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ABSTRACT 
 Drag reduction in decaying homogeneous isotropic 

turbulence (DHIT) with polymer additives has been observed, 
which leads to weaker turbulent characteristic quantities. 
Coherent structures play an important role in the understanding 
of turbulent dynamics, and the introduction of polymer 
additives can significantly modify their behavior. It is believed 
the modifications are closely related to drag reduction 
mechanism. In the present study, we mainly focus on 
investigating the influence of polymers on coherent structures 
from phenomenological and energetic viewpoint for DHIT with 
polymers based on direct numerical simulation (DNS). The 
results show that polymers can not only suppress the increase 
rate of the enstrophy and strain but also their productions, 
leading to a remarkable inhibition of coherent structures 
especially at fine scale. 

NOMENCLATURE 
A  symmetric second-order velocity gradient tensor 
C  conformation tensor of polymers 
E  turbulent kinetic energy at single wavenumber 
k  wavenumber in Fourier space 
l  computation domain 
P  first invariant of velocity gradient tensor 
p  local pressure 
Q  second invariant of velocity gradient tensor 

2r  extension length of polymer molecule 
R  third invariant of velocity gradient tensor 
Re  Reynolds number 
S  rate-of-strain tensor 
S  total strain 
T  stress tensor 
u  velocity vector 
                                                           

 † Corresponding author 

W rate-of-rotation tensor 
Wi Weissenberg number 
Greek Letters 
Δ discriminant of velocity gradient tensor 
Ω enstrophy 
β  measure of polymer solution concentration 
ε turbulent energy dissipation rate 
λ  the egienvalue of velocity gradient tensor 
υ kinematic viscosity 
ξ  total turbulent kinetic energy 
ρ solvent density 
τ relaxation time of polymers 
ω vorticity vector 
 Subscript 
i,j,k index of Cartesian coordinate 
p index of polymer solution 
m instant time when the decaying rate of turbulent kinetic 

energy reaches the maximum value 
λ  Taylor microscale 
+ index of the largest remaining eigenvalue 
− index of the smallest remaining eigenvalue 
th  index of the positive threshold 
z index of the eigenvalues associated with eigenvector 

that is maximally aligned with velocity vector 
Superscript 
N index of Newtonian fluid 
p index of polymer solution 
s index of solvent 
T transposition of the vector 
 

INTRODUCTION 
Turbulent drag reduction (DR) by additives is an intriguing 

phenomenon discovered by Toms [1], which shows that adding 
a small concentration of polymer or some kind of surfactant 
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additives may cause a dramatic frictional DR. Since then 
numerous attention has been paid to figure out the turbulent 
characteristics and DR mechanism with additives [2][3][4][5]. 
To interpret DR phenomenon two famous theories have been 
proposed. Lumley [2] proposed the viscous theory (i.e. ‘time 
criterion’ approach), in which he emphasized highly the major 
role of wall. However, some grid-turbulence experiments of 
dilute polymer solutions have shown that DR can occur without 
the presence of wall (or far from the wall) [6][7][8]. Then 
Tabor and de Gennes [9][10] proposed an elastic theory based 
on homogeneous isotropic turbulence, which neglects the 
viscous effect in Lumley’s theory. This theory has received 
some supports in recent experiments [11][12] and numerical 
simulations for homogenous isotropic turbulence [13][14]. 
These studies showed that with the presence of polymers there 
exists remarkable inhibition effects of vortical structures, a 
reduction of turbulent energy dissipation and a significant 
modification of the classical Kolmogorov energy cascade in 
HIT without wall effect. But, since the problem is actually a 
combination of two most complicated and poorly understood 
problems, turbulence and polymer solution dynamics, in spite 
of enormous efforts from different aspects, the physical DR 
mechanism is still poorly understood and needs further 
research.  

As is known, there exist coherent and ordered structures in 
turbulent flow since the direct observation of these structures in 
turbulent shear layer by Kline [15]. They can be roughly 
divided into two groups: those with tubular or filamentary 
structures (vortex tubes) and those with nonfilamentary 
vorticity distributions (vortex sheets). Researches show that 
vortex tubes play an important role in the overall turbulence 
dynamics such as vortex ‘worms’ or ‘filament’ in isotropic 
turbulence [16][17][18], quasi-streamwise vortices [19] and 
‘hairpin’ vortices in wall turbulence [20]. The formation of 
vortex tubes is often attributed to rolling-up of the vortex 
sheets due to the Kelvin-Helmholtz instability. As for the sheet-
like structures the most prominent characteristic feature is that 
in the region the strain rate and vorticity are highly correlated, 
their magnitudes are comparably equal, and considerable 
dissipation of turbulent kinetic energy which is final result of 
energy cascade takes place [21]. The existence of coherent 
structures is one of the most important characteristics in 
turbulence. And in polymer solution flow the introduction of 
polymer additives can significantly modify the behavior and 
properties of coherent structures. We believe the modifications 
are closely related to DR mechanism. So in this paper, we 
mainly focus on investigating the influence of polymers on 
vortex tubes and sheets from phenomenological and energetic 
viewpoint for decaying homogeneous isotropic turbulence 
(DHIT) with polymer additives based on direct numerical 
simulation (DNS).        

The paper is organized as follows. In section II and III the 
numerical method for DNS and vortex-identification methods 
used in the paper are introduced. In section IV the results and 
discussion based on the enstrophy and strain analysis and the 

visualization of vortex structures at different scales are 
presented. Section V gives the conclusions of our study. 
NUMERICAL SIMULATION 

We carried out DNS for incompressible fluid with and 
without polymer additives based on Navier-Stokes (N-S) 
equation coupled with the finitely extensible nonlinear elastic 
Peterlin (FENE-P) model. 

The governing equations for DHIT of dilute polymer 
solutions are as follows: 

[ ] [ ]/ / / /s pt p ρ ρ ρ∂ ∂ + •∇ = −∇ +∇ ⋅ +∇ ⋅u u u T T ,    (1) 

( )/ ( ) /T
pt f r τ∂ ∂ + •∇ = •∇ +∇ • − −C u C C u u C C I ,    (2) 

where ( , )tu x  is the velocity vector; ( , )p tx  the local 
pressure; ρ  the fluid density; [ ] [ ]2s sρυ=T S  the Newtonian 
stress due to the solvent, [ ]sυ  the solvent kinematic viscosity 
and ( ) / 2T= ∇ +∇S u u  the rate of strain tensor the rate of 
strain tensor; ( )[ ] [ ] ( ) /p p

pf rρυ τ= −T C I  the polymer stress, 
[ ]pυ  the polymer kinematic viscosity, pτ  the polymer 

relaxation time, ijC  the conformation tensor. In the FENE-P 

model, ( ) ( )2 2 2( ) 3 /f r L L r= − −  ensures the finite 

extensibility; 2 ( )r trace= C  and L are the extension length and 
the maximum possible extension of polymer, respectively.  

To solve Eq.(1), a standard pseudo-spectral code with 963 
collocation points in the periodic cubic domain of size 2l π=  
is used for spatial discretization [22][23] with all the nonlinear 
terms fully de-aliased by the 3/2 rule. Note that in the 
simulations the spatial resolution is sufficient to capture the 
information at the smallest scale (i.e., Kolmogorov scale). A 
second-order Adams-Bashforth scheme is adopted for time 
advancement. To solve Eq.(2), for spatial discretization a 
second-order central difference scheme are used except for 
convective term using the second-order Kurganov-Tadmor 
(KT) scheme [24] and for time marching a second-order 
Adams-Bashforth scheme is adopted.  

The initial velocity field is obainted based on Rogallo’s 
procedure [22] and the initial energy spectra 

4 2
0 ( ) 0.01 exp( 0.14 )E k k k= − . For initial conformation field, 

polymers were assumed non-stretched, corresponding to 
0 ( , , )ij ijC x y z δ=  [25][26]. In Fourier space, the turbulent 

kinetic energy spectra 
'

'

2

1/ 2 1/ 2

( , ) ( ) / 2
k

k k k

E k t t
− < ≤ +

= ∑ u , the total 

kinetic energy ( ) ( , )
k

t E k tξ =∑ , and in physical space 

3

2( ) ( , ) / 2il
t u t dVξ = ∫ x ; the energy-dissipation rate in Fourier 

space [ ] 2( ) ( , )s

k
t k E k tε υ= ∑ , and in physical space 

3

[ ] 2( ) s
ijl

t S dVε υ= ∫ . The Taylor-microscale is defined as 

[ ] 215 ( )s u tλ υ ε= < > , where 2 2 ( ) / 3u tξ< >=  is turbulent 
fluctuation intensity. The Taylor-microscale Reynolds number 
Reλ

 and the Weissenberg number Wi  are defined as 
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, [ ] ,Re 20 3N m s N m
λ ξ υ ε=  and , [ ]Wi N m s

pτ ε υ= , 
respectively, where the energy-dissipation rate ,N mε  is chosen at 

mt = t in Fourier space; here, 
mt  corresponds to the moment at 

which ε  reaches to its maximum amplitude; the superscript 
“N” represents the Newtonian fluid case.  In this paper, the 
basic parameters are as following: Re 26.2λ = , Wi 0.62= , 

0.1pτ = s, 0.6β =  (a dimensionless measure of dilute 

polymer solution concentration, and smaller β  corresponds to 
denser polymer solution) for polymer solution case and 
Re 26.2λ =  for Newtonian fluid case. 

VORTEX-IDENTIFYING METHODS 
To identify vortex tubes, several local methods have been 

considered based on the second invariant (Q ), discriminant 
(Δ ) or eigenvalues ( 2λ , ciλ ) of velocity gradient tensor (∇u ) 
[27][28][29][30]. In our paper, we use the invariant Q  method 
to identify vortex tubes.  

In turbulent flow studies, velocity derivatives play an 
important role studying exploring turbulent dynamics. The 
velocity-gradient tensor can be split into symmetric and anti-
symmetric parts [27][30]: 

ij ijS W∇ = +u ,                             (3) 

where ( )/ / / 2ij i j j iS u x u x= ∂ ∂ + ∂ ∂  the rate-of-strain tensor 

and ( )/ / / 2ij i j j iW u x u x= ∂ ∂ −∂ ∂  the rate-of-rotation tensor. 

The eigenvalues of /i ju x∂ ∂  satisfy the characteristic equation: 
3 2 0P Q Rλ λ λ+ + + = ,                          (4) 

where the three invariants are 

iiP S= , ( )2 / 2ij ji ij jiQ P S S W W= − − ,            (5),(6) 

( )3 3 3 / 3ij jk ki ij jk kiR P PQ S S S W W W= − + − − .         

And for incompressible flow,  
0P = , ( ) / 2ij ij ij ijQ W W S S= − , 

( )3 / 3ij jk ki ij jk kiR S S S W W W= − − .                  (7) 

The second invariant Q reflects the relative strength of rate 
of rotation and rate of strain. The first term of Q is proportional 
to the enstrophy density and the second term is proportional to 
the dissipation rate of kinetic energy. The positive Q 
isosurfaces isolate the areas where the strength of the rotation 
are larger than that of the strain, thus an tubelike zone can be 
defined as a region with the positive Q isosurfaces [287][30]. 
Additionally, the pressure in the eddy region is required to be 
lower than the ambient pressure. Though Q>0 does not 
guarantee the existence of a pressure minimum inside the 
region identified by it [29], in most cases the pressure condition 
is satisfied. 
  However, unlike vortex tubes very few identification 
methods [31][32] for vortex sheet-like structures have been 
proposed because the vortex sheets are more disorganized than 

the vortex tubes and susceptible to small disturbances, which 
makes it fairly difficult to be examined in turbulent flows. 
Recently Horiuti and Takagi [21] proposed a new definition 
based on the eigendecompostion of the symmetric second-order 
velocity gradient tensor, ij ik kj jk kiA S W S W= + . Since 0iiA = , 

the eigenvalues of ijA  are obtained from the equation: 
3 ( ) / 2 / 3 0ij ji ij jk kix A A x A A A− − = .                (8) 

Then, denoting [ ]ij zA , [ ]ijA +
, and [ ]ijA −  as the eigenvalues 

associated with the eigenvector that is maximally aligned with 
the velocity vector, the largest remaining and the smallest 
eigenvalue, respectively. It is observed that vortex sheets can be 
examined based on the criterion: 

[ ] {[ ] }ij ij thA A+ +> ,                               (9) 

where {[ ] }ij thA +  is an arbitrary positive threshold. 

RESULTS AND DISCUSSION 
The enstrophy indicates the strength of vortex structures and 

mainly generated by the stretching of vortex tubes which is 
regarded as the impetus of turbulence maintenance. Tennekes 
and Lumley [33] argued that vortex stretching is the physical 
mechanism leading to the hypothesized energy cascade from 
large to fine scales. However, energy dissipation (the final 
results of energy cascade) is directly associated with total 
strain. Tsinober [34] noted that in physical space the production 
of strain or dissipation is not exactly due to vortex stretching 
but due to vortex compression. He also emphasized the 
importance of strain as the vorticity in the context of creation 
and maintenance of turbulence. Anyway it is necessary to study 
the properties of both strain and vorticity to explore turbulence 
nature. So to figure out how the polymer additives act on 
turbulent vortex structures in DHIT, we firstly research the 
alterations and productions of the enstrophy and strain, 
respectively, after adding polymer additives. Then the 
visualizations of vortex tubes and sheets at different scales in 
DHIT for both Newtonian fluid and polymer solution cases are 
shown to give an intuitive understanding. 
Enstrophy analysis 

Based on Eq.(1), it is easy to deduce the enstrophy transport 
equation of DHIT for polymer solution case, as follows [14]: 

2
[ ]

enstrophy production
enstrophy increase rate

enstrophy dissipation
2 [ ]

polymers effect 

                ε

s i
i ij j i

j j

p
mj

i nji
m n

s
t x x

T
x x

ωω ω υ ω

ω

∂∂ <Ω >
= < > + < >

∂ ∂ ∂

∂
+< >

∂ ∂

1424314243 1442443

1442443

,         (10) 

where the operator < ⋅ >  denotes ensemble average; εnji
 the 

permutation symbol; 
iω  the ith component of the vorticity 

= ∇×ω u ; and / 2i iωωΩ =  the enstrophy; 
ensS i ij jsω ω=  

the enstrophy production, which is due to the interaction 
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between vorticity and strain; 
2

[ ]
ensV s i

i
j jx x
ωυ ω ∂

=
∂ ∂

 the enstrophy 

dissipation; and 
2 [ ]

ensP ε
p

mj
i nji

m n

T
x x

ω
∂

=
∂ ∂

 the polymers effect, which 

is due to interaction between voticity and polymers elastic 
stress (or polymer conformation) and does not appear in 
Newtonian fluid case.  
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Fig.1. JPDF at t=0.6s for polymer solution case (Wi=0.62, 

0.6β = ). (a) [p]
ensS  vs. [p]Ω ; (b) [p]

ensP  vs. [p]Ω ; (c) 
[p]
ensP  vs. [p]

ensS .  

Firstly joint probability density function (JPDF) of the 
enstrophy production [p]

ensS  versus the enstrophy [p]Ω  for 
polymer solution case at t =0.6s (the enstrophy reaches the 
maximum value at this time) is shown in Fig.1(a), from which a 
strong positive correlation can be observed. It confirms the 
contribution of vortex stretching ( [p]

ensS > 0) to the enstrophy 
[p]Ω . And to interpret the influence of polymers [p]

ensP  on the 
enstrophy [p]Ω  and its production [p]

ensS , their JPDFs are shown 
in Figs.1(b) and 1(c). It can be clearly seen that the polymer 
effect [p]

ensP  is also strongly correlated with the enstrophy [p]Ω  
and its production [p]

ensS . The polymer effect [p]
ensP  is negatively 

skewed, which suggests that the polymers conformation 
counters to the rotation of flow structures so as to increase the 
“vortex stretching resistance” of flow structures. It also has a 
similar order of magnitude to that of the enstrophy production, 
indicating a strong baffling feedback on flow structures 
because of its elastic nature, which can almost counteract the 
effects of vortex stretching. Finally due to the elastic nature the 
enstrophy (strength of vorticity) and its production (a source of 
turbulence maintenance) are undoubtedly reduced with the 
presence of polymers as compared with that of Newtonian fluid 
case to produce the DR phenomenon. From the 
phenomenological viewpoint, the introduction of polymer 
additives inhibits the generation of tubes, where the vorticity 
dominated. The results can be validated by the visualization of 
vortex tubes at different scales (as shown in Fig.4). 
Strain analysis 

We also deduced the mean strain transport equation of DHIT 
with polymer additives [14]: 

   strain  production
vortex stretching effectstrain  increase rate

2 [ ]
[ ] 2

strain  viscous dissipation

1
4

                   

ik kj ij i j ij

p
s ik

ij ij
k j

S S S S
t

TS S
x x

ω ω

υ

∂ < >
= − < > − < > +

∂

∂
< ∇ > + <

∂ ∂

1442443 144244314243

1442443

S

polymers effect

ijS >
1442443

,   (11) 

where / 2ij ijS S=S  the total strain; Sstr ik kj ijS S S= −  the 

strain production which is from strain self-amplification; 
W / 4str i j ijSωω=  the enstrophy production effect on the total 

strain; [ ] 2V s
str ij ijS Sυ= ∇  the strain viscous dissipation; 

2 [ ]

P
p

ik
str ij

k j

T S
x x
∂

=
∂ ∂

 the polymers effect which is due to the 

interaction between strain and polymers elastic stress (or 
polymers conformation) and does not appear in Newtonian 
fluid case.  

Similarly we study the JPDF at t=0.6s for the corresponding 
term of Eq.(9) in order to expatiate the effect of polymer 
additives on the strain, as shown in Fig.2. The JPDF of the 
strain production [p]

strS  versus the strain [p] [p]S S / 2ij ij
 in Fig.2(a) 

shows a strong positive correlation indicating that the main 
source of the strain is from its self-amplification. And the 
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JPDFs of the polymers effect [p]
strP  on the total strain [p] [p]S S / 2ij ij

 

and its production [p]
strS  are shown in Fig.2(b) and 2(c), 

respectively. As expected, the polymers effect [p]
strP  is 

negatively skewed, which means the polymers conformation 
mostly counters to the strain of flow structures so as to increase 
the “strain generation resistance” of flow structures. Besides, 
we observed that the polymers effect [p]

strP  has a similar order 
of magnitude to that of the strain production [p]

strS , indicating 
that the effects are pronounced and can counteract the strain 
self-amplification to some extent. In this way the strain in the 
polymer solution case can be suppressed, then the strain self-
amplification reduced and so on. From the phenomenological 
viewpoint, the introduction of polymer additives inhibits the 
generation of vortex sheet-like structures, where the strain 
dominated and most energy dissipation occurs. The results are 
validated by the visualization of vortex sheet-like structures at 
different scales (as shown in Fig. 5).  
Coherent structure visualization 

In this part we visualize the vortex tubes and sheets at 
different scales for DHIT with and without polymer additives 
based on Q method [27][30] and Horiuti &Takagi method [21] 
respectively, shown in Figs.4 and 5. Usually the choice of the 
threshold value changes the appearance of the flow field, for 
instance, raising the threshold value too high will result in 
losing some important vortices and setting the threshold value 
too low will cause an unclear visualization. The threshold value 
is chosen so that a large number of vortices could be visualized 
and at the same time different vortices could be distinguishable 
[35]. In the present paper, the isosurface of Q with a threshold 

2th rmsQ Q′= , where 
rmsQ′  is the average root mean square of the 

Q fluctuation [37]. However, it is found that applying the above 
votex-identifying method to the whole flow field, the results 
have a tendency to show only the fine-scale vortical structures. 
So, the characteristics of the large-scale and intermediate-scale 
coherent eddy structures will be difficult to study. In order to 
research the influence of polymers on coherent structures of 
these scales, low-pass filtering by Fourier transformation is 
carried out against the flow field shown in Fig.3. First, the 
velocity field is transformed into Fourier space by FFT, then 
the high frequency component are removed at three different 
thresholds and finally returned to physical space [35]. The 
velocity field at t=2s (i.e. the time in the energy decaying 
period) is filtered in Fourier space by different cut-off 
frequencies:  

ˆ( ) ( )
c

ikx

k k
u x u k e

≤

= ∑ ,                           (11) 

where all modes greater than the cut-off wavenumber ck  are 
set to zero. In our study, the flow field is divided into three 
parts of different scales: large-scale ( 0 4k< ≤ ), intermediate-
scale ( 0 8k< ≤ ) and fine-scale (the whole field). The energy 
spectrum is calculated for each scale using the same energy 
spectrum function.  
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Fig.2. JPDF at t=0.6s for polymer solution case (Wi=0.62, 

0.6β = ). (a) [p]
strS  vs. [p] [p]S S / 2ij ij

; (b) [p]
strP  vs. 

[p] [p]S S / 2ij ij
; (c) [p]

strP  vs. [p]
strS . 

From Figs.4 and 5, a remarkable decrease of intermediate-
scale and fine-scale vortex tubes and sheets can be observed in 
DHIT with polymer additives as compared to Newtonian fluid 
case. However, at large-scale, the inhibition effect by polymer 
additives is not as distinct as that at other scales. Based on the 
above analyses of the enstrophy and the strain, this is not 
surprising. It is relevant to the negative influence of polymer 
additives on the enstrophy and the strain production which can 
be regarded as the impetus of fine-scale vortex tubes and 
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sheets. And from micro-perspective, it shows that polymer 
additives can directly act on the structures at fine-scale and 
even terminate subsequent energy cascade to modify the 
turbulent feature for polymer solution case.  
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Fig.3. Sketch map for Fourier decomposition 

  

 

 
Fig.4. Constant Q isosurface for (I) Newtonian fluid case 

and (II) polymer solution case in three different 
scales field at t =2.0s. (a) large-scale filed 
(Q=0.9141); (b) intermediate-scale field 
(Q=4.6695); (c) fine-scale field (Q=9.4685). 

 

 
Fig. 5. Constant [ ]ijA +

 isosurface for (I) Newtonian fluid 
case and (II) polymer solution case in three 
different scale field at t =2.0s. (a) large-scale field 
([ ]ijA +

=0.6682);  (b) intermediate-scale filed 
([ ]ijA +

=3.6454);  (c) fine-scale field 
([ ]ijA +

=11.2406). 

CONCLUSIONS 
According to the above analysis, we obtain the following 

conclusions. From the viewpoint of JPDF between the 
correlation terms in Eqs.(8) and (9), it is obtained that polymer 
effects are strongly correlated with them. The polymers elastic 
conformation mostly opposes to the rotation and strain of 
coherent structures with a pronounced magnitude so as to 
suppress the increase rate and productions of the enstrophy and 
strain, respectively. The results are confirmed by the 
visualizations of vortex tubes and sheets, which show a 
remarkable inhibition of intermediate-scale and find-scale 
vortex structures. From micro-perspective, polymer additives 
can directly act on the structures at fine-scale, causing 
important modifications of turbulent nature as compared with 
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that of Newtonian fluid case. And the modifications refer to 
weaken turbulent characteristic, which leads to DR effect. 
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