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ABSTRACT 
A simple semi-empirical method is presented for 

calculating the speed of sound and attenuation factor for an 
unknown medium enclosed in a pipe. This method is based on 
the calculation of four-pole matrix parameters. It can be used in 
connection with transient or steady state excitation. The 
material presented is limited by the fact that no ideal 
measurement process exists. This limitation is significant when 
gathering attenuation factor and speed of sound data over a 
wide frequency range. However, the results, which are easily 
obtainable, are more than sufficient in solving daily engineering 
problems.  
 
INTRODUCTION 

Any linear elastic [8], here an acoustic system which has a 
single input point and a single output point, can be described by 
a pair of simple linear equations: 
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wherePs are the dynamic pressures and Vs are the dynamic 
volume velocities. Coefficients A, B,C and D are the four-pole 
parameters of the system. The advantage of such a 
representation is that the four-pole parameters permit 
considerable simplification of the algebraic complexities 
involved in the analysis of acoustic systems which can be 
modeled as a series of discrete regions/elements. Hence, such 
piping elements as series-connected, parallel-connected, loops, 
volumes, dead legs and other piping elements are represented 
by a set of coefficients which depend only on the properties of 
the region/element. In addition, this set of coefficients relates 
the dynamicpressure and the dynamic volume velocity at each 
inlet of the region/element to those quantities ateach exit of the 
region/element. To represent a complex system by this method  
 

all the region/elements have to be ‘grouped’ into an overall 
region/element. This is usually done as follows: 

Inspecting the four-pole equations (1) allows us to write 
the four-pole equations in matrix form: 
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The above square matrix (2) is called the transfer matrix. 
Coupling n two-ports of one matrix in a way that the output of 
it is an input of the next matrix (cascade connection) easily 
creates the equations that relate the pressure and flow variables 
of the first and the last region/element in a complex system [2, 
3, 4, 6]. A general form of overall matrix is as follows:  
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(3) 
Assuming that the analyzed system obeys the reciprocity 

theorem [7, 9], i.e. four-pole parameters are related by the 
following equation:  

A D – C B = 1 (4) 
we could observe that it takes only three of these quantities to 
completely describe the behavior of any two-port station, 
regardless of the internal complexity of any single 
region/element or an overall matrix. It is possible to calculate 
the Asfrom the set of equations that describe the two-port 
system. In this work, we are primarily interested in direct 
measurement of these parameters. 
 
RATIONALE FOR DEVELOPMENT OF THE METHOD 

The oil and gas industry deals with an increasing number 
of chemical compounds. Theoretical evaluation of accurate 
thermodynamic properties for these substances—for example, 
speed of sound or acoustic damping—is expensive, time 
consuming and not always convenient. 
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This method allows determination of the speed of sound 
and the acoustic damping in an enclosed system, for example in 
piping. Acoustic damping models have been extensively 
studied in the past [1, 5]. The equations developed, in many 
cases, stilldo not give factual values. Therefore, it is sometimes 
necessary to determine or verify such information in the field.  
 
THEORY 

The following method determines both the speed of sound 
and acoustic damping in an enclosed acoustic element (e.g. 
piping). This method is based on four-pole parameters given for 
a fluid system. These are derived from the Navier Stoke’s 
equation, with the assumption that mean flow is equal to zero 
(i.e. reciprocity theorem holds) [7]. For cylindrical pipe, the 
derived parameters in the transfer matrix form are given as 
follows: 
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whereZ = Zo/S is called the acoustic impedance and γ is 
function f(α, k) where α is a function f(f, ρ, c, d). 

The speed of sound in a one-phase, bubble or condensation 
free fluid enclosed within a pipe can be calculated by using a 
simple testing approach and applying the theory of plane-wave 
acoustics. Consider the apparatus illustrated in Figure 1. Its 
dynamic behavior can be described in mathematical terms by 
relating the complex Fourier transformed variables, P and V, at 
the apparatus input and output stations, 1 and 2. The 
relationships among variables at station 1 and 2 are as follows: 
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From equation (6) the pressure is obtained by matrix 
calculation as follows: 
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Since there is a rigid end at station 2, there is no flow and V2 is 
equal to 0. Consequently, equation (7) reduces to: 

2,1
2

1 A
P
P

=  (8) 

Using equations (5) and (8) the matrix parameter A12 is 
derived as follows: 
 

( ) ( )ikLLLA +== αγ coshcosh2,1 (9) 
 
Recalling that there is no mean flow in the system and α << 1, 
equation (9) becomes: 

( )kLLikLA sin)cosh(2,1 α+=  (10) 
 

Using definitions of hyperbolic functions, equation (10) 
reduces to: 

( ) ( )kLLikLA sincos2,1 ⋅+= α  (11) 
Equation (11) constitutes a base to measure and record the A12 
transfer matrix parameter. This can be done by using a duel 
channel analyzer. The pressure spectra and their phases or 
matrix parameter A12 can be easily collected and subsequently 
recorded. The data is in complex number form and can be 
written as follows: 
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Consequently, 
 

βieAA 2,12,1 = , where β = (θ1 – θ2) (13) 

 
Re (A12) = cos(kL) (14) 

 
Im (A12) = αL sin(kL) (15) 

 
In summary, the speed of sound is directly determined 

from equation (14) and the dynamic damping factor is found by 
solving equation (15). 
 
PROCEDURE 

To take accurate spectra or transfer function 
measurements, several conditions have to be fulfilled. The most 
important is to minimize the fluid-pipe interaction. This can be 
accomplished by using an experimental setup in which 
mechanical and acoustical system resonances are separated. To 
achieve this, the apparatus has to be made ‘rigid’. The best way 
of stiffening it is to put several sand bags under and on top of 
the rig. Next, the pressure transducer sensitivities have to be 
carefully chosen so that the signal will be strong enough and at 
the same time ensure that the coherence function is as close as 
possible to 1 in the frequency band of interest. The choice of 
pressure transducer depends of the static pressure of the 
medium and the strength of the excitation signal. Finally, the 
boundary conditions are important. The procedure can be 
divided into two distinct parts: (i) the equipment test, (ii) the 
actual test. The first part is a basic preparation for the test in 
which the apparatus is calibrated. The second one describes the 
actual test and data collection procedure. Both are described in 
detail in the appendix. 
 
DISCUSSION 

There are several possible sources of error while using this 
method. First, error can be introduced by unreliable 
measurement. This deficiency is easily detected by the 
coherence function and erroneous data can be immediately 
eliminated while testing the system. Another source of error 
can be generated by inaccurate length measurements of the rig, 
or other rig dimensions. This error can be minimized since 
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there is broad access to highly accurate dimensional 
measurement tools. The relative error due to erroneous 
geometry can be limited to 0.1%. Other errors can be generated 
by inaccurate determination of the resonant frequency. As seen 
in Figure 2, the cosine function is distorted close to the resonant 
frequencies due to acoustic damping. For higher frequencies, 
the acoustic damping is higher, and so is the distortion. Thus, 
for high frequencies, the resonant peaks are obscured by 
relatively large damping. On the other hand, for low 
frequencies, the equipment’s relative accuracy is not as good, 
e.g. if the analyzer is set up for 1 Hz measurement accuracy, 
there is 2% error at 100Hz and 0.4% error at 500Hz, etc. 
Hence, the frequency bandwidth in which one wants to 
determine the accurate resonant frequency has to be carefully 
chosen. From the above, it can be concluded that the speed of 
sound and damping factor values can be measured to within 1% 
error by using the described method. 

The additional advantage of this method is the possibility 
of immediate data verification. There are two ways of realizing 
it. The first is based on frequency domain calculations, which 
gives a high margin of confidence for collected data, and the 
second is a simple measurement of the time which elapses 
when a wave travels over a known distance (transducer 
locations) inside a pipe.  

From equation (8), one can see that the acoustic resonance 
occurs when P2 becomes large compared to P1. Setting A12 
equal to zero gives the frequency equation that can be solved 
for k. Since the dominant term in equation (11) is a cosine 
term, the solution of this equation will have a form as in Figure 
2. Note that for α equal to zero, matrix parameter A12 is equal 
to cos(kL). In this manner, a quick evaluation of the speed of 
sound can be done. 

The second estimation of the speed of sound is time-
domain based, and should give results very close to the actual 
wave propagation speed. However, in this test, the absorption 
coefficient cannot be determined. Moreover, in this method, the 
dependency of the speed of sound on frequency is not easily 
determinable. 

 
NOMENCLATURE 

A, B, C, D: Elements A11, A12, A21, A22 of a 2x2 
transfer matrix 

 c: Speed of sound  
 d: Internal diameter 
 f: Frequency 

 i: Integer or 1−=i  
 k: Wave number 
  L: Length of the test element 
  P: Laplace-transformed pressure 
  S: Cross-section of pipe ID 
  V: Laplace-transformed volume velocity 
  Z: Acoustic impedance 
 Zo: Acoustic characteristic impedance 
 α: Acoustic attenuation factor 
 γ: Propagation constant 

 ρ: Density of the fluid 
Since a convenient method to include the dissipation of 
acoustic energy is to express some of the above parameters as 
complex quantities, we re-defined the following parameters: 
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FIGURES 
 

 
 

Figure 1: Test Apparatus with Marked Test Points (1) and (2) 
 

 
 

Figure 2:  Four - Pole Parameter A12 
 
APPENDIX 
 
A1 Assumptions 
 
1. Sound propagation is in the form of plane waves 
2. Non-viscous flow through a constant area 
3. A homogenous medium; no temperature gradient or 

humidity change through the system 
4. Gravitational forces within the medium are neglected 
5. Changes in density of the medium are small 
6. The sound pressures are small in comparison with the 

average equilibrium pressure in the system 
 
A2 Apparatus 

The actual test apparatus is shown in Figure A1. It consists 
of two sections of NPS1/2 Sch. XS pipe, one NPS ½ x ¼ 
reducing tee, two cross fittings, and three block (isolation) 
valves. The plunger is connected to the test apparatus by a high 
pressure hose. The additional flexible steel tubing and block 
valves are necessary to fill and empty the test apparatus. The 
necessary equipment includes the spectrum dynamic analyzer, 
oscilloscope, two piezoelectric pressure transducers, hammer 

with force or accelerometer transducer and three power 
supplies. 

All parts of the apparatus need to be assembled first as 
shown in Figure A1. Next, the equipment and the actual tests 
can be carried out.  

First, both pressure transducers should be placed in each of 
the cross fittings (1) and (2) at the assembled test apparatus, 
refer to Figure 1. Special attention should be paid so that the 
transducers are flash mounted with the tees walls as best as 
practical. All valves should be open and the system should be 
flushed with the fluid to be tested. It is critical that all air 
bubbles be removed from the system. Then, the outlet block 
valve (1) at RHS, see Figure A1, needs to be closed and the 
system pressurized. When the system is filled up and still 
connected to the reservoir, slowly open/crack valve (1) to 
evacuate any air bubbles from the apparatus. One can lift 
slightly up an end of the entire rig to improve the bubble 
evacuation process. While doing so, be warned that an abrupt 
opening could cause extensive cooling, and inaccurate 
measurement will follow. In addition, freezing at the valve 
could block the system, making its filling or flushing 
impossible. After bleeding air from the apparatus, close all 
block valves from the right to the left, see Figure A1. Set up the 
spectrum analyzer and strike the plunger with a triggering 
hammer. For each test, plot two pressure spectra, their phases, 
the coherence function, as well as the transfer function with its 
phase. Ensure that the transfer function is approximately equal 
to unity and its phase is equal to zero when the coherence 
function is equal to one. If this is not the case, check circuits 
and possibly exchange transducers and repeat the test. 

Prior to the actual test, depressurize the system and install 
the transducers in the upstream and the downstream cross 
fittings. Repeat flushing and pressurize the system as before. 
When the probability of air presence in the system is low, 
prepare to collect the data. Strike the plunger with a triggering 
hammer and adjust the amplifiers to the appropriate levels of 
excitation. Repeat the striking and collect the data. Repeat the 
flushing and the test itself. The collected results should be very 
similar to the initial results. If it not, there is likely air still left 
in the system. Repeat the entire procedure. Always make sure 
that there are no leaking valves or faulty connections in the 
system. 

 

 
 

Figure A1:  Detailed Design Information about Test Apparatus




