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ABSTRACT 
It is known that the Lattice Boltzmann Method is not very 
effective when it is being used for the high speed compressible 
viscous flows; especially complex fluid flows around bodies. 
Different reasons have been reported for this unsuccessfulness; 
Lacking in required isotropy in the employed lattices and the 
restriction of having low Mach number in Taylor expansion of 
the Maxwell Boltzmann distribution as the equilibrium 
distribution function, might be mentioned as the most important 
ones. In present study, a new numerical method based on Li    
et al. scheme is introduced which enables the Lattice 
BoltzmannMethod to stably simulate the complex flows around 
a 2D circular cylinder. Furthermore, more stable 
implementation of boundary conditions in Lattice Boltzmann 
method is discussed. 
 
INTRODUCTION 

The Lattice Boltzmann Method (LBM) has been attracting 
a large amount of attention since its introduction by McNamara 
and Zanetti in 1988 [1]. Gradually it has become an alternative 
method for simulating fluid flows and because of its kinetic 
origins it has wider range of applicability than conventional 
descriptions since LBM also works in mesoscopic scales. 
Having an algorithm which is capable of parallel processing 
also helps LBM be one of the hottest topics in computational 
fluid dynamics in the past decade. Although LBM has been very 
successful in simulation of isothermal and incompressible flows 
there has been little success in simulating compressible thermal 
flows. Different reasons have been reported for the 
unsuccessfulness; Lacking in required isotropy in the employed 
lattices and the restriction of having low Mach number in 
Taylor expansion of Maxwell Boltzmann distribution as the 
equilibrium distribution function, might be mentioned as the 
most important ones. The remedy for the former is to use 
multispeed models. Presented model by Watari and Tsutahara 
[2,3] is the prime example for this and according to Chen et al. 
[4,5] could be used to construct a higher order Lattice 

Boltzmann model (Watari and Tsutahara used Hermite 
expansion of  Maxwell Boltzmann distribution and keeps up to 
forth order of flow velocity). But the problem of multispeed 
models is the limited range of stability of the energy and 
velocity. The latter is also investigated and the substitution of 
the Maxwell Boltzmann distribution for other functions which 
satisfy the same constraints as every equilibrium distribution 
function must do has been proposed. Kataoka and Tsutahara 
[6] and Qu et al. [7] presented brand new distribution 
functions in their models which were able to recover 
compressible Euler equations; Kataoka and Tsutahara [8] also 
presented a model which is capable of recovering compressible 
Navier Stokes equations. Most of these models are restricted to 
low speed and low temperature flows. The above presented 
models have been extended to high Mach numbers and high 
temperatures by the introduction of modified numerical 
schemes. Studies [7, 9-12] have shown that in order to be able 
to well capture discontinuities there must be enough artificial 
dissipation in numerical schemes which seems to be needed 
more than the amount comes from the collision term of the BGK 
lattice Boltzmann method. Either one must use TVD, WENO or 
ENO schemes or the required dissipation must be added 
directly to the numerical scheme of the model. Qu et al. used a 
TVD scheme that makes their model is able to capture 
discontinuities in inviscid high speed compressible flows. While 
using Watari and Tsutahara’s lattice and equilibrium 
distribution function, Gan et al. [13] employed a modified Lax-
Wendroff scheme plus artificial viscosity instead of second 
order upwind scheme used by original authors and succeeded 
in modeling fluid flows with high Mach numbers containing 
strong shocks and discontinuities. Pan et al. [14] utilized a first 
order upwind scheme with artificial viscosity along with 
Kataoka and Tsutahara’s discrete velocity model and simulated 
successfully high speed compressible flows with discontinuities. 
Recently Li et al. [12] introduced a new model encompassing 
strong features of previous models: It is a multispeed model and 
employs an extension of Qu et al. equilibrium distribution 
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function for Navier Stokes equations and uses a shock 
capturing TVD and WENO scheme for solving the differential 
form of the lattice Boltzmann equation. Although this model is 
successful in modeling high speed compressible viscous flows 
like Couette flow, Riemann problems and shock reflections, in 
simulation of a complex flow around a circular cylinder for 
Mach numbers higher than Mach=3.0 it fails. Other than that, 
the model is also impotent in very low pressures and for 
example comparing Li et al. results with Kim’s data, which we 
adopted for validation of our results, is not possible because 
the stream’s pressure is around 486pa [15]. 

 In the present study, a new model is introduced which exhibits 
the LBM ability to work out the complexity of the 2D external 
flow in hypersonic compressible viscous flow. A hypersonic 
viscous compressible flow of Mach number of ࡹ ൌ .  past a 
cylinder at a very low pressure has been tested. Simulations 
conducted stably and with a acceptable amount of error. Trend 
of the results clearly demonstrates LB-BGK's lacking in enough 
dissipation for handling oscillations in high speed compressible 
flows.    

NOMENCLATURE 
 ݊݅ݐܿ݁ݎ݅݀ ݅ ݊݅ ݕݐ݈݅ܿ݁ݒ ݈݁ܿ݅ݐݎܽ ݁ݐ݁ݎܿݏ݅݀  ࢉ
 ݕݐ݈݅ܿ݁ݒ ܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܿ  ̃ܿ
 ݊݅ݏ݊݁݉݅݀  ܦ
 ݕ݃ݎ݁݊݁ ݈ܽݐݐ  ܧ
݂   n݅ݐܿ݊ݑ݂ ݊݅ݐݑܾ݅ݎݐݏ݅݀ ݕݐ݅ݏ݊݁݀   
 ݂݅

 n݅ݐܿ݊ݑ݂ ݊݅ݐݑܾ݅ݎݐݏ݅݀ ݉ݑ݅ݎܾ݈݅݅ݑݍ݁ ݕݐ݅ݏ݊݁݀  ݍ݁
݄  ݅ݐܿ݊ݑ݂ ݊݅ݐݑܾ݅ݎݐݏ݅݀ ݕ݃ݎ݁݊݁ ݈ܽݐݐn  
݄
  ݅ݐܿ݊ݑ݂ ݊݅ݐݑܾ݅ݎݐݏ݅݀ ݉ݑ݅ݎܾ݈݅݅ݑݍ݁ ݕ݃ݎ݁݊݁ ݈ܽݐݐn 

 ݎܾ݁݉ݑ݊ ݈ݐ݀݊ܽݎܲ  ݎܲ
 ݁ݎݑݏݏ݁ݎ  
 ݐ݊ܽݐݏ݊ܿ ݏܽ݃  ܴ
 ݕݐ݅ݏ݊݁݀  ߩ
ܶ  ݁ݎݑݐܽݎ݁݉݁ݐ ܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܿ  
 ݁ݎݑݐܽݎ݁݉݁ݐ  ܶ
݄߬,  ݏ݁݉݅ݐ ݊݅ݐܽݔ݈ܽ݁ݎ ݕݐ݅ݏ݊݁݀ ݀݊ܽ ݕ݃ݎ݁݊݁  ݄߬
 ݕݐ݈݅ܿ݁ݒ ܿ݅ܿݏݎܿܽ݉  ࢛

 
 

COUPLED DOUBLE DISTRIBUTION FUNCTION LBM 
BY LI ET AL. 

The double distribution function method, with a 
distribution function for density and another for energy, was 
used for compressible LBM by Li et al. They employed Guo’s 
double distribution function model [16] in which the usual 
internal energy distribution function is replaced by the total 
energy distribution function. The evolution equations for 
density and total energy are as follows respectively 
߲ ݂

ݐ߲ 
ሺࢉ ڄ ሻࢺ ݂ ൌ െ

1
߬
ሺ ݂ െ ݂

ሻ           

                                                                        ݅ ൌ 1,2,… , ܰ
(1) 

߲݄
ݐ߲ 

ሺࢉ ڄ ሻ݄ࢺ ൌ െ
1
߬
ሺ݄ െ ݄

ሻ


1
߬

ሺࢉ ڄ ሻሺ࢛ ݂ െ ݂
ሻ   

                      ݅ ൌ 1,2,… , ܰ 

(2) 

Where ݂ is the density distribution function and ݄ is the 
total energy distribution function,  ݂

 and ݄
 are the 

corresponding equilibrium distribution functions, ࢉ is the 
discrete particle velocity in ݅ direction, ࢛ is the macroscopic 
velocity, ߬ and ߬ are energy and density relaxation times and 
߬ is defined as 
1
߬

ൌ
1
߬
െ
1
߬

 (3) 

The relation between two relaxation times, ߬ and ߬, is 
given by ܲݎ: 
ݎܲ ൌ

߬
߬

 (4) 

Therefore one can set the Prandtl number by adjusting ߬ 
and ߬. Macroscopic variables computing from density 
distribution function are defined as follows: 

ߩ ൌ ݂

ே

ୀଵ

 (5) 

ఈݑߩ ൌ ݂ܿఈ

ே

ୀଵ

 (6) 

A D2Q12 lattice which ensures isotropy up to sixth rank 
lattice tensor is used  
ࢉ

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ܿ̃ ቊܿݏ ቈ
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2  , ݊݅ݏ ቈ
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2 ቋ      ݅ ൌ 1,3,4,5
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ሺ2݅ െ 1ሻߨ

4  , ݊݅ݏ ቈ
ሺ2݅ െ 1ሻߨ

4 ቋ   ݅ ൌ 5,6,7,8 

2ܿ̃ ቊܿݏ ቈ
ሺ݅ െ 9ሻߨ

2  , ݊݅ݏ ቈ
ሺ݅ െ 9ሻߨ

2 ቋ    ݅ ൌ 9,10,11,12  
(7) 

Where ܿ̃ is the characteristic velocity and ܿ̃ ൌ ඥܴ ܶ in 
which ܶ is the characteristic temperature. This characteristic 
temperature is set to around maximum stagnation temperature 
in the problem. 

 

Fig. 1.  The D2Q12 Square Lattice used by Li et al. 
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Li et al. introduced two different kinds of equilibrium 

distribution function in their work; one is based on the Maxwell 
Boltzmann distribution and the other on Qu et al. work [7]. The 
latter is for high speed flows and the former is for moderate 
and low speed flows. In this study since we focused on high 
speed flows around 2D circular cylinder we leave off the one 
for low speed flows. Any function who wants to play the role of 
the equilibrium distribution function in the evolution equation 
for density distribution function Eq. (1) must satisfy the 
following constraints 

ߩ ൌ ݂


ே

ୀଵ

 (8.a) 

ఈݑߩ ൌ ݂
ܿఈ      

ே

ୀଵ

 (8.b) 
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ே

ୀଵ

ܿఈܿఉ (8.c) 

ఉఊߜఈݑ൫  ఊఈߜఉݑ  ఈఉ൯ߜఊݑ  ఊݑఉݑఈݑߩ

ൌ ݂
ܿఈܿఉܿఊ

ே

ୀଵ

 
(8.d) 

ଶݑߩ  ܦ ൌ ݂
ܿଶ      

ே

ୀଵ

 (8.f) 

ሾݑߩଶ  ሺܦ  2ሻሿݑఈ ൌ ݂
ܿଶܿఈ      

ே

ୀଵ

 (8.g) 

Li et al. calculated their new equilibrium distribution 
function according to the Qu et al. work. But lots of work they 
had to do since the previous model recovered compressible 
Euler equations and Prandtl number was equal to specific heat 
ratio. Finally, the new equilibrium distribution functions with 
the capability of recovering compressible Navier Stokes 
equations and without previous defects were introduced with 
݂
 ൌ   .where all are given Annex Aߩ

The same procedure as the density distribution function, 
was not taken for total energy distribution function and for the 
sake of simplicity, Li et al. devised the following relation 
݄
 ൌ ሾܧ  ሺࢉ െ ሻ࢛ ڄ ሿ࢛ ݂



 ߸
ܲ
ܿ̃ଶ ܴܶ 

(9) 

Which is capable of satisfying the following constraints 
required for the equilibrium total energy distribution functions 
݄ ൌ ܧߩ


 (10.a) 

ܿఈ݄ ൌ ሺܧߩ  ఈݑሻ


 (10.b) 

ܿఈܿఉ݄ ൌ ሺܧߩ  ఉݑఈݑሻ2


 ܧሺ  ܴܶሻ  ఈఉߜ
(10.c) 

Where ܧ ൌ ܾܴܶ/2   ଶ/2 is the total energy. ߸ areݑ
constants which should be obtained by solving Eq. (10). 

One can calculate temperature by 

ܶ ൌ
2
ܾܴ


1
ߩ
݄


െ
ଶݑ

2 ൩ (11) 

Therefore it would be very easy to couple the two 
distributions by using the thermal equation of state for 
computing pressure 
 ൌ ,ߩሺ ܶሻ (12) 

For solving Eq. (1, 2) Li et al. used a second order TVD 
scheme for spatial discretization and a second order Implicit-
Explicit Runge-Kutta (IMEX) scheme for temporal 
discretization.  

 
NEW FINITE DIFFERENCE SCHEME 

The numerical method employed with Li et al. does not 
work at low pressure and/or high Mach number viscous flows 
around a 2D circular cylinder. In order to make the Lattice 
Boltzmann model applicable to these kinds of flows we 
introduced a new finite difference scheme to the model.  As it 
mentioned in part I, either you have to use high resolution 
schemes or add required dissipation directly to the numerical 
scheme. Since the second order TVD scheme employed by Li et 
al. was not applicable and the fifth order WENO scheme [12] 
that we used didn’t work either, we resort to test a finite 
difference scheme and add artificial dissipation.    

In order to solve the hyperbolic Eqs. (1, 2), we take first 
order IMEX (Implicit Explicit) Runge-Kutta scheme [17] which 
includes implicit and explicit time discretizations for collision 
and other terms respectively; In the first step for density 
distribution function we will have: 

݂
௧ା௧ଶ ൌ

݂
௧  Δݐ

߬ ݂


1  Δݐ
߬

 (13) 

And then, 
݂
௧ା௧ െ ݂

௧

Δݐ ൌ
1
߬
ቆ ݂

 െ ݂
௧ା௧ଶ ቇ െ ܿకక ݂

௧ା௧ଶ  (14) 

For the calculation of the last terms in the right hand side 
of the above Eq. (14), as it mentioned, Li et al. adopt a second 
order TVD scheme to discretize (spatial discretization). In 
order to have a successful simulation, we employ upwind 
schemes and an artificial viscosity as follows: 

ூߠ ൌ ݈ ൈ ܺܣܯ ቆ
| ூܲାଵ െ 2 ூܲ  ூܲିଵ|
| ூܲାଵ  2 ூܲ  ூܲିଵ|

,
| ூܲାଶ െ 2 ூܲାଵ  ூܲ|
| ூܲାଶ  2 ூܲାଵ  ூܲ|

ቇ 

క߁ ൌ కݑ
ݐ∆
కݎ∆

 

௧ି௦௦௧௬ܨ ൌ కห൫1߁ூหߠ െ ห߁కห൯
కଶݎ߂

ݐ߂2
߲ଶ ݂

కଶݎ߲
 

௧ି௦௦௧௬ܪ ൌ కห൫1߁ூหߠ െ ห߁కห൯
కଶݎ߂

ݐ߂2
߲ଶ݄
కଶݎ߲

 

݈ is a constant for determining the amount artificial 
viscosity. In the calculation of డ

మ
డ

మ  and డ
మ
డ

మ  one could use a 

second order central difference scheme. The above artificial 
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viscosity term is, with a slight modification, very similar to Gan 
et al. work [13] which is based on Jameson’s viscosity term 
 ௧ି௦௦௧௬ is directly added to the Eq. (14)ܨ .[19 ,18]
and the final forms of the equation is: 
݂
௧ା௧ െ ݂

௧

Δݐ ൌ
1
߬
ቆ ݂

 െ ݂
௧ା௧ଶ ቇ െ ܿకక ݂

௧ା௧ଶ

  ௧ି௦௦௧௬ (16)ܨ
The same procedure is taken for total energy distribution 

function ݄. 
 

MORE STABLE BOUNDARY CONDITION 
IMPLEMENTATION 

For satisfying the wall boundary condition, Li et al. 
employed Guo method (non-equilibrium extrapolation 
boundary condition) [20] which has been proposed for low 
Mach number incompressible fluid flows. There seems to be no 
more accurate boundary condition method for compressible 
high Mach number flows and they might as well used it since it 
has attracted lots of attention [12, 21] in recent years. In Guo’s 
non-equilibrium extrapolation boundary condition method the 
distribution functions are decomposed into two parts: 
equilibrium and non-equilibrium parts  
݂ ൌ ݂

  ݂
ି (17) 

Therefore, the distribution function on the wall is 
decomposed into two parts. Usually velocity and temperature 
are known on the wall and for computing the equilibrium 
distribution function, one more unknown, which Guo 
considered to be density, needs to be extrapolated from the 
adjacent node. The non-equilibrium part, 
݂
ି ൌ ݂ െ ݂

 (18) 
is also assumed to be equal the one of the nearest fluid 

node. But our study showed extrapolating the density makes the 
simulations very unstable and pressure extrapolation is much 
more stable than that. As a result, it is recommended, especially 
in high speed compressible flows, this point be taken into 
account when satisfying boundary conditions.  

 
NUMERICAL SIMULATIONS AND RESULTS 

Couette Flow 
To exhibit the rightness of the discussion in part IV, we first 

present the result of the simulation of Couette flow at a Mach 
number of ܯ ൌ 12.0. In this simulation a second order upwind 
scheme is employed but in implementing Guo’s method we 
extrapolate pressure instead of density. It should be mentioned 
that the simulation without doing this is so unstable and quickly 
diverges.   

In our Couette flow simulation the upper wall is apart from 
the lower by a distance of H and it starts to move with at speed 
U while both walls are at temperature ܶ. The exact solution 
along the vertical axis ݕ is 

ܶ ൌ ܶ 
ݎܲ
2ܿ

ܷଶ ݕ
ܪ ቀ1 െ

ݕ
 ቁ (19)ܪ

disregarding the accuracy of the simulations, this can show 
clearly that our modification of extrapolating pressure instead 
of density has a great effect on the stability of the simulations. 

High Speed Flow around a Circular Cylinder     
In order for us to be able to compare our results with 

experiment, we used Kim’s results and its conditions for the 
simulations.  

In the physical domain, a cylinder is at the origin of the 
ݔ െ plane. A square of ሾ0,1ሿ ݕ ൈ ሾ0,1ሿ in ߦ െ  plane is the ߟ
computational domain. The mapping relationship between the 
two domains is           

ݔ ൌ െ ܴ௫ െ ሺܴ௫ െ ܴሻ
1
ܽ ݄݊ܽݐ

ሺܿ̃ߦሻ൨  ሻ (20)ߟߠሺݏܿ

ݕ ൌ  ܴ௬ െ ൫ܴ௬ െ ܴ൯
1
ܽ
ሻ൨ߦሺ݄ܿ̃݊ܽݐ  ሻ (21)ߟߠሺ݊݅ݏ

  
Where ܴ is the cylinder radius and ܴ௫ and ܴ௬ are outer radii of 
the physical domain in ݔ and ݕ directions respectively. ܿ̃ is the 
parameter used for the adjustment of arrangement and 
distribution of the grid nodes. ߠ ൌ గ

ଶ
 , ܴ௫ ൌ 5ܴ and ܴ௬ ൌ 10ܴ  

are set in our simulations. A mesh of 150 ൈ 50 is generated in 
ߦ െ ̃ܿ plane and ߟ ൌ 2.9. A sketch of physical mesh is shown in 
Fig. 3. The flow conditions are ܴ݁ஶ ൌ 2.5 ൈ 10ହ, ܯஶ ൌ 6.0, 
ஶܶ ൌ ஶ ,ܭ280 ൌ and the wall temperature is ௪ܶ ܽ486 ൌ
ߛ Specific heat ratio .ܭ300 ൌ 1.4 and the Prandtl number is 
set to 0.72. The cylinder radius is 0.005݉.  

The following boundary conditions are employed in the 
simulations. Free stream conditions are used as the outer 
boundary condition; so the distribution function values are set 
identical to the values of the equilibrium distributions obtained 
from the initial values. Zeroth order extrapolation of 
distribution functions is used at the exit and it means all the 
macroscopic variables are attained from the upstream. On the 
wall, no-slip isothermal conditions are used. The no-slip wall 
boundary condition is applied considering the point made in 
the previous part.   

 
Spatial Discretization 
As it mentioned in part II upwind schemes are employed 

for spatial discretization. Fifth, third and first order accurate 
upwind schemes were used respectively in order to achieve 
better accuracy and stability. 

 

 

Fig. 2.  Couette flow: Temperature profile 
 

4 Copyright © 2010 by ASME



 5 Copyright © 2010 by ASME 

Fifth Order Upwind Scheme 
The last term in Eq. (14) is discretized using fifth order 

upwind scheme as follows: 
 

ܿకక ݂ ൌ ܿక

െ2 ݂,ூିଷ  15 ݂,ூିଶ െ 60 ݂,ூିଵ
20 ݂,ூ  30 ݂,ூାଵ െ 3 ݂,ூାଶ

ߦ∆60 , 

ܿక  0 (22.a) 

ܿకక ݂ ൌ ܿక

3 ݂,ூିଶ െ 30 ݂,ூିଵ െ 20 ݂,ூ
60 ݂,ூାଵ െ 15 ݂,ூାଶ  2 ݂,ூାଷ

ߦ∆60 , 

ܿక ൏ 0 (22.b) 
 
For satisfying the wall boundary condition we used Guo’s 

extrapolation boundary condition method. For near the wall 
grid nodes, we substitute fifth order upwind Eq. (23) with third 
and first order upwind schemes respectively. 

The Mach and Pressure contours are shown in Fig. 4. And 
Fig. 5. There is an considerable amount of error in the 
prediction of the shock stand-off distance in front of the 
cylinder.  

 
 

Fig. 3.  Physical Mesh used in the Simulations 
 
 
Employing a lower order scheme might as well be tested to 

see if it decreases the error and improves the accuracy. 
 
Third Order Upwind Scheme 
Employing a third order upwind scheme discretizing the 

convective term in Eq. (14) we have:  

 
 

Fig. 4.  Flow Past a Cylinder (5th Order): Mach Contours 
  

 

Fig. 5.  Flow Past a Cylinder (5th Order): Pressure 
Contours 
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ܿకక ݂ ൌ ܿక
 ݂,ூିଶ െ 6 ݂,ூିଵ  3 ݂,ூ  2 ݂,ூାଵ

ߦ∆6 , 

ܿక  0   (23.a) 

ܿకక ݂ ൌ ܿక
െ2 ݂,ூିଵ െ 3 ݂,ூ  6 ݂,ூାଵ െ ݂,ூାଶ

ߦ∆6 , 

ܿక ൏ 0 (23.b) 
Again Mach and Pressure contours are shown in Fig. 6. 

There is still a large amount of error in the prediction of the 
shock stand-off distance in front of the cylinder. Surprisingly, 
error has been decreased and employing third order upwind 
scheme instead of fifth order seemingly produces better results. 
Considering the trend of the computations, employing even 
lower order schemes seems likely to produce more accurate 
results. 

First Order Upwind Scheme 
In order to see if lowering the order of spatial 

discretization improves the result, for the third simulation, first 
order upwind scheme is employed to discretize the convective 
term in Eq. (14) and we have:  

ܿకక ݂ ൌ ܿక
݂,ூ െ ݂,ூିଵ

ߦ∆ , ܿక  0   (24.a) 

ܿకక ݂ ൌ ܿక
݂,ூାଵ െ ݂,ூ

ߦ∆ , ܿక ൏ 0 (24.b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mach and Pressure contours are shown in Fig. 7. The 
error in the prediction of the shock stand-off distance in front of 
the cylinder has been decreased again. It is seen clearly that 
results becomes more accurate as the order of spatial 
discretization decreases.  
 
DISCUSSIONS 
In this study, it is shown that simulation of a complex 
hypersonic flow past a cylinder using Lattice Boltzmann 
method can be done stably and accurately. The reason why 
powerful numerical schemes with high performance like TVD 
and WENO do not work with Finite Difference Lattice 
Boltzmann Methods (FDLBM) seems very questionable. On the 
other hand, there are finite difference lattice Boltzmann models 
that by adding the suitable amount of dissipation were able to 
work beyond the expected limits [13, 14]. The problem seems to 
be closely related to the BGK collision term which is unable to 
produce enough dissipation to handle the oscillations along 
with high resolution schemes. Therefore it seems that 
employing a collision term which has more similar behavior to 
the original Boltzmann collision integral could result in more 
successful simulations with high resolution schemes and in the 
future studies in compressible high speed viscous flows must be 
considered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Flow Past a Cylinder (3rd Order Upwind Scheme):  (a) Mach Contours; (b) Pressure Contours 

                             (a)                                       (b) 

6 Copyright © 2010 by ASME



 7 Copyright © 2010 by ASME 

Nevertheless, there is a startling anomaly in our results. 
We expect to have more accurate results with higher order 
spatial discretizations; however, the computations effect the 
exact opposite. The reason why still remains unknown to us.  

In the three simulations we conducted with different order 
of spatial discretization the same value of ݈ ൌ 50 was used as 
the dissipation term’s factor. For considering the amount of 
artificial dissipation effect on the accuracy of the simulations 
we pick our most accurate results came from first order upwind 
schemes and reduce ݈ form 50 to 15. Below in Fig. 7 results 
from the simulation with ݈ ൌ 15 and ݈ ൌ 50 are shown. The 
accuracy has considerably been improved.  
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Fig. 7.  Flow Past a Cylinder (1st Order Upwind Scheme):  (a) Mach Contours; (b) Pressure Contours 

                     (a)                                       (b) 

      (c)                             (d) 

                                    (1st Order Upwind Scheme with ݈ ൌ 15):  (c) Mach Contours; (d) Pressure Contours 
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ANNEX A 
 
 
 

ߩ ൌ
ߩ
4
ሾݑതସ  5 തܲଶ െ 10 തܲ  4

 ҧଶݒതଶݑ4  ҧସݒ
 ሺ10 തܲ െ 5ሻሺݑതଶ
  ҧଶሻሿ (A.1)ݒ

ଵߩ ൌ െ
ߩ
6
ሾെ4ݑതଶ  3 തܲଶ  തସݑ െ 4 തܲ

 3 തܲݒҧଶ  ҧଶݒതݑ3
 9 തܲݑതଶ  6 തܲݑത
 ҧଶݒതଶݑ3 െ തݑ4   തଷሿ (A.2)ݑ

ଶߩ ൌ െ
ߩ
6
ሾെ4ݒҧଶ  3 തܲଶ  ҧସݒ െ 4 തܲ

 3 തܲݑതଶ  തଶݑҧݒ3
 9 തܲݒҧଶ  6 തܲݒҧ
 ҧଶݒതଶݑ3 െ ҧݒ4   ҧଷሿ (A.3)ݒ

ଷߩ ൌ െ
ߩ
6
ሾെ4ݑതଶ  3 തܲଶ  തସݑ െ 4 തܲ

 3 തܲݒҧଶ െ ҧଶݒതݑ3
 9 തܲݑതଶ െ 6 തܲݑത
 ҧଶݒതଶݑ3  തݑ4 െ  തଷሿ (A.4)ݑ

ସߩ ൌ െ
ߩ
6
ሾെ4ݒҧଶ  3 തܲଶ  ҧସݒ െ 4 തܲ

 3 തܲݑതଶ െ തଶݑҧݒ3
 9 തܲݒҧଶ െ 6 തܲݒҧ
 ҧଶݒതଶݑ3  ҧݒ4 െ  ҧଷሿ (A.5)ݒ

ହߩ ൌ
ߩ
4
ሾݑതݒҧଶ  ҧݒതݑ  തܲݑത  തܲݒҧ  തଶݑҧݒ

 0.5 തܲଶ  ҧଶݒതଶݑ
 തܲݑതଶ  തܲݒҧଶሿ (A.6) 

ߩ ൌ
ߩ
4
ሾെݑതݒҧଶ െ ҧݒതݑ െ തܲݑത  തܲݒҧ

 തଶݑҧݒ  0.5 തܲଶ
 ҧଶݒതଶݑ  തܲݑതଶ
 തܲݒҧଶሿ (A.7) 

ߩ ൌ
ߩ
4
ሾെݑതݒҧଶ  ҧݒതݑ െ തܲݑത െ തܲݒҧ

െ തଶݑҧݒ  0.5 തܲଶ
 ҧଶݒതଶݑ  തܲݑതଶ
 തܲݒҧଶሿ (A.8) 

଼ߩ ൌ
ߩ
4
ሾݑതݒҧଶ െ ҧݒതݑ  തܲݑത െ തܲݒҧ െ തଶݑҧݒ

 0.5 തܲଶ  ҧଶݒതଶݑ
 തܲݑതଶ  തܲݒҧଶሿ (A.9) 

ଽߩ ൌ
ߩ
24

ሾെ2ݑത  തସݑ െ തܲ െ തଶݑ  6 തܲݑതଶ

 1.5 തܲଶ  തതതതଷݑ2
 6 തܲݑതሿ (A.10) 

ଵߩ ൌ
ߩ
24

ሾെ2ݒҧ  ҧସݒ െ തܲ െ ҧଶݒ

 6 തܲݒҧ ଶ  1.5 തܲଶ
 തതതതଷݒ2  6 തܲݒҧሿ (A.11) 

ଵଵߩ ൌ
ߩ
24

ሾ2ݑത  തସݑ െ തܲ െ തଶݑ

 6 തܲݑതଶ  1.5 തܲଶ
െ തതതതଷݑ2 െ 6 തܲݑതሿ (A.12) 

ଵଶߩ ൌ
ߩ
24

ሾ2ݒҧ  ҧସݒ െ തܲ െ ҧଶݒ

 6 തܲݒҧ ଶ  1.5 തܲଶ
െ തതതതଷݒ2 െ 6 തܲݒҧሿ (A.13) 
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