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ABSTRACT
In this article, a method is proposed to study uncertainty

propagation on high-dimensional obstacle problems. A greedy
algorithm, based on variable decomposition, is used to approxi-
mate the solution of regularized problems obtained by penaliza-
tion of the initial problem. The convergence of this algorithm
is a consequence of a more general theorem. Indeed, the algo-
rithm converges for the minimization of a strongly convex func-
tional whose derivative is Lipschitz on bounded sets. We describe
how this algorithm was numerically implemented and present the
results which were obtained with a one-dimensional membrane
problem.

INTRODUCTION
In this article, we are interested in uncertainty quantification

methods applied to high-dimensional obstacle problems. More
precisely, the focus of this paper is rather on the development of
methods to compute efficiently areduced modelwhich rapidly
gives the output of interest as a function of the random variable
which enters the input parameters, in the context of contact prob-
lems in continuum mechanics. Such a model can then be used to
evaluate the distribution of the outputs (for a given distribution of
the input parameters), or to reduce the variance in a Monte Carlo
computation for example.

More precisely, let us assume that the noise on the param-
eters of the model can be modeled by a possibly large number

of random variablesT = (T1, . . . ,Tp) ∈ R
p, so that the quan-

tity of interest (say the deformation tensor)u(t,x) is a function
of (p+ d) variables, whered is the dimension of the physical
space. The question is then how to approximate a function on
such a high-dimensional space. The idea at the basis of many
classical approaches [1, 2] such as stochastic collocation meth-
ods, Galerkin methods, perturbation methods, etc. is to look for
the solution to this problem as a linear combination of tensor
products:

u(t,x) =
K

∑
k=1

L

∑
l=1

λk,l rk(t)sl (x), (1)

where (sl )1≤l≤L, (rk)1≤k1≤K are bases of functions which are
knowna priori and where

(

λk,l
)

are scalars which are to be com-
puted. In this case, the dimension of the problemN = KL will be
too large for a classical discretization method.

The method we are studying is a way to circumvent this dif-
ficulty. The principle is the following: (i) to rewrite the original
problem as a minimization problem:

u∈ argmin
v∈V

E (v)

whereE is a functional defined on a Hilbert spaceV and (ii)
to expand the solution in tensor products of lower-dimensional

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and  
8th International Conference on Nanochannels, Microchannels, and Minichannels 

FEDSM-ICNMM2010 
August 1-5, 2010, Montreal, Canada 

FEDSM-ICNMM2010-30373 
 



functions

un(t,x) =
n

∑
k=1

rk(t)sk(x)

which aresequentiallydetermined:

(rn,sn) ∈ argmin
(r,s)∈Vt×Vx

E

(

n−1

∑
k=1

rk(t)sk(x)+ r(t)s(x)

)

. (2)

To rewrite the two problems mentioned above as minimization
problems on Hilbert spaces, we penalize the constraints, namely
the presence of the obstacle for the contact problem, which leads
to the minimization of nonlinear convex functional. In this case,
for each iteration of the algorithm, the computation of the pair of
functions(rn,sn) is a problem of dimensionN′ = K + L. If the
numbers of terms in the above expansion remains small enough,
this method provides a way to circumvent the curse of dimen-
sionality.

The method described above has been introduced by
Chinesta [3] for solving high-dimensional Fokker-Planck equa-
tions, by Nouy [4] in the context of uncertainty quantification in
mechanics, and is very much related to so-called greedy algo-
rithms [5, 6] used in nonlinear approximation theory. A greedy
algorithm is any algorithm that follows the problem solving ap-
proach of making the locally optimal choice at each stage with
the hope of finding the global minimum [7]. We are able to
prove [8] that this algorithm converges in a more general theoreti-
cal setting, which contains the penalization problem we consider.

We will first describe the obstacle problem we consider, and
then state our convergence result in the general theoretical setting
we mentioned above. Lastly, details will be given on how our al-
gorithm was numerically implemented and the results we obtain
on a one-dimensional membrane problem will be presented.

PRESENTATION OF THE PROBLEM
In this paper, we are interested in the convergence of a

greedy algorithm for the study of uncertainty propagation on a
high-dimensional obstacle problem. The prototypical example
we consider is described in this section.

Throughout this article,p andd will denote some positive
integers, andT andX some open sets ofRp andR

d respec-
tively.

We assume that uncertainty can be modeled by a set ofp
random variablesT1, T2, ..., Tp, and that the random vectorT =
(T1, ...,Tp) takes its values inT .

We consider also that the physical problem is defined over
the domainX , which is supposed to be a bounded subset ofR

d.

If H is a Hilbert space of functions defined overX , we denote
by

L2
T(T ,H) =

{

v : T → H | E
[

‖v(T)‖2
H

]

< +∞
}

,

whereE denotes the expectation with respect to the probabil-
ity law of T, and ‖.‖H denotes the norm ofH. We denote

‖v‖L2
T(T ,H) =

(

E
[

‖v(T)‖2
H

])1/2
for v∈ L2

T(T ,H). The follow-
ing assumption is doneX is a regular bounded domain and let
us denote by∂X its boundary.

We consider the following physical problem: a membrane
is stretched overX and is deflecting by some force having ran-
dom pointwise densityf (x,T) for x ∈ X . The membrane is
fixed at a zero altitude at the boundary∂X . Moreover, the mem-
brane is assumed to be hanging an obstacle whose altitude is also
given by a random functiong(x,T). Letg∈ L2

T(T ,H1
0(X )) and

f ∈ L2
T(T ,H−1(X )). If we denote byu(x,T) the altitude of the

membrane at pointx∈ X , we can show thatu is the unique so-
lution to the following obstacle problem with uncertainty [9](see
Fig. 1):















−∆xu(T,x) ≥ f (T,x)
u(T,x) ≥ g(T,x)

(∆xu(T,x)+ f (T,x))(u(T,x)−g(T,x)) = 0







∀x∈ X ,

u(T,x) = 0 ∀x∈ ∂X .
(3)

FIGURE 1. OBSTACLE PROBLEM.

The following formulation is equivalent. Let us denote

Kg =
{

v∈ L2
T(T ,H1

0(X )) | ∀(t,x) ∈ T ×X , v(t,x) ≥ g(t,x)
}

.
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Then, solving the obstacle problem consists in solving the mini-
mization problem

inf
v∈Kg

J (v), (4)

where

J (v) = E
[ 1

2

∫

X |∇xv(T,x)|2dx
]

−E

[

〈 f (T, .),v(T, .)〉H−1(X ),H1
0 (X )

]

.

One of the main difficulty of this kind of problems is their
very high nonlinearity. Many methods have been proposed to
approach the solution of these problems. See for example [10],
[11], [12] and [9]. Among them, penalization methods (see [9]
and [10]) are among the most widely used. They consist in ap-
proximating the solution of an initial obstacle problem by a se-
quence of solutions of penalized problems defined over the entire
Hilbert space.

Let ρ be a parameter inR+. Such a penalized problem as-
sociated with problem (4) may be defined as

inf
v∈L2

T (T ,H1
0 (X ))

Jρ (v), (5)

whereJρ(v) = J (v)+E
[ρ

2

∫

X [g(T,x)−v(T,x)]2+dx
]

.
Here and below, we denote by[a]+ the positive part of the

real numbera, i.e. [a]+ = 0 if a≤ 0 and[a]+ = a if a≥ 0.
When ρ goes to infinity, the solutionuρ of problem (5)

strongly converges to the solutionu of problem (4). The goal
of the algorithm we described in the previous section is to calcu-
late the solutionuρ of this regularized problem for a given value
of the parameterρ .

There exist several variants of the obstacle problem which
could be tackled with our algorithm. We refer to [9] or [12] for
such examples.

DESCRIPTION OF THE ALGORITHM
We denote for all(r,s) ∈ L2

T(T ,R)×H1
0(X ),

r ⊗s :

{

T ×X → R

(t,x) 7→ r(t)s(x)
.

In this case, our algorithm can be rewritten in the following
form. Set f0 = f andg0 = g and define recursively(rn,sn) ∈
L2

T(T ,R)×H1
0(X ) as

(rn,sn) ∈ argmin
(r,s)∈L2

T(T ,R)×H1
0 (X )

En(r ⊗s), (6)

with

En(r ⊗s) = E

[

1
2

∫

X
|∇xr ⊗s(T,x)|2dx

]

−E

[

∫

X
fn−1(T,x)r ⊗s(T,x)dx

]

+
ρ
2

E

[

∫

X
[gn−1(T,x)− r ⊗s(T,x)]2+dx

]

,

where

fn = fn−1 + ∆x(rn⊗sn),

gn = gn−1− rn⊗sn.

The fact that the iterations defined in (6) are well-defined
and that the algorithm converges towards the desired result is a
consequence of a more general result which we present in the
next section.

GENERAL THEORETICAL SETTING
Let us introduce a general setting which will contain as par-

ticular example the prototypical problem introduced in the previ-
ous section.

Let Vt andVx be Hilbert spaces of real-valued functions re-
spectively defined overT andX . Let‖.‖t and‖.‖x be the norms
of Vt andVx.

We define the following tensor product for all(r,s)∈Vt ×Vx,

r ⊗s :

{

T ×X → R

(t,x) 7→ r(t)s(x)
, (7)

which defines a real-valued function defined overT ×X .
We also denoteΣ = {r ⊗s | (r,s) ∈Vt ×Vx}.
Let V be a Hilbert space of real-valued functions defined

overT ×X . The scalar product ofV is denoted〈., .〉 and the
associated norm is denoted‖.‖V .

Let E be a differentiable real-valued functional defined on
V. For allv∈V, we denote byE ′(v) the gradient ofE atv.

We make the following assumptions:
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(A1) Span(Σ) is a dense subset ofV for ‖.‖V .
(A2) For all sequences ofΣ bounded inV, there exists a subse-

quence which weakly converges inV towards an element of
Σ.

(A3) The functionalE is strongly convex for‖.‖V , i.e. there
exists a constantα ∈ R

∗
+ for which

∀v,w∈V, E (v)≥ E (w)+〈E ′(w),v−w〉+
α
4
‖v−w‖2

V . (8)

The functionalE is also said to beα-convex.
(A4) The gradient ofE is Lipschitz on bounded sets: for each

bounded subsetK of V, there exists a non-negative constant
LK ∈ R+ such that

∀v,w∈V, ‖E ′(v)−E ′(w)‖V ≤ LK‖v−w‖V. (9)

The unique global minimizer ofE onV is denoted byu∈V.
Its existence and uniqueness are ensured by theα-convexity of
the functionalE .

The algorithm introduced in (6) can then be rewritten in this
context: the sequence((rn,sn))n∈N∗ ∈ (Vt ×Vx)

N
∗

is defined re-
cursively by

(rn,sn) ∈ argmin
(r,s)∈Vt×Vx

E

(

n−1

∑
k=1

rk⊗sk + r ⊗s

)

. (10)

Throughout this article, we will denote for alln∈ N
∗,

un =
n

∑
k=1

rk⊗sk. (11)

We have then the following theorem [8].

Theorem 1. Under the assumptions(A1), (A2), (A3) and(A4),
the iterations of the algorithm are well-defined, in the sense that
(10) has at least one minimizer(rn,sn). Moreover, the sequence
(un)n∈N strongly converges in V towards u.

We have an even more general result in the case when the
norm ofV satisfies the following property [8]:

(A5) There existβ ,γ ∈ R+ such that

∀(r,s) ∈Vt ×Vx, β‖r‖Vt‖s‖Vx ≤ ‖r ⊗s‖V ≤ γ‖r‖Vt‖s‖Vx. (12)

Theorem 2. Let us suppose that the assumptions(A1),
(A2), (A3), (A4) and (A5) hold true. We define recur-
sively (rn,sn) ∈ Vt × Vx as a local minimum of Vt × Vx ∋
(r,s) 7→ E

(

∑n−1
k=1 rk⊗sk + r ⊗s

)

such thatE (∑n
k=1 rk⊗sk) <

E
(

∑n−1
k=1 rk⊗sk

)

.
In this case, the sequence(∑n

k=1 rk⊗sk)n∈N∗ still converges
strongly in V towards u.

Besides, in the finite dimensional case, we are able to prove
that this algorithm converges exponentially fast [8].

Theorem 3. We consider the algorithm described in Theorem 2.
We assume that Vt andVx are finite-dimensional and that assump-
tions(A1), (A2), (A3) and(A4) are fulfilled. Then there exist two
constantsτ > 0 andσ ∈ (0,1) such that,

0≤ E (un)−E (u) ≤ τσn, (13)

and

‖u−un‖V ≤ 2α−1/2τ1/2σn/2. (14)

NUMERICAL RESULTS
In this section, we will describe how we implemented the

algorithm we described in section 3 for the resolution of problem
(5). We will then present the numerical results we obtained on a
one-dimensional membrane problem with uncertainty.

Implementation of the algorithm
Let D ∈ R

l×l andF,G∈ R
k×l represent respectively the dis-

cretization by finite elements of the one-dimensional operator
−∂xx and the discretization by finite elements of functionsf and
g. Problem (5) can be rewritten:

FindU ∈ R
k×l such that

U ∈ argmin
V∈Rk×l

1
2

VD : V −F : V +
ρ
2

[G−V]+ : [G−V]+,

where forA,B∈ R
k×l , A : B = Tr(ABT) = ∑1≤i≤k ∑1≤ j≤l Ai j Bi j .

This problem is equivalent to:

FindU ∈ R
k×l such thatUD = F + ρ [G−U ]+.

Our algorithm can then be rewritten as:
Choose a thresholdε > 0 and setF0 = F , G0 = G. At itera-

tion n≥ 1:
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1) FindRn and Sn two vectors respectively inRk andR
l such

that:

(Rn,Sn) ∈ argmin
(R,S)∈Rk×Rl

En(R,S),

with

En(R,S) =
1
2
(RST)D : (RST)−Fn−1 : (RST)

+
ρ
2

[Gn−1−RST]+ : [Gn−1−RST]+.

2) SetFn = Fn−1− (RnST
n )D, andGn = Gn−1−RnST

n .
3) If ‖Fn−ρ [Gn]+‖ ≥ ε, proceed to iterationn+1. Otherwise,

stop.

The remaining question is how can we compute the solu-
tion (Rn,Sn) at step 1? The following section will describe this
critical step.

Computing (Rn,Sn)
Fixed-point procedure Let us first describe the method

which is generally [6] used in the singular value decomposition
case. We fix a given matrixM ∈ R

k×l . The goal of the singu-
lar value decomposition is to apply our greedy algorithm to the
energyE (V) = ‖M−V‖2

V for V ∈ R
k×l .

The algorithm for singular value decomposition can be
rewritten in the following form.

Choose a thresholdε > 0 and setM0 = M. At iterationn≥ 1,

1) Find two vectorsRn andSn respectively inRk andR
l such

that

(Rn,Sn) ∈ argmin
(R,S)∈Rk×Rl

∥

∥Mn−1−RST
∥

∥

2
V . (15)

2) SetMn = Mn−1−RnST
n .

3) If ‖Mn‖V ≥ ε, proceed to iterationn+1. Otherwise, stop.

In the case when we have for all(R,S)∈R
k×R

l , ‖RST‖V =
‖R‖Vt‖S‖Vx, the Euler-Lagrange equations associated to this
problem can be rewritten as

{

‖Sn‖
2
Vx

Rn = Mn−1Sn,

‖Rn‖
2
Vt

Sn = (Mn−1)
TRn.

The method which is generally used (see for example [6]) to
solve these Euler-Lagrange equations is a fixed-point algorithm.

The fixed-point procedure then simply reads (for a fixedn): at
iterationm≥ 0, compute two vectors(Rm

n ,Sm
n ) ∈ R

k ×R
l such

that

{

‖Sm
n ‖

2
Vx

Rm+1
n = Mn−1Sm

n ,

‖Rm+1
n ‖2

Vt
Sm+1

n = (Mn−1)
TRm+1

n .
(16)

One can check that this procedure is similar to the power
method to compute the largest eigenvalues (and associated eigen-
vectors) of the matrix(Mn−1)

TMn−1.

One could think of transposing this fixed-point procedure to
the case of the obstacle problem we consider in this article. In
our case, the Euler-Lagrange equations

{

(Rn : Rn)DSn = FT
n−1Rn + ρ [Gn−1−RnST

n ]T+Rn,
(DSn : Sn)Rn = Fn−1Sn + ρ [Gn−1−RnST

n ]+Sn.

could be solved with a fixed point algorithm, which, at iteration
m, might be written as

{

(Rm
n : Rm

n )DSm+1
n = FT

n−1R
m
n + ρ [Gn−1−Rm

n SmT
n ]T+Rm

n ,

(DSm+1
n : Sm+1

n )Rm+1
n = Fn−1Sm+1

n + ρ [Gn−1−Rm
n Sm+1,T

n ]+Sm+1
n .

However, we have checked numerically that such a fully-explicit
algorithm did not converge for large values of the parameterρ .
Fig 2 represents an example of the evolution of the convergence
criterion‖Rm

n SmT
n −Rm+1

n Sm+1,T
n ‖ in the numerical case which is

detailed in the subsectionOne-dimensional membrane problem.
This issue might be solved by considering an implicit formula-
tion of the algorithm but we did not test such a formulation. We
prefered a more general approach (in the sense that it can be eas-
ily computed whatever the functionalE ) and that it respects the
general setting of Theorem 2.

Minimization procedure The approach we adopted
then was the following. We choose to set an initial pair(R0

n,S
0
n)∈

R
k ×R

d and then perform a gradient algorithm to find a local
minimum of the function

1
2
(RST)D : (RST)−Fn−1 : (RST)+

ρ
2

[Gn−1−RST]+ : [Gn−1−RST ]+.

The main difficulty is to find a proper initial pair(R0
n,S

0
n)

such that

1
2(R0

nS0T
n )D : (R0

nS0T
n )−Fn−1 : (R0

nS0T
n )

+ ρ
2 [Gn−1−R0

nS0T
n ]+ : [Gn−1−R0

nS
0T
n ]+

< ρ
2 [Gn−1]+ : [Gn−1]+,
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FIGURE 2. CONVERGENCE CRITERION OF THE FULLY-
EXPLICIT FIXED-POINT PROCEDURE.

to ensure that the energy decreases.
Let us describe our approach in the continuous setting with

the notations used in the previous sections. It then consists in
finding a pair(r0

n,s
0
n) ∈Vt ×Vx such that

E

(

n−1

∑
k=1

rk⊗sk + r0
n⊗s0

n

)

< E

(

n−1

∑
k=1

rk⊗sk

)

.

We notice that for(r,s) ∈Vt ×Vx, andε > 0, we have

E
(

∑n−1
k=1 rk⊗sk + εr ⊗s

)

−E
(

∑n−1
k=1 rk⊗sk

)

= ε
〈

E ′
(

∑n−1
k=1 rk⊗sk

)

, r ⊗s
〉

+o(ε),

for ε small enough.
The idea is then to find a pair(r,s) ∈ Vt ×Vx such that

E ′(∑n−1
k=1 rk⊗sk, r⊗s〉< 0 so that there existsε > 0 small enough

so thatE
(

∑n−1
k=1 rk⊗sk + εr ⊗s

)

−E
(

∑n−1
k=1 rk⊗sk

)

< 0. Then,
r0
n ⊗s0

n = εr ⊗s is a good initial guess.
Let us first consider the pair(r0

n,s0
n) ∈Vt ×Vx such that

(r0
n,s0

n) ∈ argmin
(r,s)∈Vt×Vx

1
2

∥

∥

∥

∥

∥

E ′

(

n−1

∑
k=1

rk⊗sk

)

− r ⊗s

∥

∥

∥

∥

∥

2

V

.

In other words, we consider(r0
n,s0

n) the first term of the sin-
gular value decomposition ofE ′

(

∑n−1
k=1 rk⊗sk

)

in V. The Euler-
Lagrange equations then imply

−〈E ′(un−1)− r0
n⊗s0

n, r0
n ⊗s0

n〉 = 0,

〈E ′(un−1), r0
n ⊗s0

n〉 = ‖r0
n⊗s0

n‖
2
V > 0.

By takingr0
n ⊗s0

n = −εr0
n⊗s0

n, there exists thenε > 0 small
enough such that

E

(

n−1

∑
k=1

rk⊗sk− εr0
n⊗s0

n

)

−E

(

n−1

∑
k=1

rk⊗sk

)

< 0.

In the discrete case associated to problem (5),(R0
n,S0

n) is
obtained by taking the first term of the singular value decompo-
sition of the matrixFn−1 + ρ [Gn−1]+. This can be done with a
fixed point procedure similar to (16).

One-dimensional membrane problem
In this section, we present the results we obtained with this

algorithm on the following membrane problem.
We supposeX = T = (0,1). We consider a random vari-

able T following a uniform law of probability on the interval
(0,1). We wish to study problem (4) with the following values
for f andg,

∀(t,x) ∈ (0,1)2 , f (t,x) = −1
andg(t,x) = t[sin(3πx)]+ +(t −1)[sin(3πx)]−.

We denoted by[a]− the negative part ofa∈ R, i.e. [a]− = 0
if a≥ 0, and[a]− = −a if a≤ 0.

This represents the problem of a rope attached atx = 0 and
x= 1 and subjected to gravity. The termf (t,x) represents the ex-
ternal forces that are applied to the rope. Here they are chosen to
be constant in order to model gravity. This rope rests upon obsta-
cles whose altitudes are given byg(t,x). The quantityu(t,x) then
represents the altitude of the rope at abscissx when the random
parameterT = t.

We choose to approximate this problem by problem (5) with
parameterρ = 2500. Unfortunately, we were not able to perform
simulations for larger values ofρ . Indeed, if we try to increase
more the parameterρ , we will encounter classical problems of
penalization methods, that is the ill-conditioning of the computed
matrices.
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FIGURE 3. ALTITUDE OF THE OBSTACLES.

The solution we obtain foru is then not exactly equal to
the solution of problem (4). Indeed, this is due to the fact that
we approximate a solutionuρ of the penalized problem (5) for
ρ = 2500. This is the main drawback of our method: we do not
approximate directly the solution of the initial obstacle problem
but the solution of a close regularized problem. In fact, error
estimations are well-known in the case of such penalized prob-
lems [10] [9]. There exists a constantC > 0 independent ofρ
such that‖u−uρ‖V ≤C 1

ρ .
The problems which are related to penalization methods

(that is the ill-conditioning of matrices and the computation of an
approximate solution) are well-known. To tackle this problem,
other iterative methods have been developped [11] [12] such as
augmented-lagrangian algorithms, which avoid the problem of
ill-conditioned matrices and converge towards the real solution
of the initial obstacle problem. The extension of our work which
consists in combining our greedy algorithm with such methods
is work in progress.

Here, we provide the numerical results we obtained by using
the penalization setting we described earlier. The problem was
discretized with a regular mesh andP1 finite elements in each
direction. We choosek = l = 40 as discretization parameters.

Fig. 3 represents the altitude of the obstacles given byg(t,x)
for (t,x) ∈ [0,1]2.
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We then applied the algorithm described in the previous sec-
tions with the following stopping criterion:‖Fn + ρ [Gn]+‖V <

10−4 with ‖A‖V =
√

Tr(AAT) =
√

∑k
i=1 ∑l

j=1A2
i j for A∈ R

k×l .

Fig. 4 represents the evolution of log10(E (un)−E (u)) and
of log10(‖Fn + ρ [Gn]+‖V).

We can see that our algorithm captures very quickly the main
modes of the solution and that both the energy and theV-norm
of the residue‖Fn + ρ [Gn]+‖V converges exponentially fast, as
predicted by Theorem 3.

Fig. 5 represents the results obtained for the solutionu(t,x).

Fig. 6 represents the number of terms that are computed in
the expansion (11) for different values ofk = l and of ρ . We
can see that, the largerρ is the more terms need to be computed
in order to obtain a fixed level of precisionε = 10−4 in the ap-
proximation. This is another issue which would be solved with
the use of augmented-lagrangian methods instead of penalized
formulations.
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CONCLUSION
In this article, we presented a greedy algorithm based on

variable decomposition aiming at computing the global mini-
mum of a strongly convex energy functional. We proved that,
provided that the gradient of the energy is Lipschitz on bounded
sets, and that the Hilbert spaces considered satisfy assumptions
(A1) and(A2), then the approximation given by our algorithm
strongly converges towards the desired result. One of the main
advantage of the algorithm is that it can deal with highly non-
linear problems. We also proved that in finite dimension, this
algorithm converges exponentially fast.

We applied this algorithm in the context of uncertainty quan-
tification in obstacle problems. In this frame, we considered reg-
ularizations of this kind of problems by penalization methods.
Indeed, the obstacle problem can be approximated by a global
minimization problem defined over the entire Hilbert space of
some strongly convex energy functional where the constraints of
the initial problem are replaced by penalization terms in the ex-
pression of the functional. Our algorithm gives a good approxi-
mation of the solutions of the regularized problem. However, the
problem of ill-conditioned matrices, which is inherent to penal-
ization methods, limits the accuracy with which we can approach
the solution of the initial obstacle problem.

A way to circumvent this problem could be to use aug-
mented Lagrangian methods (see [11], [12] or [9]) instead of
penalization methods. Indeed, the former algorithms converge
towards the true solution of the initial obstacle problems. The
adaptation of our algorithm to such methods is actually work in
progress.

Another extension of our work would be to consider other
problems than obstacle problems. In [4], a similar algorithm
based on Proper Generalized Decomposition is used to study un-
certainty quantification upon a Burger type equation. We think

that it could be possible to extend our proof of convergence in
the case of such hyperbolic systems.
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géńerale et premìeres applications. Editions Dunod, Paris.

[11] Fortin, M., and Glowinski, R., 1982.Méthodes de Lagrang-
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