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ABSTRACT 
 

The influence of elasticity and inertia for steady flow of a thin 

viscoelastic fluid jet is examined theoretically. The fluid is 

assumed to emerge from a vertical channel and driven by a 

pressure gradient and/or gravity. The boundary-layer equations 

are generalized for a viscoelastic thin film obeying the 

Oldroyd-b constitutive model. Special emphasis is placed on 

the initial stages of jet development. The formulation and 

simulation are carried out for two-dimensional jet flow in order 
to better understand the intricate wave and flow structures for a 

viscoelastic jet. In contrast to the commonly used depth- 

averaging solution method, the strong nonlinearities are 

preserved in the present formulation as the viscoelastic 

boundary-layer equations are solved by expanding the flow 

field in terms of orthonormal shape functions. It is found that 

for a steady viscoelastic jet, a reduction in inertia or a rise in 

elasticity leads to the emergence of surface waviness and 

excessive normal stress, which leads to the formation of sharp 

gradients in the velocity and shear stress. These gradients can 

be sufficiently substantial to cause a discontinuity or shock in 
the flow. During transition, the surface profiles adhere earlier to 

the shape of the final steady state instead of a traveling wave, 

the  transition  between  the  two  states  takes  the  form  of  a 

standing wave, which grows essentially in amplitude only. 

INTRODUCTION 

This study examines the role of elasticity and inertia for steady 

flow of a viscoelastic fluid jet emerging from a vertical 

channel. The study of liquid laminar jets has been extensively 

examined previously in the literature. However, the focus has 

mainly been on steady Newtonian jet flow. This is primarily 

because it is the long-term behavior of the flow, after transient 

effects have subsided that is generally important. In contrast, 
when instances of irregularity and instability occur, it is usually 

the initial stages of development, long before the process 

reaches steady state, which can be traced to the origin of the 

instability. The time taken for a fluid to reach steady state is 

also of importance. Because polymeric fluids exhibit different 

relaxation times, they will therefore display different transient 

responses. There are many studies devoted to the modeling and 

simulation of jet flows. Appreciatively, jet flow has been 

predominantly examined for Newtonian fluids (Chang[8] 

1994), and to a much lesser extent for non-Newtonian film 

flow (for instance Bérdaudo[3] et al. 1998, and the references 
therein). The present theoretical study is focused on the planar 

flow of a thin viscoelastic jet emerging from a channel. Special 

emphasis is placed on the initial stages of jet development, with 

the overall influence of inertia, elasticity and gravity examined 

for both steady and transient jet flow.  

Generally, for small inertia flow of a Newtonian film, 

Benney’s[2] (1966) long wave (LW) approximation is often 

used. At first glance, the LW approximation appears to be a 

suitable choice for the modeling of viscoelastic jet flow. 

However, the LW approximation becomes seriously limited in 

the presence of moderate or high inertia (Chang[8] 1994). One 
may then safely speculate that a similar limitation will be 

encountered for moderate or highly elastic film flow. For a 

Newtonian film, the LW approximation at Re >> 1 is typically 

not valid, and it is generally found that in this case, inertial 

effects are better represented using the boundary-layer (BL) 

formulation. Typically, an ad-hoc simplification of the BL 

solution is achieved using a self-similar parabolic flow profile 

(Shkadov[22] 1967, 1968). This amounts to depth-averaging   

the   BL equations, which in the limit of creeping flow, leads to 

an exact formulation. Although this process circumvents the 

difficulty inherent to the LW approximation (Demekhin & 

Shkadov[10] 1985, Trifonov & Tsvelodu[26] 1991, Chang[7] et 
al 1993), the self-similar behavior is not expected to hold in the 

presence of high inertia or normal stress effects. The solution of 

the BL equations remains essentially as difficult as that of the 
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Navier-Stokes equations. The depth-averaging method leads to 

a second-order accurate solution in time, yielding plausible 

results, but raises a certain level of doubt in the presence of 

strong convective (and upper-convective) nonlinearities due to 

the semi-parabolic assumption (Frenkel[12] 1992). The 

parabolic approximation is widely used in the literature and its 
validity was established experimentally by Alekseenko, 

Narkoryakov, & Pokusaev[1] (1985). However, it is generally 

argued that this validity holds only at low Reynolds number and 

provided that the surface waves are far from the entry 

(Wilkes[28] 1962; Bertshy & Chin[4] 1993). High inertia flow, 

turbulence, the presence of end effects, nonlinear effects 

stemming from shear-thinning or viscoelastic effects are all 

factors that challenge the validity of the semi-parabolic profile.  

The free-surface flow of non-Newtonian fluids remains 

generally challenging. This is also true for thin film flow. 

Bérdaudo[3] et al (1998) examined the free-surface flow of a 

viscoelastic fluid emerging from various geometries. Kang & 
Chen[13] (1995) studied gravity-driven non-Newtonian films 

as well as creeping flow in the presence of surface tension 

effect. The planar flow of a Newtonian film was first 

considered over a stationary substrate (Khayat & Welke[15] 

2001; Khayat & Kim[16] 2002) and a moving substrate 

(Tauqueer & Khayat[23] 2004). The coating of shear-thinning 

(Kim and Khayat[18] 2002) and viscoelastic (Khayat[14] 

2001) fluids were also considered on a planar substrate, and on 

axisymmetric substrates (Khayat & Kim[17] 2006). Regarding 

the jet flow of viscoelastic fluids, the focus has mainly been in 

the literature on die swell and steady flow (for instance, Trang-
Cong & Phan-Thien[25] 1988, and, more recently, Liang[20] 

1995). Tome, Duffy & McKee[24] (1996) examined the 

transient die swell and buckling of planar jets for Newtonian 

and generalized Newtonian fluids. Surface tension jet breakup 

of non-Newtonian fluids have also been examined both 

experimentally (Christanti & Walker[9] 2001) and 

theoretically (Bousfield, Keunings, Marrucci & Denn[6] 

1986). The transient response resulting from the spreading of 

surfactant on a thin weakly viscoelastic film has also been 

examined theoretically by Zhang, Matar & Craster[29] (2002). 

In the present study, the formulation and simulation are carried 

out for two-dimensional jet flow in order to better understand 
the intricate wave and flow structures for a viscoelastic jet. 

The problems associated with frequent mesh resizing needed 

for the rapid spatio-temporal variations in the flow field make 

conventional solutions schemes such as finite-

element/difference methods unsuitable. For the 

pressure/gravity driven flow in this study, a spectral approach 

is adopted for a viscoelastic fluid with a generalized BL 

formulation proposed. The system is first mapped onto a 

rectangular domain, followed by the expansion of the velocity 

field in terms of orthonormal basis functions. The Galerkin 

projection is used to derive the equations that govern the 
coefficients of expansion, which are then integrated 

numerically. This formulation is similar to the one adopted by 

Khayat & Kim[17] (2006) for coating flow, and by German & 

Khayat[11] (2005) for thin-jet flow of a Newtonian fluid. 

Unlike the depth-averaging method, the spectral methodology 

proposed becomes particularly suited for the early onset of 

wave propagation near the channel exit in the presence of 

strong normal-stress effect.  

NOMENCLATURE 

a = Solute-to-solution ratio  

Ca = Capillary number  

De = Deborah number 

Fr = Froude number 

G = Gravity number 

g = Gravitational acceleration 

P = Hydrostatic pressure 

q = Streamwise normal stress 

r = Transverse normal stress 

Re = Reynolds number 

Rv = Solvent-to-solute ratio 

s = Shear stress 
T = Time 

U = Velocity vector 

∇ = Gradient operator 
ε = Aspect ratio 

λ = Relaxation time  

µ = Fluid viscosity 

µs = Newtonian solvent viscosity 

µp = Polymeric solute viscosity 

ρ = Fluid density 

Ʃ = Stress tensor 

GOVERNING EQUATIONS, BOUNDARY AND INITIAL 
CONDITIONS 

In this section, the governing equations are introduced, 
including the scaled conservation and constitutive equations, as 

well as the boundary and initial conditions for a viscoelastic 

thin fluid jet.  

The fluid examined in this study is assumed to be an 

incompressible polymeric solution represented by a single 

relaxation time and constant viscosity. The fluid properties 

include the density, viscosity and relaxation time. Regardless of 

the nature of the fluid, the continuity and momentum 

conservation equations must hold. For an incompressible fluid, 

the conservation equations are: 

( )T0,∇ ⋅ = ρ + ⋅ ∇ = ∇ ⋅ + ρU U U U Σ g
          

(1) 

There are two components making up the deviatoric part of the 

stress tensor, a Newtonian constituent (solvent), and a 

polymeric constituent (solute). The stress tensor is then 

expressed as; 

( )T
sPI U U ΤΣ = − + µ ∇ + ∇ +

                       
(2) 

Where matrix transposition is denoted by superscript T.  
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The polymeric constitutive equation for T is taken to 

correspond to an Oldroyd-B fluid and is written in the form 

(Bird, Armstrong & Hassanger[5] 1987):  

( ) ( )T
T pΤ U Τ Τ U U Τ Τ U U

Τλ + ⋅ ∇ − ⋅∇ − ∇ ⋅ + = µ ∇ + ∇
  

(3) 

The equation for a Maxwell fluid is recovered in the limit µs→0 

in equations (1) to (3), and the limit µp→0 leads to the Navier-

Stokes equations. The problem is now examined using a 

Cartesian coordinate system using standard notations for 

velocity and stress components. 

The flow of a viscoelastic jet emerging from a channel is 

schematically depicted in fig. 1 in the (X, Z) plane.  

 

 

              
FIGURE 1: SCHEMATIC ILLUSTRATION OF TWO-

DIMENSIONAL JET FLOW EMERGING FROM A VERTICAL 

CHANNEL. 

The X-axis is chosen to correspond to the vertical (streamwise) 

direction and the Z-axis is chosen in the horizontal (transverse) 

direction. The domain of the fluid is represented by Ω(X, Z, T), 

with the (half) jet thickness denoted by Z = H(X, T). The 

channel exit coincides with X = 0, and the (symmetric) flow is 

examined in the (X, Z) plane, with Z = 0 corresponding to the 

line of symmetry. The flow is induced by either a pressure 
gradient inside the channel and/or gravity, but for this study the 

emphasis will be on pressure-driven flow. The streamwise and 

transverse scale lengths are chosen to be a suitably defined 

length L, and the channel half width H0, respectively. Since the 

film half thickness is of the same order as the boundary layer 

thickness, then 

2
0 0ρU H

L~
µ

. For both Newtonian and non-

Newtonian fluids, there are four main dimensionless 
parameters. Explicitly written, these take the following form: 

 
2

0 0 0 0 oρU H H U µU
Re= , ε= , Fr= ,    Ca=

µL L σgL
 

where the reference velocity, U0,  is the mean velocity in the 

channel in the absence of gravity. Note, in this case, that 

Re~O(1)  and ( )-1
Hε~O Re , where ReH is the Reynolds based on 

H0. Additional to these parameters are the similarity parameters 

for a viscoelastic flow, which include:  

p0 s

p

µλU µ 1
De= , Rv= , a= =

L µ µ Rv+1
 

In this study, the fluid film is assumed thin with ε << 1. Thus, ε 

is taken as the perturbation parameter in order to reduce the 

formulation to that of the boundary-layer type. The scaling of 

the velocity, shear and normal stresses, and position coordinates 

take the following non-dimensional form: 

2
0

0 0

00 0

X Z U T PLε
x= , z= ,   t= ,  p=

L H L µU

U W H
u= ,   w= ,  h=   

U εU H

 

The nonlinearities in the upper-convective terms create 

difficulty when scaling the stress equations. In general, one 

may set: 

α β γ

xx xz zz
0 0 0

Lε Lε Lε
q= Τ , s= Τ , r= Τ
µU µU µU

 
Note that the stress tensor is symmetric. The constants, α, β, γ 

are determined by ensuring that the terms in the conservation 

and constitutive equations balance. The reduced equations are 

derived from the dimensionless form of equations (1) to (3) 

excluding terms of 0 (ε2) and higher. 

In order for all the stress terms in the x-momentum equation to 

survive, the exponent α should be set equal to 2. 

Correspondingly, setting β = 1 ensures the survival of all the 

terms in the normal stress equation for q. It can be seen that this 

results in the streamwise normal stress q not depending strongly 
on the streamwise elongation term ux, which should be the case 

for shear dominated (boundary-layer) flow. However, this stress 

does not disappear entirely due to the nonlinear coupling with 

shear effects. With α and β set, the survival of the terms in the 

shear stress equation for s and normal stress equation for r can 

be achieved by setting γ = 0. The z-momentum equation now 

shows that the pressure gradient in the transverse direction is 

negligible, i.e. pz ~ 0(ε2
). This demonstrates that the pressure 

dependence in the transverse direction is negligible, which is in 

agreement with the limit of a Newtonian jet flow. Hence, 

assuming no body forces exist in the transverse direction, the 
pressure is a function of the streamwise direction and time only. 

The conservation and constitutive equations are appended to 

take the following form: 

x zu +w =0
                                        

(4) 

Z 

X 

0 

Z=H(X,T) 

Ω(X,Z,T) 

g 
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( )
3

t x z zz x z xxx

ε
Re u +uu +wu =aRvu +q +s + h +G

Ca       
(5) 

( )t x z z xDe q +uq +wq -2su -2qu +q=0
                  

(6) 

( )t x z x z zDe r +ur +wr -2sw -2rw +r=2aw
                 

(7) 

( )t x z x z zDe s +us +ws -qw -ru +s=au
                    

(8) 

Here, 
2

Re
G=

Fr
 is the gravity number. 

The equations above must be solved subject to the dynamic and 

kinematic conditions at the free surface, the symmetry 

conditions at z = 0, and the channel exit conditions at x = 0. 

The preceding scaling method was applied to the dynamic 

condition in the normal and tangential directions, resulting in: 

z xaRvu (x,z=h,t)+s(x,z=h,t)=q(x,z=h,t)h (x,t)
           

 (9)
 

3

xx
ε

p(x,z=h,t)=- h
Ca                                

(10) 

In dimensionless form, the kinematic condition becomes: 

t xw(x,z=h,t)=h (x,t)+u(x,z=h,t)h (x,t)                 (11) 

The flow conditions at the channel exit correspond to the flow 

inside an infinite channel. Thus, 

( )( )
( )

( ) ( )

( )

( ) ( )

2

22

1
u(x=0,z,t)= 3+G 1-z

2

w x=0,z,t =0

q x=0,z,t =2aDez 3+G

r x=0,z,t =0

s x=0,z,t =-az 3+G

          (12) 

 

The jet thickness at the channel exit is assumed fixed, so that 

h(x=0,z,t)=1                                       
(13) 

Finally, the symmetry conditions are: 

zw(x,z=0,t)=u (x,z=0,t)=s(x,z=0,t)=0
              

(14) 

In this formulation it is assumed that no external force or 

pressure acts on the fluid surface. Also, since the pressure p 

does not depend on z, the pressure must vanish everywhere. For 

this reason, the axial pressure gradient term of eq. (5) will no 

longer be included.
 

MAPPED EQUATIONS 
 

Traditionally, for Newtonian thin-film flow, the equations are 

solved by imposing a semi-parabolic profile for the velocity 

and depth-averaging the equations across the thickness. The 

strong nonlinear effects originating from inertia and normal 

stress for a viscoelastic fluid make this approach unfeasible. 

The solution process is obviously difficult due to the explicit z 

dependence of the velocity and stress components. Formal 

handling of the transverse flow expansion was suggested by 

(Zienkievicz & Heinrich[30] 1979, Ruyer-Quil & 
Manneville[21] 1998). The present study follows closely and 

generalizes the work of Zienkievicz & Heinrich[30] (1979), 

with the exception that the transverse velocity component will 

not be neglected and the change in surface height over time is 

also included. 

 For the solution procedure, the equations are first mapped 

onto a rectangular domain in order to apply the spectral 

method. All flow variables are then expanded in terms of 

polynomial shape functions in the transverse direction. The 

Galerkin projection is then applied in order to generate the 

equations that determine the expansion coefficients. A 

Lagrangian time-stepping implicit finite-difference method is 
coupled with a fourth-order Runge-Kutta integration solution 

approach in the flow direction in order to determine the 

expansion coefficients. This is a similar approach as to the ones 

developed previously for two-dimensional coating flow of 

Newtonian (Khayat & Welke[15] 2001), and generalized 

Newtonian fluids (Khayat and Kim[16] 2002). The present 

formulation is quite involved and will only be summarized in 

this paper. Equations (4) to (8) are reduced to a transient one-

dimensional problem formulation by an expansion of the 

velocity and stress components in terms of orthonormal modes 

in the transverse direction. The following mapping is used: 

z
χ(x,z,t)=x, ξ(x,z,t)= , τ(x,z,t)=t

h(x,t)
 

with ξ ∈ [0, 1]. 

Let v be a general function variable. Thus, one introduces the 

convective derivative as 

( )τ τ ξ ξ χ χ ξ
dv ξ 1

=v - h v +uv h +uv + wv
dτ h h

             (15) 

The mapped equations are as follows, 

χ χ ξ ξ
ξ 1

u - h u +w =0
h h                                    

(16) 

3

ξξ χ ξ ξ χ χχχ
du 1 aRv ε

Re = u -ξh q +s +q + h +G
dτ h h Ca

 
 
         

(17) 

ξ χ χ ξ
dq 2 ξ

De - su -2q u - h u +q=0
dτ h h

  
                    

(18) 

( )χ ξ ξ χ ξ
dr 2 2a

De + ξsh w -rw -2sw +r= w
dτ h h

 
      

        (19) 

 

( )χ ξ ξ χ ξ
ds 1 1

De + ξqh w -ru -qw +s= au
dτ h h

 
  

           (20) 
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SPECTRAL EXPANSION 

The orthonormal shape functions Ai(ξ), Bi(ξ), Ci(ξ) and Di(ξ) 

for the streamwise velocity, u, normal stress component q, and 
shear component s as well as the normal stress component r are 

shown as follows: 

M M

i i i i

i=1 i=1

M M

i i i i

i=1 i=1

u(χ,ξ,τ)= U (χ,τ)A (ξ),  q(χ,ξ,τ)= Q (χ,τ)B (ξ),

r(χ,ξ,τ)= R (χ,τ)C (ξ),   s(χ,ξ,τ)= S (χ,τ)D (ξ),  

∑ ∑

∑ ∑
 

where M represents the number of modes and the unknown 

coefficients are Ui(χ,τ), Qi(χ, τ), Ri(χ, τ) and Si(χ, τ). Also, 

generally, let, 
M

i i

i=1

v(χ,ξ,τ)= V (χ,τ)ψ (ξ)∑ . Equation (16) becomes 

( )'
iχ i χ i i ξ

1
U A - ξh U A +w =0

h                         
(21) 

The transverse velocity component, w, is determined by 

integrating the continuity equation (2.16) to give:  

( )χ i i i i i χw(χ,ξ,τ)=h ξA -j U -hj U                      (22) 

Where,

ξ

i i

0

(ξ)= A dξφ ∫ . 

In this case, the convective terms are of the following form 

( ) ( )'
jτ j j j τ χ k k χ k k k

'
j j kχ k j j kχ k

dv 1
=V ψ - V ψ ξ h +h U A -h ξA -j U

dτ h

+U A V ψ -V ψ U j

 
 

  

(23) 

Equations (17) to (20) becomes, 

 

'' ' '
j j χ j j j j

3

kχ k χχχ

du 1 aRv
Re = U A -ξh Q B +S D

dτ h h

ε
+Q B + h +G

Ca

 
  

               

(24) 

( )'
j j χ k k k k j j kχ k

j j

dq 2
De + U A ξh Q B -S D -2Q B U A

dτ h

+Q B =0

 
        (25) 

( )

( )( ) ( ){ }

( )

( )

M
χ ' ' '

j j χ k k k k kχ k

j=1

k k χ k k kχχ χ

χ ' ' '
j j k k k k kχ k

' ' '
j j χ j j j j jχ j

ξhdr
De +2 S D h U ξA +A -j -U j

dτ h

- ξA -j h U -j hU

h
-2R C ξA +A -j U -U j

h

2a
+R C = h ξA +A -j U -hU j

h

   
   
  




 
 
 

 
 

∑

  (26) 

( )

( ) ( ) ( ){ }

χ ' ' '
j j χ k k k k kχ k

k k χ k k kχχ χ

' '
j j k k j j j j

ξhds
De +Q B h U ξA +A -j -ξU j

dτ h

- ξA -j h U -j hU

1 a
- U A R C +S D = U A

h h

  
    





      

(27) 

where prime denotes a total differentiation. 

 

In addition to the condition of orthonormality, the shape 

functions must also satisfy various boundary conditions. Some 

of these conditions are not obvious. One condition is the limit 

of Newtonian film flow being recovered for this viscoelastic 

formulation as Rv → ∞. One major difficulty for viscoelastic 
flow, as opposed to a Newtonian flow, is that the shear stress 
does not simply and necessarily vanish at the free surface. This 

becomes apparent when examining condition (9), and also 

noting that there does not exist separate boundary conditions on 

shear and normal stresses. This, however, can be remedied by 

satisfying condition (9) as well as recovering the Newtonian 

limit by simply setting the shear and normal stresses equal to 

zero at the free surface. Hence, assuming orthonormality, the 

following conditions apply for Ai: 

' '
i j ij i iA A =δ , A (ξ=0)=A (ξ=1)=0

            
(28) 

which satisfy conditions (14). Here, δij is the Kronecker delta, 

and  denotes the integration over the interval ξ ∈ [0, 1]. 

For Bi, It is not difficult to deduce from eq. (6) that, given the 

symmetry conditions (14), q is also symmetric with respect to 

the centerline. Thus, 

i j ij iB B =δ , B '(ξ=0)=0
                      

(29) 

Note that q(x, z = 0) does not necessarily vanish, unless q(x = 

0, z=0) = 0. The boundary conditions for Ci are not as obvious. 

Nothing for certain can be said about r at either the free surface 

or line of symmetry. In this case, the corresponding shape 
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function is assumed to satisfy only the condition of 

orthonormality, namely 

i j ijC C =δ
                                      

(30) 

The kinematic condition (11) becomes, 

τ
χ iχ i

h h
h =- U A -

U U                                
(31) 

where, i iU=U A . 

While carrying out Galerkin Projection, the convective terms 

become, from eq. (23), 

' '
i iτ j τ j i χ k k j i

'
j kχ j k i j kχ k j i

dv 1
ψ =V - V h ξψ ψ +h U j ψ ψ

dτ h

+U V A ψ ψ -V U j ψ ψ

 
  

 (32) 

Equations (24) to (27) become, 

'' ' '
i j j i j j i χ j j i

3

jχ i j χχχ i i

du 1 aRv
Re A = U A A +S D A -h Q ξB A

dτ h h

ε
+Q A B + h A +G A

Ca

 
 
 

(33) 

( )' '
i j χ k j k i k j k i

j kχ j k i i

dq 2
De B + U h Q ξA B B -S A D B

dτ h

-2Q U B A B +Q =0

 
 
 




   (34) 

( )

} ( ) ( ){
( ) } ( )

} ( )

χ ' '
i j χ k k k k j i

'
kχ k j i χ k k k j iχ

χ ' '
kχ k j i j k k k j i kχ

' ' '
kχ k j i i χ j j j i j

'
jχ j i

hdr
De C +2S h U ξ ξA +A -j D C

dτ h

-U ξj D C - h U ξA -j D C

h
- hU j D C -2R ξA +A -j C C U

h

2a
-U j C C +R = h ξA +A -j C U

h

-hU j C

  
  
 


 

 
 




(35) 

( )

} ( ) ( ){
( ) }

χ ' '
i j χ k k k k j i

'
kχ k j i χ k k k j iχ

'
kχ k j i j k j k iχ

'
i j j i

hds
De D +Q h U ξ ξA +A -j B D

dτ h

-U ξj B D h U ξA -j B D

1
- hU j B D - U R A C D

h

a
+S = U A D

h

  
  
 

−


 

  

(36) 

 

Using expression (22), condition (11) becomes, 

τ jχ j χ j jh +hU A +h U A =0
                   

(37) 

The boundary conditions (12) become, 

( ) ( )
( )

( )

( )

2
i i

2 2
i i

i

i i

3+G
U (χ=0,τ)= 1-ξ A (ξ)

2

Q (χ=0,τ)=2aDe 3+G ξ B (ξ)

R (χ=0,τ)=0,

S (χ=0,τ)= -a 3+G ξD (ξ)

h χ=0,τ =1
                  

(38) 

As long as the boundary and orthonormality conditions are 
satisfied, it has been found that any number of arbitrary modes 

can be introduced. This is analogous to Newtonian and 

generalized Newtonian flows (Khayat & Welke[15] 2001; Kim 

& Khayat[18] 2002). However, reasonable accuracy is achieved 

using M > 3. 

RESULTS AND DISCUSSION 

The formulation and numerical implementation above are now 

used to study the flow of a thin viscoelastic jet emerging from 

the channel as illustrated schematically in fig. 1. Although the 

physical domain of the fluid is assumed to extend from x = 0 to 

x → ∞, but the computational domain will be restricted to x ∈ 
[0, 1]. The flow of a Newtonian fluid is also examined for 

reference. 

Steady Newtonian Jet Flow 

The influence of inertia on steady jet flow is first examined for 

a Newtonian fluid by varying the Reynolds number from Re ∈ 
[10, 50] while assuming negligible gravity (Fr → ∞). The flow 

is illustrated in fig. 2 with the height of the free surface h(x) and 

the transverse velocity at the free surface w(x, z = h) plotted 

against x for a given Reynolds number. Since mass is 

conserved, the (average) steady streamwise velocity is simply 

the inverse of the film height, and is therefore not shown. The 

film profiles in fig. 2a show a monotonic response of the jet 

thickness, with a strong contraction in film height close to the 

channel exit. This contraction is strengthened by inertia. The 

curves in the figure suggest, as expected, that in the limit of 
infinite Reynolds number, the jet thickness remains constant 

with x, with plug-flow conditions reached almost immediately 

downstream from the channel exit. The contraction in height is 

accompanied by a sharp drop in transverse velocity (fig. 2b), 

which reaches a minimum at a location close to the channel exit 

that is essentially independent of inertia. Plug flow conditions 

are reached far downstream from the channel exit at any 

Reynolds number. 
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FIGURE 2: INFLUENCE OF INERTIA ON STEADY-STATE 

NEWTONIAN JET THICKNESS (a), AND SURFACE 

TRANSVERSE VELOCITY (b) IN THE ABSENCE OF 

GRAVITY. 

Further insight on the role of inertia is inferred from fig. 3. The 

jet thickness and transverse velocity are plotted against Re in 

fig. 3a and 3b, respectively, at the location, xm of minimum w or 
maximum downward flow. The flow response is obviously 

monotonic with respect to Re. The inset in figure 3a indicates 

that h(xm) grows like ( )43.2 10 ln Re−× . Figures 3a and 3b 

show that the flow is strongly dependent on inertia for small 

Reynolds number. In fact, as Re → 0, the jet tends to infinitely 
contract near x = 0, collapsing onto an infinitely thin filament. 

This behavior is exactly opposite to that encountered in the 

flow exiting a channel and flowing over a rigid plate (as in 

coating flow).  

As expected, the flow is predominantly in the streamwise 

direction with plug-flow conditions prevailing for 

approximately x > 0.75. The strength of transverse flow is 

essentially confined to the free surface near the channel exit. 
The strong elongational flow, which is particularly evident near 

x = 0, is accompanied by a strong variation of the transverse 

flow with z. 

Steady Viscoelastic Jet Flow 

The effect of elasticity can be examined by varying either the 

viscosity ratio or the Deborah number. In the current work, only 

De is varied and Rv is set equal to 1 unless otherwise specified. 

 

 

FIGURE 3: JET THICKNESS (a) AND MINIMUM 

TRANSVERSE VELOCITY (b) FOR A NEWTONIAN JET AS 

FUNCTION OF INERTIA. (INSET SHOWS SEMI-LOG SCALE) 

AT THE LOCATION, xm, OF MINIMUM w. 

Figure 4 displays the jet profiles (fig. 4a) and the profiles 
corresponding to the steady transverse normal stress component 

at low Reynolds number (Re = 5.0) in the absence of gravity. 

The range of Deborah numbers considered is De ∈ [1, 3.4]. 
Although the De range is narrow, the flow is strongly 

influenced by elasticity. Figure 4a shows that the level of film 

contraction near the channel exit is essentially independent of 

elasticity, but elasticity tends to generally enhance contraction. 

In contrast to a Newtonian jet, which shows a monotonic 

decrease in thickness, the viscoelastic jet tends to thicken at a 

location downstream of the channel exit. The jet thickness 

exhibits a minimum close to the channel exit and a maximum 

further downstream. Figure 4a shows that the jet thickness 

tends to asymptotically converge to a constant level far 
downstream from the channel exit. In this case, plug flow 

conditions are reached regardless of the value of De. This 

response is similar to that predicted for a Newtonian jet. Figure 

4b shows a significant buildup in normal stress at the jet 

surface, with r reaching a maximum near x = 0. This buildup 

starts at the channel and is also experienced well below the free 

surface.  
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FIGURE 4: INFLUENCE OF ELASTICITY ON STEADY STATE 

JET THICKNESS (a) AND TRANSVERSE NORMAL STRESS 

(b) AT THE SURFACE. 

Figure 5 displays the profiles for the steady polymeric shear 

stress averaged over the film thickness. The shear stress 

exhibits a minimum and a maximum similarly to transverse 
velocity, whereas the normal stress difference tends to 

experience a strong minimum. A similar trend is observed from 

fig. 4b. 

FIGURE 5: INFLUENCE OF ELASTICITY ON AVERAGE 

SHEAR STRESS. 

The onset of waviness in flow and jet thickness is obviously the 

result of elastic effect. This can be shown by taking a 

perturbation expansion of the stress components and assuming 

De small. If one examines the stress equations in the vicinity of 

the free surface, one finds, upon neglecting terms of 0(De
2), 

that eq. (6) and eq. (7) lead to 2
zq 2aDeu≃  and zs au≃ , 

respectively. This indicates that q tends to zero faster than s as 

the free surface is approached. Simultaneously, eq. (8) indicates 

that, to leading order, zr 2aw≃ . In this case, wX can be 

estimated from the higher-order (upper-convective) terms.  

A major contrast between the Newtonian and viscoelastic jet 
flows is reflected in the flow field. For a Newtonian jet, the 

flow becomes fully developed and reaches plug flow conditions 

only far downstream from the channel exit. In contrast, a 

viscoelastic jet displays uniform flow much closer to the 

channel exit, over a relatively deep region below the free 

surface. Thus, while the boundary-layer region extends over the 

entire jet thickness for a Newtonian jet, it remains confined to 

the core region of the viscoelastic jet.  

The interplay between the effects of elasticity and inertia is now 

examined. For a very small increase in Re has the effect of 

lowering the free surface maximum to a relatively large degree. 
In contrast, the minimum level in the free surface does not 

appear to vary considerably with Re. Overall, the jet profiles, 

velocity and normal stress distributions suggest that inertia 

tends to play an opposite role to elasticity. A reduction in inertia 

level or rise in elasticity level for a viscoelastic jet leads to the 

emergence of surface waviness and excessive normal stress 

level. This rise in normal stress leads in turn to the formation of 

sharp gradients in velocity and shear stress. Thus, at a critical 

elasticity or inertia level, these gradients can be sufficiently 

substantial to cause a discontinuity or shock in the flow. Of 

course, velocity gradients and polymeric stresses are coupled. 

However, the variation in w and the jump in s appear to be 
primarily responsible for shock formation. For given Re, if De 

is small, the jet surface decreases monotonically with position. 

As De increases, the jet surface exhibits waviness. Beyond a 

critical De value a discontinuity in flow occurs (shock 

formation). This indicates, expectedly, that a more dilute fluid 

solution must have a more elastic polymeric solute for the jet to 

become wavy. Interestingly, the range of waviness is very 

narrow, and does not seem to depend strongly on Rv. 

CONCLUSION 

The symmetric two-dimensional flow of a thin viscoelastic 

fluid jet emerging from a vertical channel is examined in this 
study. The fluid is modeled following the Oldroyd-B 

constitutive model, with the influence of inertia and elasticity 

investigated for steady flow. The thin-film equations are solved 

by expanding the flow field and stresses in terms of 

orthonormal modes in the transverse direction using the 

Galerkin projection. In contrast to the depth-averaging 

technique, the proposed method predicts the shape of the free 

surface, as well as the velocity and stress components within 

the fluid. 
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For a steady Newtonian jet the jet thickness remains essentially 

constant with x for large Reynolds number. However, the flow 

is strongly dependent on inertia for small Reynolds number 

with the jet tending to contract and collapse onto a thin line as 

Re approaches 0. The thickness for a Newtonian jet was shown 

to vary only monotonically, whereas a viscoelastic jet tends to 
thicken downstream of the channel exit. Steady Newtonian jet 

flow becomes fully developed only far downstream from the 

channel exit. In contrast, a viscoelastic jet displays uniform 

flow much closer to the channel exit and over a relatively deep 

region below the free surface. For a steady viscoelastic jet, a 

reduction in inertia or a rise in elasticity leads to the emergence 

of surface waviness and excessive normal stress. This rise in 

normal stress leads to the formation of sharp gradients in the 

velocity and shear stress. These gradients can be sufficiently 

substantial to cause a discontinuity or shock in the flow. The 

wavy region that precedes the onset of shock or jet rupture is 

very thin, which illustrates how rapidly the jet surface evolves 
from a monotonic to a ruptured film.  
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