friction velocity uτ
def=

√
τw/ρ

are denoted with a superscript ‘+’.

MEAN RESOLVED VELOCITY PROFILES
In order to validate the numerical approach, the LES results

obtained from the simulations are compared with the DNS data
of Nishimura and Kasagi [30] (designated as NK-1996) for a ro-
tating channel flow under the same operating conditions. In addi-
tion, a set of DNS data on non-rotating channel flows (Roτ = 0)
obtained by Iwamoto et al. [31] (designated as ISK-2002) are
also used in our comparative study.

Figure 2 show the mean resolved streamwise velocity pro-

FIGURE 2. PROFILES OF THE MEAN RESOLVED STREAM-
WISE VELOCITY AT Roτ = 0 AND 2.5.

files in the wall-normal direction across the channel. As shown
in Fig. 2, the mean velocity profile is symmetric about the central
channel plane (x2/δ = 0) for the non-rotating case (Roτ = 0).
However, for the rotating case tested, it is evident from Fig. 2 that
d〈ū1〉/dx2 > 0 holds in the region near the pressure side (i.e., at
x2/δ = −1.0), which results in s < 0, indicating that the system
rotation has a destabilizing effect on the flow field. In contrast,
near the suction side (i.e., at x2/δ = 1.0), d〈ū1〉/dx2 < 0, a
condition that results in s > 0, indicating that system rotation
has a stabilizing effect on the flow field. Here 〈·〉 corresponds to
a quantity averaged both in time and over the homogeneous (x 1,
x3)-plane. The wall shear stress of the rotating channel flow is
enhanced near the pressure side and reduced near the suction side
because |d〈ū1〉/dx2|wp > |d〈ū1〉/dx2|ws (which is evident in
Fig. 2 by comparing the values of |d〈ū1〉/dx2|w for the rotating
and non-rotating cases). This phenomenon is typically referred
to as the ‘Ekman layer effect’, and is caused by the balance be-
tween the Coriolis force, mean pressure gradient and turbulent
drag in a layer of flow subjected to a system rotation. Owing to
the existence of the Coriolis force, large T-G vortices are induced
in the core region of the channel, which shift the mean velocity
profiles to the pressure side. Consequently, the momentum vis-
cous sublayer becomes thinner on the pressure side and becomes
thicker on the suction side. In the above discussion, the subscript
‘w’ is used to indicate the value of a variable at the channel wall,
and the modifying subscripts ‘p’ and ‘s’ are used to denote the
region near pressure and suction side, respectively.

From previous studies [1, 3], it is known that a relationship
s = −2Ω/(d〈ū1〉/dx2) = −1 holds in the core region of a ro-
tating channel, implying that the value of the mean shear vortic-
ity component d〈ū1〉/dx2 approaches 2Ω. As such, the absolute
mean vorticity becomes approximately zero in the core region of
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FIGURE 3. PROFILES OF THE MEAN RESOLVED STREAM-
WISE VELOCITY AT VARIOUS ROTATION NUMBERS.

the channel, i.e.

2Ω − d〈ū1〉/dx2 ≈ 0 (5)

This particular portion of the velocity profile corresponds to a
flow region of neutral stability [3]. The neutral stability relation-
ship represented by Eqn. (5) can be further integrated and written
in a dimensionless form, viz.

〈ū1〉+ = Roτ · x2

δ
+ C (6)

where C is a constant of integration.
As shown in Fig. 3, the mean resolved streamwise velocity

profile becomes increasingly asymmetric as the rotation number
increases. In the core region, the profiles become approximately
linear with slope Roτ when rotation is imposed. Furthermore,
the width of the neutral stability zone in the central core of the
channel increases as Roτ increases from 0 to 7.5. These findings
are fully consistent with the laboratory measurements of John-
ston et al. [1] and the DNS predictions of Kristoffersen and An-
dersson [3].

TRANSPORT OF RESOLVED TURBULENT STRESSES
AND TKE

An instantaneous filtered quantity can be decomposed into a
time- and plane-averaged component and a residual component
as:

φ̄ = 〈φ̄〉 + φ̄′′ (7)
Based on this method of the decomposition, the predicted re-
solved velocity fluctuations (or root-mean-square (RMS) values)
can be defined as

ū+
i,rms

def=

〈(
ūi − 〈ūi〉

ua
τ

)2
〉1/2

=
〈ū′′2

i 〉1/2

ua
τ

(8)

TABLE 1. PRODUCTION TERMS DUE TO THE MEAN TURBU-
LENT SHEAR (Pij ) AND ROTATIONAL (Gij ) STRESSES FOR A
FULLY-DEVELOPED ROTATING PLANE CHANNEL FLOW.

ij 11 22 33 12

Pij −2〈ū′′
1 ū′′

2 〉(d〈ū1〉/dx2) 0 0 〈ū′′2
2 〉(d〈ū1〉/dx2)

Gij 4Ω〈ū′′
1 ū′′

2 〉 −4Ω〈ū′′
1 ū′′

2 〉 0 2Ω(〈ū′′2
1 〉 − 〈ū′′2

2 〉)

for i = 1, 2 and 3 respectively, where ua
τ = (uτp + uτs)/2 is the

averaged wall friction velocity over both the pressure and suction
side.

The effects of the Coriolis force on the resolved turbulent
stresses and TKE can be further studied through their transport
equations, which are derived and documented in Appendix A.
As revealed in the experimental study of Johnston et al. [1] and
DNS study of Kristoffersen and Andersson [3], the production
terms in the transport equations of the resolved turbulent stresses
(cf. Eqs. (21)–(24) in Appendix A) have a significant influ-
ence on the absolute value and distribution of the resolved tur-
bulent shear stresses (i.e., −[ū′′

i ū′′
k] or −〈ū′′

i ū′′
k〉) and TKE (i.e.,

1
2 [ū′′

i ū′′
i ] or 1

2 〈ū′′
i ū′′

i 〉). Here, the operator [·] represents ensemble-
averaging (whereas, 〈·〉 represents time- and plane-averaging).
From Eqn. (23), the production of the resolved shear stress com-
ponent −〈ū′′

1 ū′′
2〉 in a fully-developed rotating channel is given

by

〈P12〉 + 〈G12〉=〈ū′′2
2 〉d〈ū1〉

dx2
+ 2Ω(〈ū′′2

1 〉 − 〈ū′′2
2 〉) (9)

and those of the normal stress components in the three coordinate
directions 〈ū′′

kū′′
k〉 (no summation implied here, see Eqn. (24))

are given by

〈P11〉 + 〈G11〉= − 2〈ū′′
1 ū′′

2〉
d〈ū1〉
dx2

+ 4Ω〈ū′′
1 ū′′

2〉 (10)

〈P22〉 + 〈G22〉=0 − 4Ω〈ū′′
1 ū′′

2〉 (11)

〈P33〉 + 〈G33〉=0 + 0 (12)

The first term on both the left hand side (LHS) and the corre-
sponding right hand side (RHS) of Eqns. (9)-(12) represents the
production term arising from the mean resolved turbulent (shear
and normal) stresses. The second term on the LHS and the cor-
responding RHS of Eqns. (9)-(12) represents the rotational stress
production term that arises from the presence of Coriolis acceler-
ations in a rotating channel flow. To facilitate the interpretation of
the results in Figs. 4-7, Eqns. (9)-(12) are written in component
forms in Tab. 1. It is worthwhile to note that in a non-rotating
case (Roτ = 0), −〈ū′′

1 ū′′
2〉 has the same parity as d〈ū1〉/dx2,

both of which are positive and negative for x2 < 0 and x2 > 0,
respectively. This implies that P11 > 0 holds across the en-
tire channel, whereas P12 assumes a sign that is opposite to that
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FIGURE 4. RESOLVED RMS OF THE STREAMWISE VELOC-
ITY AT VARIOUS ROTATION NUMBERS.

FIGURE 5. RESOLVED RMS OF THE WALL-NORMAL VELOC-
ITY AT VARIOUS ROTATION NUMBERS.

of x2. However, due to the asymmetry of the resolved stream-
wise velocity profile in the wall-normal direction, this state-
ment does not strictly hold for a rotating channel flow. Because
P22 = P33 = 0, there is no direct production of either 〈ū ′′2

2 〉
or 〈ū′′2

3 〉 from the resolved turbulent stresses. However energy
redistributes within the system and influences both these terms
through the mechanisms of molecular diffusion, SGS production
and diffusion, and pressure-strain interactions (see Eqn. (24)).

Characteristics of the Suction Side
Near the suction wall (located at x2/δ = 1) of the channel,

the direct effects of system rotation are expected to reduce 〈ū ′′2
2 〉

(or ū2,rms) because G22 < 0. As shown in Fig. 5, the value

FIGURE 6. RESOLVED RMS OF THE SPANWISE VELOCITY AT
VARIOUS ROTATION NUMBERS.

FIGURE 7. RESOLVED TURBULENT SHEAR STRESS AT VAR-
IOUS ROTATION NUMBERS.

of ū2,rms is indeed damped considerably in the region close to
the suction wall, and the near-wall peak in the profile of ū2,rms

characteristic of a non-rotating channel disappears in all four ro-
tating channel cases tested. Near the suction wall, −〈ū ′′

1 ū′′
2〉 < 0,

and the two production terms G12 > 0 and P12 < 0 (because
d〈ū1〉/dx2 < 0, see Fig. 3). Because the value of 〈ū′′2

2 〉 is sig-
nificantly reduced as the suction wall is approached, the value of
|G12| increases whereas that of |P12| decreases. Consequently,
the level of the total production P12 +G12 for the turbulent shear
stress −〈ū′′

1 ū′′
2〉 increases, which then results in an increase in the

value of −〈ū′′
1 ū′′

2〉 (correspondingly, a reduction in its magnitude
| − 〈ū′′

1 ū′′
2〉|) on the suction side. This physical feature that the

magnitude of −〈ū′′
1 ū′′

2〉 is damped by the imposed system rota-
tion in the flow region near the suction wall is evident in Fig. 7.
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As shown in Fig. 4, the level of ū1,rms decreases monoton-
ically with Roτ on the suction side. The physical mechanism
underlying this phenomenon can be explained as follows. On the
suction side, P11 > 0 and G11 > 0. As pointed out by Kristof-
fersen and Andersson [3], the ratio of G11/P11 attains positive
values appreciably below unity near the suction side of a rotating
channel. Therefore, the total production P11 +G11 = (1+s)P11

is dominated by the mean turbulent shear production P 11. Fur-
thermore, as Roτ increases, P11 decreases monotonically be-
cause both magnitudes of the turbulent shear stress | − 〈ū ′′

1 ū′′
2〉|

and the mean velocity gradient |d〈ū1〉/dx2| decrease monotoni-
cally (see Fig. 3). In view of this, the value of 〈ū ′′2

1 〉 decreases
monotonically as Roτ increases in the flow region close to the
suction wall.

Although P33 = G33 = 0, the profiles of ū3,rms (or, 〈ū′′2
3 〉)

in Fig. 6 show that the resolved turbulent normal stress in the
spanwise direction is still significantly affected by rotation. Since
both 〈ū′′2

1 〉 and 〈ū′′2
2 〉 are reduced by system rotation on the suc-

tion side, less energy becomes available for redistribution to alter
the level of 〈ū′′2

3 〉 through the processes associated with molecu-
lar diffusion, SGS production and diffusion, and pressure-strain
correlations. Another noticeable feature exhibited in Figs. 4-7 is
that the near-wall peak that is characteristic of 〈ū ′′2

1 〉, 〈ū′′2
3 〉 and

−〈ū′′
1 ū′′

2〉 is shifted away from the suction side towards the center
of the channel. This observation corresponds to the physics that
as Roτ increases, the suction side tends to become more lami-
narized resulting in a thicker Ekman layer.

Characteristics of the Pressure Side
On the pressure side of the channel, both the resolved turbu-

lent shear stress −〈ū′′
1 ū′′

2〉 and mean streamwise velocity gradient
d〈ū1〉/dx2 are positive. The rotational stress production terms,
G22 = −G11 > 0 and G12 > 0, tend to increase 〈ū′′2

2 〉 and
−〈ū′′

1 ū′′
2〉, and to reduce 〈ū′′2

1 〉. The mean turbulent shear pro-
duction P11 is, however, indirectly enhanced by the increase in
the resolved turbulent shear stress, thereby resulting in a net en-
hancement of 〈ū′′2

1 〉 (as the ratio |s| = |G11/P11| < 1 holds near
the pressure side). Furthermore, because P22 + G22 = G22 ∝
Ω > 0, it is anticipated that the level of 〈ū′′2

2 〉 (or ū2,rms) in-
creases monotonically with Roτ on the pressure side. The distri-
butions of the resolved turbulent stresses shown in Figs. 4-7 are
generally in agreement with these expectations, and are also con-
sistent with the DNS results of Kristoffersen and Andersson [3].
However, it should be stressed that the concept of the resolved
turbulent shear stresses is different between a LES and a DNS ap-
proach (as represented by this research and that of Kristoffersen
and Andersson [3], respectively).

As shown in Fig. 4, in comparison with the non-rotating case
(Roτ = 0.0), the level of 〈ū′′2

1 〉 increases by approximately 50%
at Roτ = 1.5 in the near-wall region on the pressure side, and
the level decreases as Roτ increases. As the rotation number

FIGURE 8. RESOLVED TURBULENT KINETIC ENERGY AT
VARIOUS ROTATION NUMBERS, NON-DIMENSIONALIZED US-
ING (ua

τ )2.

increases, the irrotational zone where the neutral stability re-
lationship d〈ū1〉/dx2 = 2Ω holds, penetrates deeper into the
boundary-layer of the pressure wall. In the neutral stability zone,
s = −1 and therefore, the total production of 〈ū ′′2

1 〉 vanishes
(i.e., P11+G11 = (1+s)P11 = 0). The suppression of 〈ū′′2

1 〉 and
augmentation of 〈ū′′2

2 〉 eventually make the positive rotational
production term G12 = 2Ω(〈ū′′2

1 〉 − 〈ū′′2
2 〉) change its sign. At

the highest rotation number Roτ = 7.5, 〈ū′′2
2 〉 exceeds 〈ū′′2

1 〉 in
the range −0.75 < x2/δ < 0.25 (which corresponds to a region
that extends over 50% of the channel cross-section). This rever-
sal of the turbulent stress anisotropy, which renders G12 being
negative rather than positive, is responsible for preventing any
further increase in −〈ū′′

1 ū′′
2〉 at higher rotation speeds in Fig. 7.

Rotation Effect on the Resolved TKE
The resolved TKE is defined as

〈q2〉=1
2
(〈ū′′2

1 〉 + 〈ū′′2
2 〉 + 〈ū′′2

3 〉) (13)

The production terms for 〈q2〉 can be obtained by taking one half
of the sum of Eqns. (10), (11) and (12), so

〈Pq2〉 + 〈Gq2 〉= − 〈ū′′
1 ū′′

2〉
d〈ū1〉
dx2

+ 0 (14)

This equation clearly shows that the production of the resolved
TKE is not explicitly dependent upon Ω, but rather is implicitly
affected by the rotation through the effects of Ω on the resolved
turbulent shear stress (−〈ū′′

1 ū′′
2〉) and mean viscous shear stress

(indicated by d〈ū1〉/dx2). From Eqn. (14), it is obvious that Pq2

is one-half of P11, which is the production term for 〈ū ′′2
1 〉 (see

discussions above). Therefore, it is anticipated that the resolved
TKE 〈q2〉 will also exhibit a behaviour similar to that of the
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resolved streamwise turbulent normal stress component 〈ū ′′2
1 〉.

This expected pattern is evident on comparison of Fig. 8 with
Fig. 4. On the pressure side, the peak value of 〈q 2〉 increases by
approximately 50% at Roτ = 1.5 relative to that for the non-
rotating case Roτ = 0, and then decreases as Roτ increases. On
the suction side, 〈q2〉 decreases monotonically as Roτ increases,
indicating that the flow there becomes more laminarized at the
higher rotation numbers.

CONCLUSIONS
The DNM [17] for modelling the SGS stress tensor was used

to simulate a fully-developed rotating channel flow for different
rotation numbers ranging from 0 to 7.5. The numerical results
obtained from our simulations have been thoroughly validated
against reported experimental measurements [1] and DNS data
[3, 30, 31]. It is shown that large-eddy simulations based on the
DNM can successfully predict the transport of resolved turbulent
stresses in a rotating channel.

The secondary flow represented by the Taylor-Görtler vor-
tices drastically alters the velocity fields. It is observed that the
resolved mean velocity profiles shift from the suction side to-
wards the pressure side, and the Ekman layer becomes thicker on
the suction side as the rotation number increases. In the core re-
gion of the channel, the resolved mean streamwise velocity pro-
file exhibits a linear behaviour with a slope that is proportional to
2Ω, reflecting the neutral stratification (or, stability) of the flow
in this region.

As a new contribution to the current literature, the gen-
eral and simplified transport equations for the resolved turbulent
stresses are systematically derived in order to study the resolved
second-order velocity statistics in the context of LES. The mag-
nitude of the resolved turbulent stresses and TKE are influenced
by two production terms, Pij and Gij , which are related to the
turbulent shear and rotation stresses, respectively.

Near the suction side of the channel, the resolved stream-
wise turbulent intensity 〈ū′′2

1 〉, the magnitude of the resolved tur-
bulent shear stress | − 〈ū′′

1 ū′′
2〉| and the resolved TKE 〈q2〉 de-

crease gradually as Roτ increases. The level of resolved wall-
normal and spanwise turbulent intensities are damped consider-
ably on the suction side. The near-wall peak that is characteristic
of 〈ū′′2

1 〉, 〈ū′′2
3 〉, −〈ū′′

1 ū′′
2〉 and 〈q2〉 shifts away from the suction

side towards the center of the channel, reflecting the physics that
the suction side tends to become more laminarized resulting in a
thicker Ekman layer as the rotation number Roτ increases.

In contrast, near the pressure side of the channel, turbulent
intensities in the wall-normal and spanwise direction increase
monotonically as the rotation number Roτ increases. The mean
turbulent shear production P11 results in a net enhancement of
〈ū′′2

1 〉. In comparison with the non-rotating case (Roτ = 0), the
level of 〈ū′′2

1 〉 and 〈q2〉 increase by approximately 50% at Roτ =
1.5 and then decreases as Roτ further increases. The magni-

tude of the resolved turbulent shear stress component −〈ū ′′
1 ū′′

2〉
is significantly influenced by the rotational stress production term
G12. This reversal of the turbulent stress anisotropy, which ren-
ders G12 being negative rather than positive, is responsible for
preventing any further increase in −〈ū ′′

1 ū′′
2〉 at higher rotation

speeds.
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Appendix A: Transport Equations for Resolved Turbu-
lent Stresses

In this appendix, the general transport equations for the re-
solved turbulent stresses in the context of LES of a turbulent flow
subjected to a system rotation are systematically derived. The set
of transport equations presented here hold also for a non-rotating
flow, which can be obtained simply by dropping the terms related
to the Coriolis force.

Based on the Reynolds decomposition, an instantaneous fil-
tered quantity can be expressed as:

φ̄ =
[
φ̄
]
+ φ̄′′ (15)

where the operator [·] represents ensemble-averaging and φ̄′′ rep-
resents the residual component, with[

φ̄′′] = 0 (16)

For the filtered velocity ūi, the following relationships hold:

ūiūj = [ūi] [ūj] + [ūi] ū′′
j + [ūj] ū′′

i + ū′′
i ū′′

j (17)

[ūiūj ] = [ūi] [ūj] +
[
ū′′

i ū′′
j

]
(18)

By ensemble-averaging the filtered momentum equation (2), we
obtain:

∂ [ūi]
∂t

+
∂

∂xj
([ūiūj]) = −1

ρ

∂ [p̄]
∂xi

+ ν
∂2 [ūi]
∂xj∂xj

−∂ [τij ]
∂xj

+ 2εij3Ω [ūj ] (19)

Substituting Eqns. (17) and (18) into Eqns. (2) and (19), respec-
tively, and then subtracting the resulting equations we get:

∂ū′′
i

∂t
+ [ūj]

∂ū′′
i

∂xj
= −ū′′

j

∂ [ūi]
∂xj

− ∂

∂xj
(ū′′

i ū′′
j − [

ū′′
i ū′′

j

]
)

−1
ρ

∂p̄′′

∂xi
+ ν

∂2ū′′
i

∂xj∂xj

−∂(τij − [τij ])
∂xj

+ 2εij3Ωū′′
j (20)
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Based on the ensemble-averaging operation, the following
transport equation for the resolved turbulent stresses can be ob-
tained from Eqn. (20):

∂ [ū′′
i ū′′

k ]

∂t
+ [ūj ]

∂ [ū′′
i ū′′

k ]

∂xj︸ ︷︷ ︸
I

= − [
ū′′

i ū′′
j

] ∂ [ūk]

∂xj
− [

ū′′
k ū′′

j

] ∂ [ūi]

∂xj︸ ︷︷ ︸
II

−
([

τij
∂ū′′

k

∂xj

]
+

[
τkj

∂ū′′
i

∂xj

])
︸ ︷︷ ︸

III

+
∂

∂xj

([
ū′′

i τkj

]
+

[
ū′′

kτij

])
︸ ︷︷ ︸

IV

− ∂

∂xj

[
ū′′

i ū′′
j ū′′

k

]
︸ ︷︷ ︸

V

−1

ρ

([
ū′′

i
∂p̄′′

∂xk

]
+

[
ū′′

k
∂p̄′′

∂xi

])
︸ ︷︷ ︸

VI

+ ν

([
ū′′

i
∂2ū′′

k

∂xj∂xj

]
+

[
ū′′

k
∂2ū′′

i

∂xj∂xj

])
︸ ︷︷ ︸

VII

+2Ω
(
εij3

[
ū′′

j ū′′
k

]
+ εkj3

[
ū′′

j ū′′
i

])︸ ︷︷ ︸
VIII

(21)

The role of each of term in this equation can be identified as
follows:
(I) represents the local rate of change and advection by the mean
flow of the resolved turbulent shear stress;
(II) represents the production term due to the action of the re-
solved turbulent stresses on the gradient of the mean velocity, and
describes the interaction between the mean and turbulent parts of
the flow;
(III) represents the production term due to the action of the SGS
stresses on the gradient of the residual velocity, and is associated
with the interaction between the SGS stresses and velocity fluc-
tuations;
(IV) is the SGS diffusion term;
(V) is the triple correlation for the fluctuating flow field related
to turbulent advection;
(VI) is the velocity-pressure-gradient tensor;
(VII) is the viscous diffusion and dissipation term;
(VIII) represents the production term due to rotation effects.

Equation (21) represents the general transport equation for
the resolved turbulent shear stress [ū′′

i ū′′
k]. For a plane channel

flow, statistics based on time- and plane-averaged quantities (de-
noted using 〈·〉) are of more interest to the researcher, because
the flow can be further assumed to be: (1) statistically stationary,
and (2) homogeneous in the (x1, x3)-plane. For LES of a channel
flow, an instantaneous filtered quantity can be decomposed into a

time- and plane-averaged component and a residual component
(see Eqn. (7)). The procedure to derive the transport equation for
the turbulent stress 〈ū′′

i ū′′
k〉 is identical to the procedure used in

the derivation of [ū′′
i ū′′

k]. However, with these two additional as-
sumptions for a fully-developed plane channel flow, the transport
equation for 〈ū′′

i ū′′
k〉 can be further simplified to give:

D 〈ū′′
i ū′′

k〉
Dt

= 0 = −〈ū′′
i ū′′

2〉
∂ 〈ūk〉
∂x2

− 〈ū′′
kū′′

2〉
∂ 〈ūi〉
∂x2

−
(〈

τij
∂ū′′

k

∂xj

〉
+

〈
τkj

∂ū′′
i

∂xj

〉)
+

∂

∂x2
(〈ū′′

i τk2〉 + 〈ū′′
kτi2〉)

− ∂

∂x2
〈ū′′

i ū′′
2 ū′′

k〉

−1
ρ

(〈
ū′′

i

∂p̄′′

∂xk

〉
+

〈
ū′′

k

∂p̄′′

∂xi

〉)
+ν

(〈
ū′′

i

∂2ū′′
k

∂xj∂xj

〉
+

〈
ū′′

k

∂2ū′′
i

∂xj∂xj

〉)
+2Ω

(
εij3

〈
ū′′

j ū′′
k

〉
+ εkj3

〈
ū′′

j ū′′
i

〉)
(22)

where D(·)/Dt
def= ∂(·)/∂t + 〈uj〉 · ∂(·)/∂xj is the material

derivative. In particular, the transport equation for 〈ū ′′
1 ū′′

2〉 can
be derived from Eqn. (22) as

D 〈ū′′
1 ū′′

2〉
Dt

= 0 = − 〈
ū′′2

2

〉 ∂ 〈ū1〉
∂x2

−
(〈

τ1j
∂ū′′

2

∂xj

〉
+

〈
τ2j

∂ū′′
1

∂xj

〉)
+

∂

∂x2
(〈ū′′

1τ22〉 + 〈ū′′
2τ12〉) − ∂

∂x2

〈
ū′′

1 ū′′2
2

〉
−1

ρ

(〈
ū′′

1

∂p̄′′

∂x2

〉
+

〈
ū′′

2

∂p̄′′

∂x1

〉)
+ν

(〈
ū′′

1

∂2ū′′
2

∂xj∂xj

〉
+

〈
ū′′

2

∂2ū′′
1

∂xj∂xj

〉)
+2Ω

(〈
ū′′2

2

〉 − 〈
ū′′2

1

〉)
(23)

Similarly, the transport equation for the resolved turbulent
normal stress 〈ū′′

kū′′
k〉 (no summation implied here) can be shown

to take the following form:

D 〈ū′′
kū′′

k〉
Dt

= 0 = −2 〈ū′′
kū′′

2〉
∂ 〈ūk〉
∂x2

−2
〈

τkj
∂ū′′

k

∂xj

〉
+ 2

∂ 〈ū′′
kτk2〉

∂x2

− ∂

∂x2

〈
ū′′

2 ū′′2
k

〉 − 2
ρ

〈
ū′′

k

∂p̄′′

∂xk

〉
+2ν

〈
ū′′

k

∂2ū′′
k

∂xj∂xj

〉
+4Ωεkj3

〈
ū′′

j ū′′
k

〉
(24)
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