
 1 Copyright © 2010 by ASME 

Proceedings of the ASME 2010 Joint US-European Fluids Engineering & 
Summer Meeting and 8th International Conference on Nanochannels, 

Microchannels, and Minichannels 
FEDSM2010-ICNMM2010 

August 1-5, 2010, Montreal, Quebec, Canada 

                      FEDSM2010-ICNMM2010-30401 

REFORMULATION RELAP5-3D IN FORTRAN 95 AND RESULTS 
 

 

 

 George L Mesina 
Idaho National Laboratory 

P.O. Box 1625 
Idaho Falls, ID, USA 83415 

Email: George.Mesina@inl.gov 

 

 

 

ABSTRACT 
RELAP5-3D is a nuclear power plant code used worldwide 

for safety analysis, design, and operator training. In keeping 

with ongoing developments in the computing industry, we have 

re-architected the code in the FORTRAN 95 language [2], the 

current, fully-available, ANSI standard FORTRAN language. 

These changes include a complete reworking of the database 

and conversion of the source code to take advantage of new 

constructs. The improvements and impacts to the code are 

manifold. It is a completely machine-independent code that 

produces machine independent fluid property and plot files and 

expands to the exact size needed to accommodate the user’s 

input. Runtime is generally better for larger input models, many 

prior user-reported problems have been resolved, and the 

program is better tested. Other impacts of code reformulation 

are improved code readability, reduced maintenance and 

development time, increased adaptability to new computing 

platforms, and increased code longevity. Comparison between 

the pre- and post-conversion code are made on the basis of 

programming metrics and code performance. 
 

INTRODUCTION 
RELAP5-3D solves multi-dimensional, multi-phase mass, 

momentum, and energy equations, multidimensional heat 

transfer equations, and multi-dimensional neutron kinetics 

equations. The code implements trips, controls, and physical 

models specific to power plants. With these physical models, 

RELAP5-3D has been applied to multiple types of nuclear 

reactors, such as Pressurized Water Reactors (PWR), Boiling 

Water Reactors (BWR), Liquid Metal Fast Reactors (LMFR), 

and the Next Generation Nuclear Plant (NGNP). It has also 

been used to model fusion reactors and steam supply systems. 

Many large physics codes, such as RELAP5-3D, have been 

developed over a period of years, and numerous large and 

multi-purpose codes are under development today. All codes 

which become successful will develop a user community and a 

virtual library of input files distributed across the computing 

world. The longer the code is successful, the more development 

it will undergo, expanding to meet the ever-changing needs of 

its user community. This is generally accompanied by growth 

of its user community, libraries and the overall investment 

made in the large code. 

Over the same period of time, the face of computing will 

re-invent itself. The large code will have had to adapt to 

fundamental changes in the computing industry including 

operating systems, software support libraries, computing 

paradigms (such as parallelism) either merely to continue to 

perform or to meet the needs and desires of its user community. 

After a sufficient number of adaptations and expansions, codes 

often lack cohesion due to the number and variety of 

developments, developer’s styles, error corrections and 

software patches. Some subprograms may have grown to 

unwieldy size or have expanded function well beyond original 

design specifications. Inefficiencies will often have resulted, 

both in execution and programming. There may be unused code 

and even entire subprograms and procedures no longer in use. 

Documentation often no longer corresponds to source code. In 

short, the program needs to be reworked. 

A conversion from one language to another, or even from 

one language level to another, is often the impetus for 

reformulating a successful program. A direct translation from 

language to language will result in a program with the same 

lack of cohesion and worse than that, as the constructs of the 

previous language or level may have been eliminated or 

modified slightly. Thus the resulting code has new sources of 

inefficiency and error, namely those due to translation. 
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Therefore, the program should be reformulated for the new 

language or language level. This requires a reworking of the 

database so that it is easy to develop with and efficient within 

the concepts, computing paradigms, and coding constructs of 

the new language. The source code should be translated, re-

factored, or rewritten to take advantage of the new language 

capabilities and features, the paradigms of computing, and to be 

able to grow easily with future developments in the computing 

industry. Portability, legibility, maintainability, ease of 

development, and longevity are key elements to consider with 

redesigning a code and its database. 

Some examples of reformulated programs include TRACE 

[3], LPCIS [4], and RELAP5-3D [5]. The reformulation of 

RELAP5-3D is reported here. The strategy and method for 

performing this rework of the code were rather generic in 

nature; they could be repeated, with some modification, for 

many other large and successful codes. However, the 

presentation of the strategy and method here is restricted to the 

reformulation of RELAP5-3D. 

Section 2 explains the conversion methodology at a high 

level. Section 3 covers the reformulation of the database. 

Section 4 presents the conversion of the source code from 

FORTRAN 77 to FORTRAN 95. Section 5 covers the testing 

metric and methodology. The results are in Section 6; it 

provides analysis of the new code, by both static and dynamic 

measures, and summarizes improvements for code users. 

NOMENCLATURE 
 

ANSI  American National Standards Institute 

BWR Boiling Water Reactors 

COBRA Coolant Boiling in Rod Arrays 

CPU Central Processing Unit 

FA  Fast Array 

FORTRAN  FORMula TRANslation 

HSG Heat Structure Geometries 

IA Integer fast Array 

LMFR Liquid Metal Fast Reactors 

NGNP Next Generation Nuclear Plant  

PVM Parallel Virtual Machine 

PWR Pressurized Water Reactors 

RELAP5  Reactor Excursion and Leak Analysis 

Program 

RGUI RELAP5 Graphical User Interface  

SCDAP Severe Core Damage Analysis Package  

UP User Problems  

XDR eXtended Data Representation  

CONVERSION METHODOLOGY 
The conversion was broken into subtasks that consisted of 

designing and transforming the database, converting the coding 

related to the database, and testing in stages. Prior to the 

subtasks, preliminary tasks that simplify the transformation 

were completed. Figure 1 gives a high-level depiction of the 

overall process. 

Both commercial and internally developed software were 

applied to carry out the transformation, conversion, and testing. 

The use of computational software to precisely perform 

repetitive operations reduced both time and manual errors; it 

allowed recognition and solution of conversion problems to 

take place at a high level. 

A number of preliminary modifications were performed 

prior to transforming the database; see Figure 1. Unused data 

and coding were identified and eliminated. For the source code, 

unused and obsolete code was removed, combinations of 

multiple bit-operators with powers of two were replaced by the 

FORTRAN 95 intrinsic functions, and source code was 

reformulated in the structured programming paradigm [6]. 

Details of the preliminaries are given elsewhere [6, 7]. 

 
 

As seen in Figure 1, a database is selected, redesigned, and 

transformed first, then all the source code associated with it is 

converted to access it. This is done for one subprogram, then 

the whole program is then tested with the modified subprogram 

on a suite of input models to verify that the calculations do not 

change. If answers do change, debugging ensues. This process 

is repeated until there are no further accesses to the old form of 

the database. During the reformulation task, other development 

tasks proceeded simultaneously that seriously complicated it. 

Thus this process is designed for flexibility and precision. 

Database transformation, source code conversion, and 

testing are covered in the subsequent sections. 

DATABASE TRANSFORMATION 
Prior to conversion, the memory-saving databases 

RELAP5-3D Version 2.4 was comprised of 47 major databases, 

called internal files. The first step was to write a database 

conversion program and select a simple database to convert; 

this helped test and debug the conversion software. It was then 

applied to successively more complicated conversion tasks until 

obstacles to conversion were encountered. Solutions were 

developed and the software was continually upgraded to 

Preliminaries 

Removal, Replacement, and Reorganization 

Database Transformation 

For each Database X, redesign and transform it 

Convert associated source code in subroutine Y 

Test whole code w/ modified subroutine Y, debug  

For each subroutine Y accessing database X 

Preliminaries 

Removal, Replacement, and Reorganization 

Database Transformation 

For each Database X, redesign and transform it 

Figure 1. Conversion Strategy 
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correctly convert more complex databases and subprograms. 

Some language constructs could only be transformed manually. 

A few databases and subprograms were manually rewritten in 

FORTRAN 95 due to their complexity. 

In algorithmic form, the procedure for transforming the 

database can be expressed as follows: 

 

Database Transformation Algorithm 

1. Analyze the database as a whole to devise means to 

subdivide into smaller subtasks. 

2. Order the transformation subtasks. 

3. Analyze the (first) next subtask’s database and redesign it 

(if necessary). 

4. Implement the new design in FORTRAN coding. 

5. If any subtasks remain, return to step 3 

Many large computer codes, such as RETRAN-03 [8], 

Cobra [9], Lava [10], NESTLE [11], Trac-PF1 [12], and 

RELAP5 store virtually all data in a one-dimensional container 

array. This was done to avoid computer charges for memory 

usage on mainframe computers until the early 1990s. With data 

as linear arrays within a linear container, all data could be 

easily shifted to the container’s lowest indices after input 

processing and the unused portion returned to the operating 

system. The container is called FA (Floating-point Arrays) and 

IA (Integer Arrays); the two are made equivalent via the 

equivalence statement.  This storage system has become 

unnecessary because modern computing platforms do not 

charge for memory. 

There are numerous problems with this memory-saving 

database. First, the linear container is unnatural for representing 

character and logical data. Second, it requires at least two extra 

lines of code per loop. It has coding tricks and pitfalls that do 

not occur in a more standard data arrangement.  Finally, the 

database design requires that integer, floating point, logical, and 

character data be included in a single array, and be made 

equivalent to each other in violation of the ANSI FORTRAN 77 

Standard. 

Memory is subdivided in the FA array into internal files, 

one for each of the 47 major databases. These databases contain 

information about related quantities such as control systems, 

trips, general tables, heat structures, control volumes, neutron 

kinetics, etc. Some databases are further subdivided, e.g. point 

and multidimensional kinetics, or variable and logical trips. 

Some databases exist to relate two other databases efficiently to 

reduce run time, such as the inverted junction table and list 

vectors. Most databases, or files, exist only if the model 

requires them. Some exist only for input processing and are 

eliminated thereafter. Each database is assigned a “file” 

number. For example, control volume database is file 4, 

radionuclide transport data is file 47, etc. Array FILNDX points 

to the beginning of each internal file in the container; e.g. 

FILNDX(4) = K means the first control volume datum is at 

IA(K). 

The subtasks are to transform the major databases into a 

new form while possibly combining, splitting, or eliminating 

some. The order for processing these databases was established 

by their internal complexity, which ranged from simple to 

complex. Simple databases consist of arrays of uniform length. 

Slightly complex database have two or more sets of uniform 

length arrays, where the array length of the sets are different. 

Moderately complex databases contain arrays of non-uniform 

length. Hierarchically complex databases have two levels of 

data where an element of the top level has a complete set of 

lower level data associated with it. The most complex databases 

contained multiple levels of fixed and varying length arrays. 

The transformation order was from simplest to most complex 

with database size breaking ties. 

Complexity was caused by data layout. The arrays of a 

database were positioned with the first entry of each array 

arranged consecutively in memory, then all the second entries, 

etc. See Figure 2. Equivalence statements specified relative, not 

actual, indices of arrays within the container array. Figure 2, 

shows arrays A, B, and C of fictitious file 48 as they align with 

FA/IA in memory along with their declaration statements. For 

file 48, FILNDX(48) = 80 and the skip factor is 3; thus A(2) = 

FA(81+3). In simple database L with M arrays of fixed length 

N, IA(FILNDX(L)) = N, and arrays begin at FILNDX(L)+1. 

The formula to access entry J of C, its 3
rd

 array, is 

C(FILNDX(L) + (J-1)*M). In a loop, I is initialized to 

FILNDX(L) and incremented by M at loop bottom, then C(I) = 

C((J-1)*M + FILNDX(L)). 

 

 

Figure 2. Original Data Layout and 
Declaration Example 

 

 

In step three of the transformation procedure, the major 

databases are transformed into improved forms for use with 

FORTRAN 95 coding. Simple databases are transformed so 

that their arrays are contiguous. In step 4, a FORTRAN 95 

module is created that declares the arrays, has array length as a 

scalar, and there is no skip factor. The module also documents 

all its variables and has internal subroutines that operate on the 

data it declares. 

Databases with greater complexity require greater amounts 

of redesigning. Consider the heat transfer file, a hierarchical 

database of 2 levels and varying length arrays. Its data 

represents the flow of heat through solids, such as pipe walls, 

and to the fluid. Data is organized into two-dimensional grids 

of points, called Heat Structure Geometries (HSG), with one 

boundary on the inside of a wall (or solid’s centerline) and the 

other on its outside. Temperatures are measured at grid points. 

A model may have many HSG. each with a different numbers 

of rows, called heat structures, and columns, called mesh lines, 

A(1), B(1), C(1),  A(2),  B(2),  . . .  

FA(81), IA(82), FA(83), FA(84), IA(85)   

 

integer B(1) 

real*8 A(1), C(1) 

equivalence (FA(1),A(1)), (IA(2),B(1), (FA(3),C(1)) 
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across which the material could change, such as from fuel to 

cladding represented as materials A and B in Figure 3a. 

The heat database is implemented in comdeck HTSRCM 

which has K HSG where the i
th

 HSG has Ni heat structures, and 

N = N1 + . . . + NK. Its 5-part layout is pictured in Figure 3b. 

The scalar N is the first part. The second part is an index array 

to the start index in FA of each HS. The data for the heat 

structures are stored in the third portion, the HSG geometry, 

material and weighting data came fourth. The old and new 

temperatures are stored in the fifth section. Each HS has an 

index (pointer) to its temperatures and HSG. HSG data has an 

index to its first HS. Data for the linear system that represents 

the heat conduction equation is stored separately in temporary 

(or scratch) database, HTSCR. 

 

 
 

 

The redesign of the heat structure database is shown in 

Figure 4. The solution data for the heat conduction equations 

have been incorporated. The new form is implemented in 

derived types. 

To see the improvement, consider accessing the old-time 

temperature at point k of the j
th

 heat structure of HSG k in both 

databases. In the memory-saving database, FILNDX(8)+1 is the 

location in the IA array of the unnamed index array to HS. 

 Set INDEX1 = the IA-index of first HS of HSG k in 

the list of all heat structures. 

 Set INDEX2 = IA(FILNDX(8)+INDEX1+j-1) is the 

index of the first element of HS(j). 

 Set INDEX3 = TMPNDX(FILNDX(8)+INDEX2+k-1) 

is the temperature. 

 TMPO(INDEX3) = the temperature from previous 

time advancement. 

FILNDX(8) is added to INDEX1 and INDEX2 because “files” 

store offsets from the file’s starting index only. 

In the new database, the temperature at previous time in 

HSG i at grid point (j, k), is simply: 

 htg(i)%temp(2,j,k), 

where htg is the HSG derived type array for accessing 

temperatures. The htg(i)%temp array stores two temperatures at 

each grid point, differentiated by the first of its three subscripts; 

the first subscript is one for new time temperature and 2 for old 

time temperature. 

 

 

Figure 4. Module Memory Layout for Heat Transfer 
 

 

Step 4 of the database transformation algorithm employed 

a program written for the purpose. Its input is the comdecks 

prescribing the database; its output is a FORTRAN 95 module. 

The major databases were split into a data dictionary 

comdeck and one or more comdecks of declaration and 

equivalence statements. Often these had a variety of unrelated 

names that were unhelpful for locating and accessing data. The 

new database design allows exactly one module for each 

database with a uniform naming convention for easy 

recognition; all module names end with the three letters “mod” 

while the first 3-6 letters describe its data. Internally, all 

modules have a standard three-part design: declarations, data 

dictionary, and internal subprograms. Within part 1, data is 

declared in four sub-parts: created derived types, derived type 

arrays, standard-type arrays, and scalars. All variables are listed 

in alphabetical order within these four sub-parts sorted in 

HSG 1 

 

Geometry data 

Material & weights 

Heat Structure Data 

Conduction soln. data  

Interface to liquid data 

Temperatures 

HSG K 

 

Geometry data 

Material & weights 

Heat Structure Data 

Conduction soln. data  

Interface to liquid data 

Temperatures 

N Index to start of Heat Structure 

HS(1) data, HS(2) data, . . . HS(N1) data 

HS(N1+1) data, . . . HS(N1+N2) data 

 . . . 

HS(Nk-1+1) data, HS(Nk-1+2) data, . . .  

HS (Nk-1+Nk) data 

 

 

HSG 1 data, . . . ,  HSG k data 

Temperatures(HSG1), Temperatures(HSG2),  

 . . . 

Temperatures(HSK)  

 

Figure 3b. Heat Transfer Data Layout 

1 2 3 4 5 6 7 8 9 

A A A A A A B B 

Figure 3a. A Heat Structure Geometry 

HS1 

HS2 

 

HS3 

 

HS4 

 

HS5 
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alphabetical order. Part three has four common internal 

subroutines: allocatable array constructor and destructor 

routines and restart read and write routines. Some modules 

have additional routines for such purposes as initializing, 

counting, and data transferring. 

The transformation program was written to reduce 

conversion time and to reduce or eliminate manual conversion 

errors. It analyzed both type and equivalence statements, sorted 

the arrays into alphabetical order, and created alphabetized, 

size-and-type declaration statements that were placed within a 

derived type declaration. The program output was a module 

with identification comments, all declarations of part one, 

including the allocatable derived type array, part two built from 

the data dictionary comdeck, and part three with generated 

internal subroutines for allocation, deallocation, and data 

transfer. The program was first applied to the comdecks of 

simple databases, then improved for more complex ones. 

Manual modifications of its output were necessary for 

databases being reworked, such as the heat data. 

Of the 47 databases, 36 were converted, 6 were eliminated, 

2 were postponed, and 3 were subsumed into other databases. 

By postponing conversion, of the RELAP5 Graphical User 

Interface (RGUI) and Severe Core Damage Analysis Package 

(SCDAP) the features have become temporarily unusable 

SOURCE CODE TRANSFORMATION 
Transforming source code from one language or level of 

language to another is a difficult task for a large computer 

program. Transforming source code while the program is under 

active development and in heavy use further complicates the 

task. The program must work at every version for code users. 

The strategy devised and implemented for conversion worked 

satisfactorily. 

The strategy was to convert the code database by database. 

First the database was transformed, then each subroutine that 

used it was modified in turn. Every variable belonging to the 

database was changed from its form in the original database to 

its form in the new database. Testing was performed after every 

group of subroutines to ensure that all test cases were run 

correctly; this is covered in Section 5. 

Some program constructs and programming techniques 

that were part of older FORTRAN language levels were 

obsolescent, incompatible, unneeded, or even problematical in 

FORTRAN 95. For example, memory allocation and pointers 

were not part of FORTRAN predecessors of the 1990 standard. 

These features were replaced, sometimes to the great 

improvement of the source code. The result is a program with 

constructs and modern programming techniques of standard 

ANSI FORTRAN 95. A brief description of the reworking of 

the language is presented in this section. 

Due to equivalencing of IA and FA and the need to support 

both 32- and 64-bit integer platforms, a preprocessor was used. 

It would convert integer arrays of the IA container into tiny 

length-two arrays. That was needed so that indexing of 

equivalent integer and floating point quantities would be 

identical. This created numerous issues, particularly with 

subprogram call arguments and debugging. 

By eliminating the container array, this confusing coding 

practice has been eliminated. All extra overhead incurred 

through this database, such as FILNDX, skip-factors, and 

offsets within databases and portions of databases are 

eliminated. In particular, pointers have been immensely 

simplified. Previously, these were implemented via indexing 

within the container array, and this required the use of tables of 

indices, offsets to the tables, offsets to the target database, and 

offsets within the target database. This has been replaced by 

true FORTRAN 95 pointers. The overhead of pointer offsets 

and indices has been eliminated. 

The use of integers to hold character data in the container 

array, a carry-over from FORTRAN 66 which had no character 

data type, was eliminated. It was necessary to use internal reads 

and writes to move data for various purposes. The 

programming, readability, and debugging issues that this 

engendered have been removed by converting the character 

containing integers to true character variables. 

Another readability issue was variable reuse. With larger 

computer memories, it is unnecessary to reuse variables to save 

memory. Most every array is given its own identity, even 

scratch arrays. This removes a large source of errors. 

An illustration of source code transformation is given in 

Figures 5a and 5b. Actual subroutines of RELAP5 are either too 

small to illustrate much transformation or too large to include in 

full. These Figures represent some of the relevant declarations 

and coding from a portion of the trip subroutine that processes 

logical trips. 

In Figure 5a, note the “n = filndx(18)” statement and, just 

above the “end do,” the statement “n=n+ntlskp.” The 

transformation eliminates these in Figure 5b. The “include” 

statements are replaced by “use” statements. Another use of 

pointers, and a small change to input processing, reduces the 

calculation of ltrip and rtrip from twelve lines to two in Section 

2.1. The obsolescent “computed go to” is replaced by a case 

statement in Section 2.2. The logic in the if-test following 

statement label 63 in Figure 5a is simplified in 5b in Section 

2.3. The declaration of real pointer “triptime” reduces five 

statements to one in Section 2.5. 

Several changes were made purely for readability. Four-

character comparative operators, E.G. “.ge.” are replaced by 

one-two symbol operators such as “>=.” Use of the “iand” 

intrinsic has been replaced by “btest” and “ibits” intrinsics. 

Many comments have been introduced with outline-style 

numbering. 

The restructuring performed during the preliminaries phase 

is responsible for the elimination of the computed go to and the 

uniform indentation. 

Overall, despite the introduction of documentation, the 

transformed source code is shorter. 
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Figure 5a. A portion of a pre-transformed subroutine 

 

 

 

 
Figure 5b. Same subroutine portion transformed 

 

CONVERSION TESTING 
During the reformulation task, other development projects 

were proceeding simultaneously. These sometimes seriously 

impacted the conversion project. Moreover, conversion errors 

impacted code users. Thus testing was very important to ensure 

that the code continued to produce correct calculations. 

       subroutine logic_trip 

!  Tests logical trip conditions; sets trip conditions and time-of-trip. 

       use ctrlmod 

       use trpmod 
       implicit none 

       integer   :: i 

       real(sdk) :: ontim, timehy, timx 
       real(sdk), pointer :: triptime 

       logical   :: ltrip, rtrip 

! 
!  Executable code 

!  1.0  Initialization 

       timx = timehy 
       timehy = timehy - dt 

!  2.0  Logical trips. 

       do i = 1, ntrpl 
!  2.1  Evaluate left and right sides logical trip  

         ltrip = trplp(i)%time >= 0.0 .neqv. btest(trpl(i)%ntrpop, 4) 

         rtrip = trplp(i)%time2 >= 0.0 .neqv. btest(trpl(i)%ntrpop, 5) 
!  2.2  Logically combine sides 

         select case (ibits(trpl(i)%ntrpop,24,8)) 

         case (1) 
           ltrip = ltrip .or. rtrip 

         case (2) 

           ltrip = ltrip .and. rtrip 
         case (3) 

           ltrip = ltrip .neqv. rtrip 
         end select 

!  2.3  Time trip was true 

!  In latching trip case, this is the time it first became true. 
!  Otherwise, this is the previous advancement time.  

         if (iroute /= 1 .or. btest(imdctl(1),6)) then 

           triptime => trpl(i)%trptim 
         else 

           triptime => trpl(i)%trptimss 

         endif 
         ontim = triptime 

         rtrip = (ontim >= 0.0) 

!  2.4  Recalculate time of trip status 

         if (.not.rtrip .and. ltrip) then 

!  2.4.1  Time turns on 

!  Trip was false on previous advancement but is now true 
           ontim = timehy 

         else if (.not.btest(trpl(i)%ntrpop, 1) .and. rtrip .and. 

     &   .not.ltrip) then 
!  2.4.2  Trip goes false 

!  Non-latching, trip value was true & trip condition is now false 

           ontim = -1.0 
         endif 

!  2.5  Record trip status 

         triptime = ontim 
       end do   !i 

! 

!  3.0  Reset transient cumulative time. 
       timehy = timx  

       return 

      end subroutine logic_trip  
 

 

       subroutine trip 

c  Tests trip conditions and sets trip conditions and time of trip. 

#include "comctl.H" 

#include "contrl.H" 
#include "fast.H" 

#include "trpblk.H" 

       logical ltrip,rtrip 
c 

       n = filndx(18) 

       timx = timehy 
       timehy = timehy - dt 

c 

c  Logical trips. 
       if (ntrpnl(filndx(18)) .eq. 0) go to 100 

       do i = 1,ntrpnl(filndx(18)) 

         if (iroute .ne. 1 .or. 
     &       (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then 

           ltrip = trptm(ntrtr1(n+1)).ge.0.0 .neqv. iand(ntrpop(n),16) 

     &   .ne.0 
           rtrip = trptm(ntrtr2(n+1)).ge.0.0 .neqv. iand(ntrpop(n),32) 

     &   .ne.0 

         else 
           ltrip = trptmss(ntrtr1(n+1)).ge.0.0 .neqv. iand(ntrpop(n),16) 

     &   .ne.0 

           rtrip = trptmss(ntrtr2(n+1)).ge.0.0 .neqv. iand(ntrpop(n),32) 
     &   .ne.0 

         endif 
         m = ishft(ntrpop(n),-24) 

         if (m - 2) 71,72,73 

   71    ltrip = ltrip .or. rtrip 
         go to 63 

   72    ltrip = ltrip .and. rtrip 

         go to 63 
   73    ltrip = ltrip .neqv. rtrip 

c 

   63    continue 
         if (iroute .ne. 1 .or. 

     &       (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then 

           ontim = trptim(n) 

         else 

           ontim = trptimss(n) 

         endif 
         rtrip = ontim .ge. 0.0 

         if (.not.rtrip .and. ltrip) then 

           ontim = timehy 
         else if (iand(ntrpop(n),2).eq.0 .and. rtrip .and. .not.ltrip) 

     &   then 

           ontim = -1.0 
         endif 

         if (iroute .ne. 1 .or. 

     &       (iroute .eq. 1 .and. iand(imdctl(1),64).eq.0)) then 
           trptim(n) = ontim 

         else 

           trptimss(n) = ontim 
         endif 

         n = n + ntlskp 

       enddo 
c 

  100  timehy = timx 

       return 
       end 

 

Section 2.5 
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To ensure that RELAP5-3D worked properly for users 

during the transformation process, stringent testing was 

performed frequently. A second reason frequent testing was 

efficiency in error finding. It is quickest and easiest to locate an 

error among a small set of recently converted subprograms.  

Testing employed a suite of test problems and an 

evaluation metric for detecting errors. 

 

Testing Procedure 
 Generate output with test case i with updated code. 

 Generate output with test case i with untransformed code. 

 Compare output with the Linux diff utility. 

- Eliminate differences due date, time-stamp, CPU time 

and memory mapping. 

 If more than Z differences remain, reject the update. 

Apply the test procedure to all standard test cases. If all cases 

are acceptable, the update is acceptable. 

Zero was the value of Z for purposes of source code 

conversion. Thus, the output of each test case must be 

character for character exactly the same, before and after 

conversion, on the “printed output” file. The testing procedure 

was applied to both update sets and completed versions. 

A limitation of this test procedure is that it does not check 

all decimal places of the calculations, about 14 for floating 

point values, but rather only those printed. An improvement 

would be to increase the accuracy of the printed output or to 

test binary output. A second limitation of this test procedure is 

the impact of other development upon calculations being 

compared. If recent developments or error corrections affect 

calculations of one or more test cases, the responsible 

developer must determine the correct values. This complicates 

the test procedure. 

Finally, this test procedure cannot find all possible errors 

unless the test suite has 100% coverage of all lines of source 

code being transformed. Coverage is detailed in Section 6. The 

extent of the coverage of the test suite determines the 

effectiveness of the test procedure. For the FORTRAN 95 

conversion, some new cases were added to test additional 

portions of the code thereby increasing coverage. 

RESULTS AND MEASUREMENTS 
The reformulation of RELAP5-3D has resulted in 

numerous improvements. Section 6 presents a variety of 

quantitative measures and interpretations of those 

measurements. Results of reformulation include both longevity 

improvements, such as legibility and maintainability, and code 

feature improvements, such as machine independent binary 

output. Two principle categories of evaluating the reformulated 

program and comparing it with its predecessor are static and 

dynamic measurements. Static measurements include source 

code analyses such as size, percentage, complexity measures, 

and number of user problems fixed. Dynamic measurements 

include code run speed, coverage, and other statistics relating to 

the performance of the program as it runs. 

REFORMULATION LONGEVITY RESULTS  
Longevity changes are those upgrades and reformulations 

made to prevent obsolescence. Many changes were made to 

increase longevity of RELAP5-3D. These include 

modernization of the database and source code, use of a modern 

programming language and its constructs, code complexity 

reduction, legibility increase. These lead to development and 

maintenance cost reduction. 

Code modernization was carried out in the reformulation of 

the database and source code reported in Sections 2 through 4. 

The modern language is FORTRAN 95. All reference to 

language features listed in the obsolescent or downgraded 

language features of the handbook have been eliminated. Older 

constructs, such as arithmetic if, assigned go to, indexed go to, 

alternative returns, buffer statements, and the like have been 

eliminated or replaced with modern constructs such as if-then-

else and case statements. Older programming paradigms have 

been replaced by modern ones. For example, equivalence was 

replaced by derived types, mapping multi-dimensional data into 

linear arrays was replaced by natural declaration and indexing 

of multi-dimensional quantities, and pointers via indexing in a 

container array replaced by true pointers. These have greatly 

simplified the source code and eliminated sources of error. 

Portability was addressed in the preliminaries box of 

Figure I. Many machine-specific library calls, such as bit-

packing, time and absolute memory address functions, were 

replaced or eliminated by FORTAN 95 intrinsic functions or 

pointers. A new feature, machine-independent binary files, has 

increased portability so that files produced on one platform can 

be used on another, regardless of hardware or operating system. 

An important portability issue was adaptation to the Linux 

Operating System. 

Code readability or legibility was increased in many ways. 

First, the code was restructured [6]. Structured programming is 

both highly modular and easier to read and understand. Every 

block of code has only one entry point and one exit point. There 

are no backward jumps except as part of a loop construct. 

Second, dead code was eliminated. Third, source code 

formatting rules were applied uniformly. Fourth, more internal 

documentation has been inserted and outdated comments 

replaced. Fifth, some subprograms were re-factored; that is, 

repeated code and sections of pre-compiler protected code were 

moved into internal "contained" subprograms. Finally, some 

subprograms were fully rewritten as needed to simplify, clarify, 

or implement the algorithm with modern programming 

constructs. 

The result of modernization and readability changes, and 

the restriction to just one brand of compiler, has reduced 

maintenance and development costs. Simplification of indexing 

has reduced the potential for indexing errors. Legibility 

increase reduces the time required to perform development and 

to find coding errors. Moreover, FORTRAN 95 has a form and 

structure that is easy for a C++ or Java programmer to learn, as 

already demonstrated with INL summer intern Wang [16] who 

started with no FORTRAN experience. Thus the pool of 

potential programmers has been expanded markedly over 
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FORTRAN 77, and this, along with the aforementioned 

changes, will increase the longevity of RELAP5-3D. 

IMPROVED FEATURES AND ASSESSMENT 
Some of the new features implemented in reformulating 

RELAP5-3D have been more operating system accessibility, 

split restart and plot files, machine independent output files, 

and expandable database. A developmental assessment (DA) 

[17] was performed on the reformulated version using 100 

representative test cases. Table I compares the features and 

assessment of the reformulated of the previous versions. 

As a result of the reformulation work, RELAP5-3D now 

installs on Windows XP platforms with 64-bit Fortran 

compilers and passes its suite of test cases on Linux, Unix 

(Solaris), and Windows XP. Only one compiler is currently 

supported, but a number of new compiler levels are supported. 

Another new feature is the split restart-plot file. Instead of 

a single restart-plot file, there are two separate files, a restart 

file and a plot file. There is now no need to post-process the 

restart-plot file to access the plot data. That data is already 

separated into its own file for immediate use by the code user. 

The introduction of eXtended Data Representation (XDR) 

binary output files has created new possibilities for RELAP5-

3D code users. It does not matter if the hardware is big or little 

endian, the XDR binary data is the same. Thus the files can be 

written on one platform, say Linux, and used on another, 

completely different, platform, such as Windows. The fluid 

properties, plot, and strip are all written in machine independent 

form. The restart file is not written in machine independent 

binary. The fluid and plot files are written in machine 

independent XDR format, but the strip file is in ASCII only. 

 

Table I. Comparison of Old and Reformulated Code Features 

Category 

Pre-F95, 

Version 2.4.1.2 

F95 Reformulated 

Version 2.9.3 

Compilers Many, older  Intel Fortran 9.1 and 

10.1 

Modularity Unstructured Strongly Modular – 

Structured 

Dead Code Many unused 

source files 

Removed 162 unused 

files 

Platforms Windows, Unix Linux, Windows, Unix 

Portability O/S specific bit, 

time, loc. utilities 

Fully portable F95 

intrinsic library 

Binary machine 

dependent files 

XDR binary machine 

independent  

File Form Combined 

restart-plot file 

Separate restart and plot 

files 

Plot format N/A ASCII or XDR binary 

 Memory Upper-limited Expands to fit model 

DA No Yes 

 

Another new feature is ASCII plot files. The user may 

specify in the code input file that the plot file is to be written in 

the ASCII format. This allows the plot file to be immediately 

imported into application plot programs for immediate use; 

there is no need to post-process. 

The DA is a form of validation that is applied to a subset of 

test cases of interest. The DA tests were comprised of separate 

effects, integral effects, and plant models for which data was 

available for comparison. The calculations are considered 

acceptable within the engineering judgment standards described 

in the DA [17]. 

During the transformation project, code development, in 

the form of additional physical models and resolutions to user 

problem reports, was ongoing. Because these enhancements 

affect the calculations, comparison between pre- and post-F95 

versions can be made for few input models; however, those 

show excellent agreement between the old and new versions. 

STATIC MEASUREMENTS 
Static measures of the code include counts and percentages 

of important programming aspects. These aspects include 

comments and complexity measures. These measures can be 

applied across the whole code as a count or an average or as a 

best or worst case. Improvement due to the reformulation can 

be measured by comparing reformulated version 2.9.3 against 

the standard Pre-FORTRAN 95 version, 2.4.1.2. The static 

measures are compared in Table II. 

The readability measures are confined to ratios of comment 

to non-comment lines. This ratio would increase if executable 

statements rather than non-comments were considered. This 

statistic does not measure the quality of comments, but does 

clearly indicate that the number of files with significant 

percentage of comments increased by a factor of over 2.5. This 

was due to imposing certain standards for comments on the 

newly written code, such as modules. 
 

Table II. Static Source Code Analysis Measures 
Category 2.4.1.2 2.9.3 

Readability   

Best comments to code ratio 6.64 32.2 

Files w/ comments to code ratio >= 0.3 390 954 

Complexity   

Maximum cyclomatic number 982 460 

Files with cyclomatic number >= 100 68 13 

Maximum Nesting (levels deep) 20  15  

 
The McCabe Cyclomatic index is the industry standard for 

measuring code complexity. It measures the number of 

independent linear paths through a section of source code, and 

also indicates the number of branches within that same piece of 

source code. The higher the index number, the more branches 

are in the code, which in turn affects the quality of the testing 

and the maintainability of the code. Though opinions vary, 

subprograms with an index greater than 100 are considered 

complex, and anything over 500 is generally considered too 

complex. 
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The number of complex subprograms dropped from 68 to 

13, a factor of 5. There are no subprograms over 500 in the 

transformed code. 

Nesting counts the sub-blocks of blocks. A loop has one 

interior block; a branching construct, such as case or if-then-

else statement, has several at the same level. These blocks may 

contain loop or branching construct, their blocks are sub-blocks 

at level two. Nesting counts the number of levels to which the 

sub-blocking goes. Considerable improvement was obtained in 

nesting. 

 

Table III. User Problem Resolution 

 

Reports Resolved 

After 

2.4.1.2 

Fixed by 

F95 

1998 85 31 1 1 

1999 75 50 1 1 

2000 92 47 2 2 

2001 86 67 3 3 

2002 86 72 0 0 

2003 61 44 2 2 

2004 62 39 7 7 

2005 55 32 30 2 

2006 71 36 35 1 

2007 51 27 23 4 

2008 47 23 18 5 

2009 42 10 10 0 

 

813 478 132 28 

 

It must be recognized that many user problems extant in 

the older version were resolved in the newer. Table III shows 

User Problems (UP) reported from the first version of 

RELAP5-3D through version 2.9.3. 

Of the 478 UP that have been resolved, 132 solutions came 

after version 2.4.1.2 and are in version 2.9.3 only. These 

include some 28 that were resolved merely by the reformulation 

into FORTRAN 95. 

DYNAMIC MEASUREMENTS 
Dynamic measurements are made by executing the 

program and collection statistics about the run. There are two 

primary dynamic measurements, namely, coverage analysis and 

run speed. Coverage spied upon the code as it runs and collects 

information about what part of the code is executing. It is 

important to have the test suite exercise as much of the source 

code as possible so that coding errors can be found by the test 

suite and not the users. On the other hand, code users need the 

code to run a quickly as possible so that they can perform their 

analyses in a more timely fashion; therefore, measures of code 

run speed are very important also. Coverage analysis is 

presented in Table IV and run speed in Table V. 

As can be seen, the number of test cases for version 2.9.3 

has grown immensely, though the DA and PVM test cases 

increased through other development projects. 

The coverage analysis can be broken down by subroutines 

or by groups of subprograms. Table IV shows subroutine 

groupings according to their location by folder/directory. The 

relap directory holds most of the essential subprograms that 

implement the physics and other calculations described in the 

RELAP5-3D manuals. The envrl directory holds those that 

provide service, such as linear equation solution, table look-

ups, interpolations, and input control service. 

 

Table IV. Comparison of Test Cases and Coverage 
Percentages 

Category 

Pre-F95 

Version 2.4.1.2 

F95 

Version 2.9.3 

Test Cases 188 2034 

Product Release 188 221 

PVM Dt Tests 0 1760 

DA 0 53 

Coverage Analysis Files Stmts Files Stmts 

Relap Directory 63.87 44.72 80.37 61.51 

Envrl Directory 35.46 38.91 54.24 51.91 

 

The percentages are files, functions and statements. For 

files, the percentage is the number of files entered during 

execution of any of the test suite cases divided by the number 

of files. Similarly for function and line, the count is for the 

number of subprograms in any file entered divided by the total 

number of such functions; lines are limited to executable lines. 

A large improvement of 14, 15, and 17 percent can be seen 

in the coverage of the files, functions and lines respectively of 

the relap directory. In the envrl the improvements are 19, 19, 

and 23 percent In both cases, the coverage is now over 50 

percent. It should be noted that only the standard test suite is 

used for these measurements. Neither the Developmental 

Assessment nor the new 1760 problem suite provided by the 

other PVM project are employed in collecting these statistics. 

 

Table V. Run speed indicators for AP600 test cases 
 Pre-F95 Version 2.4.1.2 

Model Attempts  CPU (sec) CPU / 

Attempt 

PMPS 139 12.26 .0882 

PWRS 455 34.28 .0753 

SBS 419 31.74 0.758 

 F95 Reformulated, 2.9.2 

PMPS 139 12.46 .0896 

PWRS 519 33.36 .0643 

SBS 419 28.08 .0670 

 

CPU time on a SUN platform with an Opteron chip, using 

SUSE Linux 9.1 and an Intel 9.1 compiler was used to collect 
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these samples. The values will vary from platform to platform. 

For some smaller and shorter running problems, the 

reformulated code’s run timings may are smaller while for 

others they are larger; no reason has yet been determined for 

this. However, for larger problems, the reformulated version 

2.9.3 generally runs faster or at least comparable to the standard 

version 2.4.1.2. 

The problems all use semi-implicit time advancement, the 

first is a pump transient, the second a simple run to steady state, 

and the last a small break. The number of attempts is the same 

in the first and third and larger for the new code in the second. 

Yet the CPU time goes up very slightly, less than 2%, for the 

first problem, while it actually goes down for the third and, 

despite the increased number of advancements, for the second 

as well. The grind time, CPU seconds per attempt, is 

significantly better for the second and third run while it is 

comparable for the first. 

SUMMARY 
The Reformulation of RELAP5-3D is complete. It includes 

a complete transformation of its database and conversion of its 

source code from FORTRAN 77 to FORTRAN 95. The code 

runs all the test suite problems that it ran before, plus over 1800 

more test cases. Its longevity has been increased by its 

reformulation in modern language, reduction in complexity, and 

restructuring into a highly modular form that is more readable, 

and less time consuming to develop and maintain. Virtually 

every measurement of code improvement shows the new 

version has more capabilities, is more portable, runs as fast or 

faster, and is better tested. 
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