
 1 Copyright © 2010 by ASME

Proceedings of the ASME 2010 Joint US-European Fluids Engineering &
Summer Meeting and 8th International Conference on Nanochannels,

Microchannels, and Minichannels
FEDSM2010-ICNMM2010

August 1-5, 2010, Montreal, Quebec, Canada

 FEDSM2010-ICNMM2010-30401

REFORMULATION RELAP5-3D IN FORTRAN 95 AND RESULTS

 George L Mesina
Idaho National Laboratory

P.O. Box 1625
Idaho Falls, ID, USA 83415

Email: George.Mesina@inl.gov

ABSTRACT
RELAP5-3D is a nuclear power plant code used worldwide

for safety analysis, design, and operator training. In keeping

with ongoing developments in the computing industry, we have

re-architected the code in the FORTRAN 95 language [2], the

current, fully-available, ANSI standard FORTRAN language.

These changes include a complete reworking of the database

and conversion of the source code to take advantage of new

constructs. The improvements and impacts to the code are

manifold. It is a completely machine-independent code that

produces machine independent fluid property and plot files and

expands to the exact size needed to accommodate the user’s

input. Runtime is generally better for larger input models, many

prior user-reported problems have been resolved, and the

program is better tested. Other impacts of code reformulation

are improved code readability, reduced maintenance and

development time, increased adaptability to new computing

platforms, and increased code longevity. Comparison between

the pre- and post-conversion code are made on the basis of

programming metrics and code performance.

INTRODUCTION
RELAP5-3D solves multi-dimensional, multi-phase mass,

momentum, and energy equations, multidimensional heat

transfer equations, and multi-dimensional neutron kinetics

equations. The code implements trips, controls, and physical

models specific to power plants. With these physical models,

RELAP5-3D has been applied to multiple types of nuclear

reactors, such as Pressurized Water Reactors (PWR), Boiling

Water Reactors (BWR), Liquid Metal Fast Reactors (LMFR),

and the Next Generation Nuclear Plant (NGNP). It has also

been used to model fusion reactors and steam supply systems.

Many large physics codes, such as RELAP5-3D, have been

developed over a period of years, and numerous large and

multi-purpose codes are under development today. All codes

which become successful will develop a user community and a

virtual library of input files distributed across the computing

world. The longer the code is successful, the more development

it will undergo, expanding to meet the ever-changing needs of

its user community. This is generally accompanied by growth

of its user community, libraries and the overall investment

made in the large code.

Over the same period of time, the face of computing will

re-invent itself. The large code will have had to adapt to

fundamental changes in the computing industry including

operating systems, software support libraries, computing

paradigms (such as parallelism) either merely to continue to

perform or to meet the needs and desires of its user community.

After a sufficient number of adaptations and expansions, codes

often lack cohesion due to the number and variety of

developments, developer’s styles, error corrections and

software patches. Some subprograms may have grown to

unwieldy size or have expanded function well beyond original

design specifications. Inefficiencies will often have resulted,

both in execution and programming. There may be unused code

and even entire subprograms and procedures no longer in use.

Documentation often no longer corresponds to source code. In

short, the program needs to be reworked.

A conversion from one language to another, or even from

one language level to another, is often the impetus for

reformulating a successful program. A direct translation from

language to language will result in a program with the same

lack of cohesion and worse than that, as the constructs of the

previous language or level may have been eliminated or

modified slightly. Thus the resulting code has new sources of

inefficiency and error, namely those due to translation.

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and
8th International Conference on Nanochannels, Microchannels, and Minichannels

FEDSM-ICNMM2010
August 1-5, 2010, Montreal, Canada

FEDSM-ICNMM2010-30401

 2 Copyright © 2010 by ASME

Therefore, the program should be reformulated for the new

language or language level. This requires a reworking of the

database so that it is easy to develop with and efficient within

the concepts, computing paradigms, and coding constructs of

the new language. The source code should be translated, re-

factored, or rewritten to take advantage of the new language

capabilities and features, the paradigms of computing, and to be

able to grow easily with future developments in the computing

industry. Portability, legibility, maintainability, ease of

development, and longevity are key elements to consider with

redesigning a code and its database.

Some examples of reformulated programs include TRACE

[3], LPCIS [4], and RELAP5-3D [5]. The reformulation of

RELAP5-3D is reported here. The strategy and method for

performing this rework of the code were rather generic in

nature; they could be repeated, with some modification, for

many other large and successful codes. However, the

presentation of the strategy and method here is restricted to the

reformulation of RELAP5-3D.

Section 2 explains the conversion methodology at a high

level. Section 3 covers the reformulation of the database.

Section 4 presents the conversion of the source code from

FORTRAN 77 to FORTRAN 95. Section 5 covers the testing

metric and methodology. The results are in Section 6; it

provides analysis of the new code, by both static and dynamic

measures, and summarizes improvements for code users.

NOMENCLATURE

ANSI American National Standards Institute

BWR Boiling Water Reactors

COBRA Coolant Boiling in Rod Arrays

CPU Central Processing Unit

FA Fast Array

FORTRAN FORMula TRANslation

HSG Heat Structure Geometries

IA Integer fast Array

LMFR Liquid Metal Fast Reactors

NGNP Next Generation Nuclear Plant

PVM Parallel Virtual Machine

PWR Pressurized Water Reactors

RELAP5 Reactor Excursion and Leak Analysis

Program

RGUI RELAP5 Graphical User Interface

SCDAP Severe Core Damage Analysis Package

UP User Problems

XDR eXtended Data Representation

CONVERSION METHODOLOGY
The conversion was broken into subtasks that consisted of

designing and transforming the database, converting the coding

related to the database, and testing in stages. Prior to the

subtasks, preliminary tasks that simplify the transformation

were completed. Figure 1 gives a high-level depiction of the

overall process.

Both commercial and internally developed software were

applied to carry out the transformation, conversion, and testing.

The use of computational software to precisely perform

repetitive operations reduced both time and manual errors; it

allowed recognition and solution of conversion problems to

take place at a high level.

A number of preliminary modifications were performed

prior to transforming the database; see Figure 1. Unused data

and coding were identified and eliminated. For the source code,

unused and obsolete code was removed, combinations of

multiple bit-operators with powers of two were replaced by the

FORTRAN 95 intrinsic functions, and source code was

reformulated in the structured programming paradigm [6].

Details of the preliminaries are given elsewhere [6, 7].

As seen in Figure 1, a database is selected, redesigned, and

transformed first, then all the source code associated with it is

converted to access it. This is done for one subprogram, then

the whole program is then tested with the modified subprogram

on a suite of input models to verify that the calculations do not

change. If answers do change, debugging ensues. This process

is repeated until there are no further accesses to the old form of

the database. During the reformulation task, other development

tasks proceeded simultaneously that seriously complicated it.

Thus this process is designed for flexibility and precision.

Database transformation, source code conversion, and

testing are covered in the subsequent sections.

DATABASE TRANSFORMATION
Prior to conversion, the memory-saving databases

RELAP5-3D Version 2.4 was comprised of 47 major databases,

called internal files. The first step was to write a database

conversion program and select a simple database to convert;

this helped test and debug the conversion software. It was then

applied to successively more complicated conversion tasks until

obstacles to conversion were encountered. Solutions were

developed and the software was continually upgraded to

Preliminaries

Removal, Replacement, and Reorganization

Database Transformation

For each Database X, redesign and transform it

Convert associated source code in subroutine Y

Test whole code w/ modified subroutine Y, debug

For each subroutine Y accessing database X

Preliminaries

Removal, Replacement, and Reorganization

Database Transformation

For each Database X, redesign and transform it

Figure 1. Conversion Strategy

 3 Copyright © 2010 by ASME

correctly convert more complex databases and subprograms.

Some language constructs could only be transformed manually.

A few databases and subprograms were manually rewritten in

FORTRAN 95 due to their complexity.

In algorithmic form, the procedure for transforming the

database can be expressed as follows:

Database Transformation Algorithm

1. Analyze the database as a whole to devise means to

subdivide into smaller subtasks.

2. Order the transformation subtasks.

3. Analyze the (first) next subtask’s database and redesign it

(if necessary).

4. Implement the new design in FORTRAN coding.

5. If any subtasks remain, return to step 3

Many large computer codes, such as RETRAN-03 [8],

Cobra [9], Lava [10], NESTLE [11], Trac-PF1 [12], and

RELAP5 store virtually all data in a one-dimensional container

array. This was done to avoid computer charges for memory

usage on mainframe computers until the early 1990s. With data

as linear arrays within a linear container, all data could be

easily shifted to the container’s lowest indices after input

processing and the unused portion returned to the operating

system. The container is called FA (Floating-point Arrays) and

IA (Integer Arrays); the two are made equivalent via the

equivalence statement. This storage system has become

unnecessary because modern computing platforms do not

charge for memory.

There are numerous problems with this memory-saving

database. First, the linear container is unnatural for representing

character and logical data. Second, it requires at least two extra

lines of code per loop. It has coding tricks and pitfalls that do

not occur in a more standard data arrangement. Finally, the

database design requires that integer, floating point, logical, and

character data be included in a single array, and be made

equivalent to each other in violation of the ANSI FORTRAN 77

Standard.

Memory is subdivided in the FA array into internal files,

one for each of the 47 major databases. These databases contain

information about related quantities such as control systems,

trips, general tables, heat structures, control volumes, neutron

kinetics, etc. Some databases are further subdivided, e.g. point

and multidimensional kinetics, or variable and logical trips.

Some databases exist to relate two other databases efficiently to

reduce run time, such as the inverted junction table and list

vectors. Most databases, or files, exist only if the model

requires them. Some exist only for input processing and are

eliminated thereafter. Each database is assigned a “file”

number. For example, control volume database is file 4,

radionuclide transport data is file 47, etc. Array FILNDX points

to the beginning of each internal file in the container; e.g.

FILNDX(4) = K means the first control volume datum is at

IA(K).

The subtasks are to transform the major databases into a

new form while possibly combining, splitting, or eliminating

some. The order for processing these databases was established

by their internal complexity, which ranged from simple to

complex. Simple databases consist of arrays of uniform length.

Slightly complex database have two or more sets of uniform

length arrays, where the array length of the sets are different.

Moderately complex databases contain arrays of non-uniform

length. Hierarchically complex databases have two levels of

data where an element of the top level has a complete set of

lower level data associated with it. The most complex databases

contained multiple levels of fixed and varying length arrays.

The transformation order was from simplest to most complex

with database size breaking ties.

Complexity was caused by data layout. The arrays of a

database were positioned with the first entry of each array

arranged consecutively in memory, then all the second entries,

etc. See Figure 2. Equivalence statements specified relative, not

actual, indices of arrays within the container array. Figure 2,

shows arrays A, B, and C of fictitious file 48 as they align with

FA/IA in memory along with their declaration statements. For

file 48, FILNDX(48) = 80 and the skip factor is 3; thus A(2) =

FA(81+3). In simple database L with M arrays of fixed length

N, IA(FILNDX(L)) = N, and arrays begin at FILNDX(L)+1.

The formula to access entry J of C, its 3
rd

 array, is

C(FILNDX(L) + (J-1)*M). In a loop, I is initialized to

FILNDX(L) and incremented by M at loop bottom, then C(I) =

C((J-1)*M + FILNDX(L)).

Figure 2. Original Data Layout and
Declaration Example

In step three of the transformation procedure, the major

databases are transformed into improved forms for use with

FORTRAN 95 coding. Simple databases are transformed so

that their arrays are contiguous. In step 4, a FORTRAN 95

module is created that declares the arrays, has array length as a

scalar, and there is no skip factor. The module also documents

all its variables and has internal subroutines that operate on the

data it declares.

Databases with greater complexity require greater amounts

of redesigning. Consider the heat transfer file, a hierarchical

database of 2 levels and varying length arrays. Its data

represents the flow of heat through solids, such as pipe walls,

and to the fluid. Data is organized into two-dimensional grids

of points, called Heat Structure Geometries (HSG), with one

boundary on the inside of a wall (or solid’s centerline) and the

other on its outside. Temperatures are measured at grid points.

A model may have many HSG. each with a different numbers

of rows, called heat structures, and columns, called mesh lines,

A(1), B(1), C(1), A(2), B(2), . . .

FA(81), IA(82), FA(83), FA(84), IA(85)

integer B(1)

real*8 A(1), C(1)

equivalence (FA(1),A(1)), (IA(2),B(1), (FA(3),C(1))

 4 Copyright © 2010 by ASME

across which the material could change, such as from fuel to

cladding represented as materials A and B in Figure 3a.

The heat database is implemented in comdeck HTSRCM

which has K HSG where the i
th

 HSG has Ni heat structures, and

N = N1 + . . . + NK. Its 5-part layout is pictured in Figure 3b.

The scalar N is the first part. The second part is an index array

to the start index in FA of each HS. The data for the heat

structures are stored in the third portion, the HSG geometry,

material and weighting data came fourth. The old and new

temperatures are stored in the fifth section. Each HS has an

index (pointer) to its temperatures and HSG. HSG data has an

index to its first HS. Data for the linear system that represents

the heat conduction equation is stored separately in temporary

(or scratch) database, HTSCR.

The redesign of the heat structure database is shown in

Figure 4. The solution data for the heat conduction equations

have been incorporated. The new form is implemented in

derived types.

To see the improvement, consider accessing the old-time

temperature at point k of the j
th

 heat structure of HSG k in both

databases. In the memory-saving database, FILNDX(8)+1 is the

location in the IA array of the unnamed index array to HS.

 Set INDEX1 = the IA-index of first HS of HSG k in

the list of all heat structures.

 Set INDEX2 = IA(FILNDX(8)+INDEX1+j-1) is the

index of the first element of HS(j).

 Set INDEX3 = TMPNDX(FILNDX(8)+INDEX2+k-1)

is the temperature.

 TMPO(INDEX3) = the temperature from previous

time advancement.

FILNDX(8) is added to INDEX1 and INDEX2 because “files”

store offsets from the file’s starting index only.

In the new database, the temperature at previous time in

HSG i at grid point (j, k), is simply:

 htg(i)%temp(2,j,k),

where htg is the HSG derived type array for accessing

temperatures. The htg(i)%temp array stores two temperatures at

each grid point, differentiated by the first of its three subscripts;

the first subscript is one for new time temperature and 2 for old

time temperature.

Figure 4. Module Memory Layout for Heat Transfer

Step 4 of the database transformation algorithm employed

a program written for the purpose. Its input is the comdecks

prescribing the database; its output is a FORTRAN 95 module.

The major databases were split into a data dictionary

comdeck and one or more comdecks of declaration and

equivalence statements. Often these had a variety of unrelated

names that were unhelpful for locating and accessing data. The

new database design allows exactly one module for each

database with a uniform naming convention for easy

recognition; all module names end with the three letters “mod”

while the first 3-6 letters describe its data. Internally, all

modules have a standard three-part design: declarations, data

dictionary, and internal subprograms. Within part 1, data is

declared in four sub-parts: created derived types, derived type

arrays, standard-type arrays, and scalars. All variables are listed

in alphabetical order within these four sub-parts sorted in

HSG 1

Geometry data

Material & weights

Heat Structure Data

Conduction soln. data

Interface to liquid data

Temperatures

HSG K

Geometry data

Material & weights

Heat Structure Data

Conduction soln. data

Interface to liquid data

Temperatures

N Index to start of Heat Structure

HS(1) data, HS(2) data, . . . HS(N1) data

HS(N1+1) data, . . . HS(N1+N2) data

 . . .

HS(Nk-1+1) data, HS(Nk-1+2) data, . . .

HS (Nk-1+Nk) data

HSG 1 data, . . . , HSG k data

Temperatures(HSG1), Temperatures(HSG2),

 . . .

Temperatures(HSK)

Figure 3b. Heat Transfer Data Layout

1 2 3 4 5 6 7 8 9

A A A A A A B B

Figure 3a. A Heat Structure Geometry

HS1

HS2

HS3

HS4

HS5

HS6

HS7

 5 Copyright © 2010 by ASME

alphabetical order. Part three has four common internal

subroutines: allocatable array constructor and destructor

routines and restart read and write routines. Some modules

have additional routines for such purposes as initializing,

counting, and data transferring.

The transformation program was written to reduce

conversion time and to reduce or eliminate manual conversion

errors. It analyzed both type and equivalence statements, sorted

the arrays into alphabetical order, and created alphabetized,

size-and-type declaration statements that were placed within a

derived type declaration. The program output was a module

with identification comments, all declarations of part one,

including the allocatable derived type array, part two built from

the data dictionary comdeck, and part three with generated

internal subroutines for allocation, deallocation, and data

transfer. The program was first applied to the comdecks of

simple databases, then improved for more complex ones.

Manual modifications of its output were necessary for

databases being reworked, such as the heat data.

Of the 47 databases, 36 were converted, 6 were eliminated,

2 were postponed, and 3 were subsumed into other databases.

By postponing conversion, of the RELAP5 Graphical User

Interface (RGUI) and Severe Core Damage Analysis Package

(SCDAP) the features have become temporarily unusable

SOURCE CODE TRANSFORMATION
Transforming source code from one language or level of

language to another is a difficult task for a large computer

program. Transforming source code while the program is under

active development and in heavy use further complicates the

task. The program must work at every version for code users.

The strategy devised and implemented for conversion worked

satisfactorily.

The strategy was to convert the code database by database.

First the database was transformed, then each subroutine that

used it was modified in turn. Every variable belonging to the

database was changed from its form in the original database to

its form in the new database. Testing was performed after every

group of subroutines to ensure that all test cases were run

correctly; this is covered in Section 5.

Some program constructs and programming techniques

that were part of older FORTRAN language levels were

obsolescent, incompatible, unneeded, or even problematical in

FORTRAN 95. For example, memory allocation and pointers

were not part of FORTRAN predecessors of the 1990 standard.

These features were replaced, sometimes to the great

improvement of the source code. The result is a program with

constructs and modern programming techniques of standard

ANSI FORTRAN 95. A brief description of the reworking of

the language is presented in this section.

Due to equivalencing of IA and FA and the need to support

both 32- and 64-bit integer platforms, a preprocessor was used.

It would convert integer arrays of the IA container into tiny

length-two arrays. That was needed so that indexing of

equivalent integer and floating point quantities would be

identical. This created numerous issues, particularly with

subprogram call arguments and debugging.

By eliminating the container array, this confusing coding

practice has been eliminated. All extra overhead incurred

through this database, such as FILNDX, skip-factors, and

offsets within databases and portions of databases are

eliminated. In particular, pointers have been immensely

simplified. Previously, these were implemented via indexing

within the container array, and this required the use of tables of

indices, offsets to the tables, offsets to the target database, and

offsets within the target database. This has been replaced by

true FORTRAN 95 pointers. The overhead of pointer offsets

and indices has been eliminated.

The use of integers to hold character data in the container

array, a carry-over from FORTRAN 66 which had no character

data type, was eliminated. It was necessary to use internal reads

and writes to move data for various purposes. The

programming, readability, and debugging issues that this

engendered have been removed by converting the character

containing integers to true character variables.

Another readability issue was variable reuse. With larger

computer memories, it is unnecessary to reuse variables to save

memory. Most every array is given its own identity, even

scratch arrays. This removes a large source of errors.

An illustration of source code transformation is given in

Figures 5a and 5b. Actual subroutines of RELAP5 are either too

small to illustrate much transformation or too large to include in

full. These Figures represent some of the relevant declarations

and coding from a portion of the trip subroutine that processes

logical trips.

In Figure 5a, note the “n = filndx(18)” statement and, just

above the “end do,” the statement “n=n+ntlskp.” The

transformation eliminates these in Figure 5b. The “include”

statements are replaced by “use” statements. Another use of

pointers, and a small change to input processing, reduces the

calculation of ltrip and rtrip from twelve lines to two in Section

2.1. The obsolescent “computed go to” is replaced by a case

statement in Section 2.2. The logic in the if-test following

statement label 63 in Figure 5a is simplified in 5b in Section

2.3. The declaration of real pointer “triptime” reduces five

statements to one in Section 2.5.

Several changes were made purely for readability. Four-

character comparative operators, E.G. “.ge.” are replaced by

one-two symbol operators such as “>=.” Use of the “iand”

intrinsic has been replaced by “btest” and “ibits” intrinsics.

Many comments have been introduced with outline-style

numbering.

The restructuring performed during the preliminaries phase

is responsible for the elimination of the computed go to and the

uniform indentation.

Overall, despite the introduction of documentation, the

transformed source code is shorter.

 6 Copyright © 2010 by ASME

Figure 5a. A portion of a pre-transformed subroutine

Figure 5b. Same subroutine portion transformed

CONVERSION TESTING
During the reformulation task, other development projects

were proceeding simultaneously. These sometimes seriously

impacted the conversion project. Moreover, conversion errors

impacted code users. Thus testing was very important to ensure

that the code continued to produce correct calculations.

 subroutine logic_trip

! Tests logical trip conditions; sets trip conditions and time-of-trip.

 use ctrlmod

 use trpmod
 implicit none

 integer :: i

 real(sdk) :: ontim, timehy, timx
 real(sdk), pointer :: triptime

 logical :: ltrip, rtrip

!
! Executable code

! 1.0 Initialization

 timx = timehy
 timehy = timehy - dt

! 2.0 Logical trips.

 do i = 1, ntrpl
! 2.1 Evaluate left and right sides logical trip

 ltrip = trplp(i)%time >= 0.0 .neqv. btest(trpl(i)%ntrpop, 4)

 rtrip = trplp(i)%time2 >= 0.0 .neqv. btest(trpl(i)%ntrpop, 5)
! 2.2 Logically combine sides

 select case (ibits(trpl(i)%ntrpop,24,8))

 case (1)
 ltrip = ltrip .or. rtrip

 case (2)

 ltrip = ltrip .and. rtrip
 case (3)

 ltrip = ltrip .neqv. rtrip
 end select

! 2.3 Time trip was true

! In latching trip case, this is the time it first became true.
! Otherwise, this is the previous advancement time.

 if (iroute /= 1 .or. btest(imdctl(1),6)) then

 triptime => trpl(i)%trptim
 else

 triptime => trpl(i)%trptimss

 endif
 ontim = triptime

 rtrip = (ontim >= 0.0)

! 2.4 Recalculate time of trip status

 if (.not.rtrip .and. ltrip) then

! 2.4.1 Time turns on

! Trip was false on previous advancement but is now true
 ontim = timehy

 else if (.not.btest(trpl(i)%ntrpop, 1) .and. rtrip .and.

 & .not.ltrip) then
! 2.4.2 Trip goes false

! Non-latching, trip value was true & trip condition is now false

 ontim = -1.0
 endif

! 2.5 Record trip status

 triptime = ontim
 end do !i

!

! 3.0 Reset transient cumulative time.
 timehy = timx

 return

 end subroutine logic_trip

 subroutine trip

c Tests trip conditions and sets trip conditions and time of trip.

#include "comctl.H"

#include "contrl.H"
#include "fast.H"

#include "trpblk.H"

 logical ltrip,rtrip
c

 n = filndx(18)

 timx = timehy
 timehy = timehy - dt

c

c Logical trips.
 if (ntrpnl(filndx(18)) .eq. 0) go to 100

 do i = 1,ntrpnl(filndx(18))

 if (iroute .ne. 1 .or.
 & (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then

 ltrip = trptm(ntrtr1(n+1)).ge.0.0 .neqv. iand(ntrpop(n),16)

 & .ne.0
 rtrip = trptm(ntrtr2(n+1)).ge.0.0 .neqv. iand(ntrpop(n),32)

 & .ne.0

 else
 ltrip = trptmss(ntrtr1(n+1)).ge.0.0 .neqv. iand(ntrpop(n),16)

 & .ne.0

 rtrip = trptmss(ntrtr2(n+1)).ge.0.0 .neqv. iand(ntrpop(n),32)
 & .ne.0

 endif
 m = ishft(ntrpop(n),-24)

 if (m - 2) 71,72,73

 71 ltrip = ltrip .or. rtrip
 go to 63

 72 ltrip = ltrip .and. rtrip

 go to 63
 73 ltrip = ltrip .neqv. rtrip

c

 63 continue
 if (iroute .ne. 1 .or.

 & (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then

 ontim = trptim(n)

 else

 ontim = trptimss(n)

 endif
 rtrip = ontim .ge. 0.0

 if (.not.rtrip .and. ltrip) then

 ontim = timehy
 else if (iand(ntrpop(n),2).eq.0 .and. rtrip .and. .not.ltrip)

 & then

 ontim = -1.0
 endif

 if (iroute .ne. 1 .or.

 & (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then
 trptim(n) = ontim

 else

 trptimss(n) = ontim
 endif

 n = n + ntlskp

 enddo
c

 100 timehy = timx

 return
 end

Section 2.5

 7 Copyright © 2010 by ASME

To ensure that RELAP5-3D worked properly for users

during the transformation process, stringent testing was

performed frequently. A second reason frequent testing was

efficiency in error finding. It is quickest and easiest to locate an

error among a small set of recently converted subprograms.

Testing employed a suite of test problems and an

evaluation metric for detecting errors.

Testing Procedure
 Generate output with test case i with updated code.

 Generate output with test case i with untransformed code.

 Compare output with the Linux diff utility.

- Eliminate differences due date, time-stamp, CPU time

and memory mapping.

 If more than Z differences remain, reject the update.

Apply the test procedure to all standard test cases. If all cases

are acceptable, the update is acceptable.

Zero was the value of Z for purposes of source code

conversion. Thus, the output of each test case must be

character for character exactly the same, before and after

conversion, on the “printed output” file. The testing procedure

was applied to both update sets and completed versions.

A limitation of this test procedure is that it does not check

all decimal places of the calculations, about 14 for floating

point values, but rather only those printed. An improvement

would be to increase the accuracy of the printed output or to

test binary output. A second limitation of this test procedure is

the impact of other development upon calculations being

compared. If recent developments or error corrections affect

calculations of one or more test cases, the responsible

developer must determine the correct values. This complicates

the test procedure.

Finally, this test procedure cannot find all possible errors

unless the test suite has 100% coverage of all lines of source

code being transformed. Coverage is detailed in Section 6. The

extent of the coverage of the test suite determines the

effectiveness of the test procedure. For the FORTRAN 95

conversion, some new cases were added to test additional

portions of the code thereby increasing coverage.

RESULTS AND MEASUREMENTS
The reformulation of RELAP5-3D has resulted in

numerous improvements. Section 6 presents a variety of

quantitative measures and interpretations of those

measurements. Results of reformulation include both longevity

improvements, such as legibility and maintainability, and code

feature improvements, such as machine independent binary

output. Two principle categories of evaluating the reformulated

program and comparing it with its predecessor are static and

dynamic measurements. Static measurements include source

code analyses such as size, percentage, complexity measures,

and number of user problems fixed. Dynamic measurements

include code run speed, coverage, and other statistics relating to

the performance of the program as it runs.

REFORMULATION LONGEVITY RESULTS
Longevity changes are those upgrades and reformulations

made to prevent obsolescence. Many changes were made to

increase longevity of RELAP5-3D. These include

modernization of the database and source code, use of a modern

programming language and its constructs, code complexity

reduction, legibility increase. These lead to development and

maintenance cost reduction.

Code modernization was carried out in the reformulation of

the database and source code reported in Sections 2 through 4.

The modern language is FORTRAN 95. All reference to

language features listed in the obsolescent or downgraded

language features of the handbook have been eliminated. Older

constructs, such as arithmetic if, assigned go to, indexed go to,

alternative returns, buffer statements, and the like have been

eliminated or replaced with modern constructs such as if-then-

else and case statements. Older programming paradigms have

been replaced by modern ones. For example, equivalence was

replaced by derived types, mapping multi-dimensional data into

linear arrays was replaced by natural declaration and indexing

of multi-dimensional quantities, and pointers via indexing in a

container array replaced by true pointers. These have greatly

simplified the source code and eliminated sources of error.

Portability was addressed in the preliminaries box of

Figure I. Many machine-specific library calls, such as bit-

packing, time and absolute memory address functions, were

replaced or eliminated by FORTAN 95 intrinsic functions or

pointers. A new feature, machine-independent binary files, has

increased portability so that files produced on one platform can

be used on another, regardless of hardware or operating system.

An important portability issue was adaptation to the Linux

Operating System.

Code readability or legibility was increased in many ways.

First, the code was restructured [6]. Structured programming is

both highly modular and easier to read and understand. Every

block of code has only one entry point and one exit point. There

are no backward jumps except as part of a loop construct.

Second, dead code was eliminated. Third, source code

formatting rules were applied uniformly. Fourth, more internal

documentation has been inserted and outdated comments

replaced. Fifth, some subprograms were re-factored; that is,

repeated code and sections of pre-compiler protected code were

moved into internal "contained" subprograms. Finally, some

subprograms were fully rewritten as needed to simplify, clarify,

or implement the algorithm with modern programming

constructs.

The result of modernization and readability changes, and

the restriction to just one brand of compiler, has reduced

maintenance and development costs. Simplification of indexing

has reduced the potential for indexing errors. Legibility

increase reduces the time required to perform development and

to find coding errors. Moreover, FORTRAN 95 has a form and

structure that is easy for a C++ or Java programmer to learn, as

already demonstrated with INL summer intern Wang [16] who

started with no FORTRAN experience. Thus the pool of

potential programmers has been expanded markedly over

 8 Copyright © 2010 by ASME

FORTRAN 77, and this, along with the aforementioned

changes, will increase the longevity of RELAP5-3D.

IMPROVED FEATURES AND ASSESSMENT
Some of the new features implemented in reformulating

RELAP5-3D have been more operating system accessibility,

split restart and plot files, machine independent output files,

and expandable database. A developmental assessment (DA)

[17] was performed on the reformulated version using 100

representative test cases. Table I compares the features and

assessment of the reformulated of the previous versions.

As a result of the reformulation work, RELAP5-3D now

installs on Windows XP platforms with 64-bit Fortran

compilers and passes its suite of test cases on Linux, Unix

(Solaris), and Windows XP. Only one compiler is currently

supported, but a number of new compiler levels are supported.

Another new feature is the split restart-plot file. Instead of

a single restart-plot file, there are two separate files, a restart

file and a plot file. There is now no need to post-process the

restart-plot file to access the plot data. That data is already

separated into its own file for immediate use by the code user.

The introduction of eXtended Data Representation (XDR)

binary output files has created new possibilities for RELAP5-

3D code users. It does not matter if the hardware is big or little

endian, the XDR binary data is the same. Thus the files can be

written on one platform, say Linux, and used on another,

completely different, platform, such as Windows. The fluid

properties, plot, and strip are all written in machine independent

form. The restart file is not written in machine independent

binary. The fluid and plot files are written in machine

independent XDR format, but the strip file is in ASCII only.

Table I. Comparison of Old and Reformulated Code Features

Category

Pre-F95,

Version 2.4.1.2

F95 Reformulated

Version 2.9.3

Compilers Many, older Intel Fortran 9.1 and

10.1

Modularity Unstructured Strongly Modular –

Structured

Dead Code Many unused

source files

Removed 162 unused

files

Platforms Windows, Unix Linux, Windows, Unix

Portability O/S specific bit,

time, loc. utilities

Fully portable F95

intrinsic library

Binary machine

dependent files

XDR binary machine

independent

File Form Combined

restart-plot file

Separate restart and plot

files

Plot format N/A ASCII or XDR binary

 Memory Upper-limited Expands to fit model

DA No Yes

Another new feature is ASCII plot files. The user may

specify in the code input file that the plot file is to be written in

the ASCII format. This allows the plot file to be immediately

imported into application plot programs for immediate use;

there is no need to post-process.

The DA is a form of validation that is applied to a subset of

test cases of interest. The DA tests were comprised of separate

effects, integral effects, and plant models for which data was

available for comparison. The calculations are considered

acceptable within the engineering judgment standards described

in the DA [17].

During the transformation project, code development, in

the form of additional physical models and resolutions to user

problem reports, was ongoing. Because these enhancements

affect the calculations, comparison between pre- and post-F95

versions can be made for few input models; however, those

show excellent agreement between the old and new versions.

STATIC MEASUREMENTS
Static measures of the code include counts and percentages

of important programming aspects. These aspects include

comments and complexity measures. These measures can be

applied across the whole code as a count or an average or as a

best or worst case. Improvement due to the reformulation can

be measured by comparing reformulated version 2.9.3 against

the standard Pre-FORTRAN 95 version, 2.4.1.2. The static

measures are compared in Table II.

The readability measures are confined to ratios of comment

to non-comment lines. This ratio would increase if executable

statements rather than non-comments were considered. This

statistic does not measure the quality of comments, but does

clearly indicate that the number of files with significant

percentage of comments increased by a factor of over 2.5. This

was due to imposing certain standards for comments on the

newly written code, such as modules.

Table II. Static Source Code Analysis Measures
Category 2.4.1.2 2.9.3

Readability

Best comments to code ratio 6.64 32.2

Files w/ comments to code ratio >= 0.3 390 954

Complexity

Maximum cyclomatic number 982 460

Files with cyclomatic number >= 100 68 13

Maximum Nesting (levels deep) 20 15

The McCabe Cyclomatic index is the industry standard for

measuring code complexity. It measures the number of

independent linear paths through a section of source code, and

also indicates the number of branches within that same piece of

source code. The higher the index number, the more branches

are in the code, which in turn affects the quality of the testing

and the maintainability of the code. Though opinions vary,

subprograms with an index greater than 100 are considered

complex, and anything over 500 is generally considered too

complex.

 9 Copyright © 2010 by ASME

The number of complex subprograms dropped from 68 to

13, a factor of 5. There are no subprograms over 500 in the

transformed code.

Nesting counts the sub-blocks of blocks. A loop has one

interior block; a branching construct, such as case or if-then-

else statement, has several at the same level. These blocks may

contain loop or branching construct, their blocks are sub-blocks

at level two. Nesting counts the number of levels to which the

sub-blocking goes. Considerable improvement was obtained in

nesting.

Table III. User Problem Resolution

Reports Resolved

After

2.4.1.2

Fixed by

F95

1998 85 31 1 1

1999 75 50 1 1

2000 92 47 2 2

2001 86 67 3 3

2002 86 72 0 0

2003 61 44 2 2

2004 62 39 7 7

2005 55 32 30 2

2006 71 36 35 1

2007 51 27 23 4

2008 47 23 18 5

2009 42 10 10 0

813 478 132 28

It must be recognized that many user problems extant in

the older version were resolved in the newer. Table III shows

User Problems (UP) reported from the first version of

RELAP5-3D through version 2.9.3.

Of the 478 UP that have been resolved, 132 solutions came

after version 2.4.1.2 and are in version 2.9.3 only. These

include some 28 that were resolved merely by the reformulation

into FORTRAN 95.

DYNAMIC MEASUREMENTS
Dynamic measurements are made by executing the

program and collection statistics about the run. There are two

primary dynamic measurements, namely, coverage analysis and

run speed. Coverage spied upon the code as it runs and collects

information about what part of the code is executing. It is

important to have the test suite exercise as much of the source

code as possible so that coding errors can be found by the test

suite and not the users. On the other hand, code users need the

code to run a quickly as possible so that they can perform their

analyses in a more timely fashion; therefore, measures of code

run speed are very important also. Coverage analysis is

presented in Table IV and run speed in Table V.

As can be seen, the number of test cases for version 2.9.3

has grown immensely, though the DA and PVM test cases

increased through other development projects.

The coverage analysis can be broken down by subroutines

or by groups of subprograms. Table IV shows subroutine

groupings according to their location by folder/directory. The

relap directory holds most of the essential subprograms that

implement the physics and other calculations described in the

RELAP5-3D manuals. The envrl directory holds those that

provide service, such as linear equation solution, table look-

ups, interpolations, and input control service.

Table IV. Comparison of Test Cases and Coverage
Percentages

Category

Pre-F95

Version 2.4.1.2

F95

Version 2.9.3

Test Cases 188 2034

Product Release 188 221

PVM Dt Tests 0 1760

DA 0 53

Coverage Analysis Files Stmts Files Stmts

Relap Directory 63.87 44.72 80.37 61.51

Envrl Directory 35.46 38.91 54.24 51.91

The percentages are files, functions and statements. For

files, the percentage is the number of files entered during

execution of any of the test suite cases divided by the number

of files. Similarly for function and line, the count is for the

number of subprograms in any file entered divided by the total

number of such functions; lines are limited to executable lines.

A large improvement of 14, 15, and 17 percent can be seen

in the coverage of the files, functions and lines respectively of

the relap directory. In the envrl the improvements are 19, 19,

and 23 percent In both cases, the coverage is now over 50

percent. It should be noted that only the standard test suite is

used for these measurements. Neither the Developmental

Assessment nor the new 1760 problem suite provided by the

other PVM project are employed in collecting these statistics.

Table V. Run speed indicators for AP600 test cases
 Pre-F95 Version 2.4.1.2

Model Attempts CPU (sec) CPU /

Attempt

PMPS 139 12.26 .0882

PWRS 455 34.28 .0753

SBS 419 31.74 0.758

 F95 Reformulated, 2.9.2

PMPS 139 12.46 .0896

PWRS 519 33.36 .0643

SBS 419 28.08 .0670

CPU time on a SUN platform with an Opteron chip, using

SUSE Linux 9.1 and an Intel 9.1 compiler was used to collect

 10 Copyright © 2010 by ASME

these samples. The values will vary from platform to platform.

For some smaller and shorter running problems, the

reformulated code’s run timings may are smaller while for

others they are larger; no reason has yet been determined for

this. However, for larger problems, the reformulated version

2.9.3 generally runs faster or at least comparable to the standard

version 2.4.1.2.

The problems all use semi-implicit time advancement, the

first is a pump transient, the second a simple run to steady state,

and the last a small break. The number of attempts is the same

in the first and third and larger for the new code in the second.

Yet the CPU time goes up very slightly, less than 2%, for the

first problem, while it actually goes down for the third and,

despite the increased number of advancements, for the second

as well. The grind time, CPU seconds per attempt, is

significantly better for the second and third run while it is

comparable for the first.

SUMMARY
The Reformulation of RELAP5-3D is complete. It includes

a complete transformation of its database and conversion of its

source code from FORTRAN 77 to FORTRAN 95. The code

runs all the test suite problems that it ran before, plus over 1800

more test cases. Its longevity has been increased by its

reformulation in modern language, reduction in complexity, and

restructuring into a highly modular form that is more readable,

and less time consuming to develop and maintain. Virtually

every measurement of code improvement shows the new

version has more capabilities, is more portable, runs as fast or

faster, and is better tested.

ACKNOWLEDGMENTS
This 4.5 year project was funded by the US DOE through a

variety of projects. Thanks are given to the contributors to the

source code conversion; this includes Dr. Richard Riemke,

Richard Wagner, Dr. Walter Weaver, and Nolan Anderson.

Appreciation is given to participants in the source code

conversion and preliminaries; this includes Hope Forsman,

Richard Moore, Peter Cebull, Cliff Davis, Dr. Paul Murray,

Joshua Hykes, Dr. Donna Guillen, and Riley Cumberland.

COPYRIGHT STATEMENT
This manuscript has been authored by Battelle Energy

Alliance, LLC under Contract No. DE-AC07-05ID14517 with

the U.S. Department of Energy. The United States Government

retains and the publisher, by accepting the article for

publication, acknowledges that the United States Government

retains a nonexclusive, paid-up, irrevocable, world-wide license

to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government

purposes.

REFERENCES
1. RELAP5-3D Development Team, RELAP5-3D Code

Manual, Volume 1, INEEL-EXT-00834, Revision 2.4,

Idaho National Laboratory, Idaho Falls, ID (2005).

2. J. C. Adams, W. S. Brainerd, J. T. Martin, et al., Fortran 95

Handbook, MIT Press, Cambridge, MA, USA (1997).

3. G. L. Mesina, LPCIS N-16 Lobe Power Calculation,

Theory, and Programming, Engineering Design File TRA-

ATR-1821, Project File Number 021008, Idaho National

Laboratory, Idaho Falls, ID (2002).

4. J. Mahaffy, J Uhle, and J. Dearing et al., Architecture of the

USNRC Consolidated Code, Proc. ICONE-8 April,

Baltimore, USA (2000).

5. G. L. Mesina, “Architectural Advancements in RELAP5-

3D,” Proceedings of the 2005 ANS Winter Meeting,

November 12-17, 2005.

6. D. P. Guillen, G. L. Mesina, J. M. Hykes, “Restructuring

RELAP5-3D for Next Generation Nuclear Plant Analysis,”

2006 Transactions of the American Nuclear Society, Vol.

94, June 2006.

7. G. L. Mesina, J. M. Hykes and D. P. Guillen,,

“Streamlining RELAP5-3D”, Proceedings of NURETH-

12, Pittsburgh, PA, Nov, 2007.

8. J. H. McFadden, et al., “RETRAN-03 Code Manual,”

EPRI NP-7450, May, (1992).

9. C. W. Stewart, et al, “COBRA-IV: The Model and the

Method,” BNWL-2214, Pacific Northwest Laboratory,

(1997).

10. J.D. Ramshaw and C.H. Chang, Computational Fluid

Dynamics Modeling of Multi-component Thermal

Plasmas, Plasma Chem. Plasma Process. 12 (1992), pp.

299–325.

11. P. J. Turinsky, et al., “NESTLE: A Few-Group Neutron

Diffusion Equation Solver Utilizing the Nodal Expansion

Method for Eigenvalue, Adjoint, Fixed-Source Steady-

State and Transient Problems,” EGG-NRE-11406, Idaho

National Engineering Laboratory, Jun, (1994).

12. K. 0. Pasamehmetoglu, J. Spore, et al., “TRAC-

PFl/MOD2, Theory Manual,” Los Alamos National

Laboratory Report, LA-12031-M, Los Alamos National

Laboratory, Los Alamos, NM, USA, (1993).

13. T. J. McCabe. “A Complexity Measure,” IEEE

Transactions on Software Engineering, Vol. SE-2, No. 4,

pp. 308-320, (1976).

14. O. J. Dahl, E. W. Dijkstra, C. A. Hoare, Structured

Programming, Academic Press, London, England (1972).

15. D. E. Knuth, “Backus Normal Form vs. Backus Naur

Form,” Communications of the ACM 7 (12), pp. 735–736

(1964).

16. Raymond Wang and G. Mesina, “Implementation of

Viscous Effects in RELAP5-3D Thermal Hydraulics

Code,” The Journal of Undegraduate Research of the DOE

Office of Science, submitted Aug 4, 2009.

17. Paul D. Bayless, et al, “Developmental Assessment of

RELAP5-3D Version 2.9.2,” INL/EXT-09-15965, Idaho

National Laboratory, (2009).

