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ABSTRACT of random variable§ = (Ty,...,Tp) € RP, so that the quan-
In this article, a method is proposed to study uncertainty tity of interest (say the deformation tensai}, x) is a function
propagation on high-dimensional obstacle problems. A greedy of (p+ d) variables, wheral is the dimension of the physical
algorithm, based on variable decomposition, is used to approxi- space. The question is then how to approximate a function o
mate the solution of regularized problems obtained by penaliza- such a high-dimensional space. The idea at the basis of mar
tion of the initial problem. The convergence of this algorithm classical approaches [1, 2] such as stochastic collocation metl
is a consequence of a more general theorem. Indeed, the algo-ods, Galerkin methods, perturbation methods, etc. is to look fo
rithm converges for the minimization of a strongly convex func- the solution to this problem as a linear combination of tensol
tional whose derivative is Lipschitz on bounded sets. We describe products:
how this algorithm was numerically implemented and present the

results which were obtained with a one-dimensional membrane K L

problem. u(t,x) = Ak rk(t)s (%), (1)
PIpX

INTRODUCTION where ()<<, (Tk)1<k,<k are bases of functions which are

In this article, we are interested in uncertainty quantification knowna priori and wherg(A ) are scalars which are to be com-
methods applied to high-dimensional obstacle problems. More puted. In this case, the dimension of the probiém KL will be
precisely, the focus of this paper is rather on the development of t0o large for a classical discretization method.
methods to compute efficientlyraduced modeWhich rapidly The method we are studying is a way to circumvent this dif-
gives the output of interest as a function of the random variable ficulty. The principle is the following: (i) to rewrite the original
which enters the input parameters, in the context of contact prob- problem as a minimization problem:
lems in continuum mechanics. Such a model can then be used to
evaluate the distribution of the outputs (for a given distribution of u € argming’(v)
the input parameters), or to reduce the variance in a Monte Carlo vev
computation for example.

More precisely, let us assume that the noise on the param-where& is a functional defined on a Hilbert spa¥eand (ii)
eters of the model can be modeled by a possibly large numberto expand the solution in tensor products of lower-dimensiona
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functions If H is a Hilbert space of functions defined ov&f, we denote
by

L7 H)={v: 7 = H|E[V(T)|IA] < +e},
which aresequentiallydetermined:

whereE denotes the expectation with respect to the probabil
ity law of T, and||.||n denotes the norm ofi. We denote

n-1
rn,S) € argmin & (1) se(X) +r(t)s(x) | . 2 _ 21\1/2 2 :
(fn,Sn) (r,s)g\wx <kzl k(t)s(X) +r(t)s( )) ) IMitz (7 ) = (E [IV(T)[3])"" for ve LE (7, H). The follow
ing assumption is dong&’” is a regular bounded domain and let

. ) . . . usdenote by 2 its boundary.
To rewrite the two problems mentioned above as minimization We consider the following physical problem: a membrane

problems on Hilbert spaces, we penalize the constraints, namelyig stretched ove?” and is deflecting by some force having ran-
the presence of the obstacle for the contact problem, which leads 4oy, pointwise densityf (x,T) for x € 2°. The membrane is
to the minimization of nonlinear convex functional. In this case, fived at a zero altitude at the boundaXg . Moreover, the mem-
for each iteration of the algorithm, the computation of the pair of j5neis assumed to be hanging an obstacle whose altitude is a
functions(r,,sn) is a problem of dimensiolW’ = K + L. If the given by a random functiog(x, T). Letg € L2 (.7, H(2)) and
numbers of terms in the above expansion remains small enough, s - L2(7,H-1(2)). If we denote by(x, T) the altitude of the
this method provides a way to circumvent the curse of dimen- embrane at pointe 2, we can show that is the unique so-

sionality. _ _ lution to the following obstacle problem with uncertainty [9](see
The method described above has been introduced by Fig. 1):

Chinesta [3] for solving high-dimensional Fokker-Planck equa-
tions, by Nouy [4] in the context of uncertainty quantification in
mechanics, and is very much related to so-called greedy algo-

- >
rithms [5, 6] used in nonlinear approximation theory. A greedy ﬁ)ﬁ(;ﬂ_ .fl.(ljx) VXE X
algorithm is any algorithm that follows the problem solving ap- %) = 9L ’
roach of making the locally optimal choice at each stage with (AxU(T,3)+ F(T,2)) (U(T,x) — 9(T, X)) = 0
P 9 Y op g u(T,x) =0 VxeodZ.

the hope of finding the global minimum [7]. We are able to
prove [8] that this algorithm converges in a more general theoreti-
cal setting, which contains the penalization problem we consider.

We will first describe the obstacle problem we consider, and
then state our convergence result in the general theoretical setting
we mentioned above. Lastly, details will be given on how our al-
gorithm was numerically implemented and the results we obtain
on a one-dimensional membrane problem will be presented.

3)

PRESENTATION OF THE PROBLEM

In this paper, we are interested in the convergence of a
greedy algorithm for the study of uncertainty propagation on a
high-dimensional obstacle problem. The prototypical example
we consider is described in this section.

Throughout this articlep andd will denote some positive
integers, andZ and.2” some open sets @P andR¢ respec-
tively. FIGURE 1. OBSTACLE PROBLEM.
We assume that uncertainty can be modeled by a set of
random variable3y, Ty, ..., Tp, and that the random vectdr=
(Ta,...,Tp) takes its values ity .
We consider also that the physical problem is defined over
the domain2”, which is supposed to be a bounded subs&t%f Hg={ve L2(7,HY(2)) |V(t,X) € T x 2, V(t,X) > g(t,x)}.

The following formulation is equivalent. Let us denote
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Then, solving the obstacle problem consists in solving thé-min
mization problem

inf
VEAy

A W), (4)

where

E[3 [, |0xv(T,x)[2dX]
“E [T D10 |-

S V)

One of the main difficulty of this kind of problems is their
very high nonlinearity. Many methods have been proposed to
approach the solution of these problems. See for example [10],
[11], [12] and [9]. Among them, penalization methods (see [9]
and [10]) are among the most widely used. They consist in ap-
proximating the solution of an initial obstacle problem by a se-
quence of solutions of penalized problems defined over the entire
Hilbert space.

Let p be a parameter iiR,. Such a penalized problem as-
sociated with problem (4) may be defined as

L o) (5)
where_75(v) = 7 (v) +E [§ [, [9(T,x) —v(T,x)2x].

Here and below, we denote g, the positive part of the
real numben, i.e.[a]. =0ifa<0Oand[a; =aif a>0.

When p goes to infinity, the solutior, of problem (5)
strongly converges to the solutianof problem (4). The goal
of the algorithm we described in the previous section is to calcu-
late the solution, of this regularized problem for a given value
of the parametep.

There exist several variants of the obstacle problem which
could be tackled with our algorithm. We refer to [9] or [12] for
such examples.

DESCRIPTION OF THE ALGORITHM
We denote for allr,s) € L2(.7,R) x H}(2),

r®s:{

In this case, our algorithm can be rewritten in the following
form. Setfo = f andgo = g and define recursivelyr,,s,) €
L2(7,R) x H}(2) as

IxZX — R
(t,x) —r(t)s(x)

argmin
(r9)el2 (7 R)xHZ(Z)

(rn,sn) € &n(res), (6)

with
[ Ok @S(T x)|2dx}
[/ fo_1(T,X)r @ s(T, x)dx]
+%E UJ [On-2(T,x) —r ®S(T7X)]idx} )
where

fn = fac1 + (@),
Oh =0On-1—Th %

The fact that the iterations defined in (6) are well-defined
and that the algorithm converges towards the desired result is
consequence of a more general result which we present in tt
next section.

GENERAL THEORETICAL SETTING

Let us introduce a general setting which will contain as par-
ticular example the prototypical problem introduced in the previ-
ous section.

Let 4 andVy be Hilbert spaces of real-valued functions re-
spectively defined ove?” and2". Let||.||: and]|.||x be the norms
of Vi andV.

We define the following tensor product for élls) €Vt x V,

I‘®SZ{

which defines a real-valued function defined osex %2 .

We also denot& = {r @ s| (r,s) € \t x W}.

Let V be a Hilbert space of real-valued functions defined
over.7 x 2. The scalar product dof is denoted.,.) and the
associated norm is denotgd)y.

Let & be a differentiable real-valued functional defined on
V. For allve V, we denote by (v) the gradient o atv.

We make the following assumptions:

TITx X — R

(t,x) — r(t)s(x)’ ()
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(Al) SpaniY) is a dense subset¥ffor ||.||v.

(A2) For all sequences & bounded iV, there exists a subse-
quence which weakly converges\intowards an element of
2.

(A3) The functionals is strongly convex fot|.|lv, i.e. there
exists a constartt € R’ for which

YW,weEV, & (V) > & (W) + (&' (W),v—w) + % [v—w||Z. (8)

The functional’ is also said to ber-convex.

(A4) The gradient o’ is Lipschitz on bounded sets: for each
bounded subsét of V, there exists a non-negative constant
Lk € R, such that

WweV, [|8'(v) - & (w)llv < Lk[lv—wllv.

(9)

The unique global minimizer of onV is denoted by e V.
Its existence and uniqueness are ensured byrtocenvexity of
the functionals’.

The algorithm introduced in (6) can then be rewritten in this
context: the sequendérn, sn))nen € (M x Vi) is defined re-
cursively by

(rn,Sn) € argmin &
(r,s) eVt xVx

n—-1
<zrk®sk+r®s). (10)
k=1

Throughout this article, we will denote for alle N*,

n
Up = z Nk ® . (11)
K=1

We have then the following theorem [8].

Theorem 1. Under the assumptior(#\1), (A2), (A3) and (Ad),

the iterations of the algorithm are well-defined, in the sense that
(10) has at least one minimizér,,s,). Moreover, the sequence
(Un)nen Strongly converges in V towards u.

We have an even more general result in the case when the

norm ofV satisfies the following property [8]:

(A5) There exisi3,y € R, such that

v(r,s) €Ve xVy, Blrlivllsiiv < lIr@siv < virfiwlislv. (12)

Theorem 2. Let us suppose that the assumptiof&l),
(A2), (A3), (A4) and (A5) hold true. We define recur-
sively (rn,sn) € i x Vx as alocal minimum of ¥x Vx 3
(r,s) = & (Spoik®s+r®s) such thatéd (3§ re®s) <
& (Yec1n®@so).

In this case, the sequen¢Ey_; '« ® S, Still converges
strongly in V towards u.

Besides, in the finite dimensional case, we are able to prov
that this algorithm converges exponentially fast [8].

Theorem 3. We consider the algorithm described in Theorem 2.
We assume that ¥nd 4 are finite-dimensional and that assump-
tions(Al), (A2), (A3) and(A4) are fulfilled. Then there exist two
constantg > Oando € (0,1) such that,

0< &(up)—&u) < 10", (13)

and

[u—un|lv < 20~ Y27Y2g"/2, (14)

NUMERICAL RESULTS

In this section, we will describe how we implemented the
algorithm we described in section 3 for the resolution of problen
(5). We will then present the numerical results we obtained on
one-dimensional membrane problem with uncertainty.

Implementation of the algorithm

LetD € R andF, G € R¥*! represent respectively the dis-
cretization by finite elements of the one-dimensional operato
—0xx and the discretization by finite elements of functidrend
g. Problem (5) can be rewritten:

FindU € R such that

1
U cargminzVD:V —F:V+2[G-V], : [6-V],,

VeRkx! 2

where forA,B € R, A:B=Tr(ABT) = ¥1 i<k T 1<j<i A} Bij.
This problem is equivalent to:

FindU e R*! such thalD = F + p[G—U]..

Our algorithm can then be rewritten as:
Choose a thresholel> 0 and sefy = F, Gy = G. At itera-
tionn>1:
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1) FindR, ard S, two vectors respectively iRk andR! such
that:

(Ry,Sh) € argmin én(RS),
(RS)eRkxR!

with

6n(RS) = %(RST)D: (RS") —Fy_1: (RS)

+%[Gn,r RS, : [Gn1— RS,

2) SetF, =Fn1— (R\S)D, andGp =G, 1 — RS .
3) If ||[Fn—p[Gn]+]|| > &, proceed to iteration+ 1. Otherwise,
stop.

The remaining question is how can we compute the solu-
tion (Ry,S,) at step 1? The following section will describe this
critical step.

Computing (R, S))

Fixed-point procedure Let us first describe the method
which is generally [6] used in the singular value decomposition
case. We fix a given matrik € R*<!. The goal of the singu-
lar value decomposition is to apply our greedy algorithm to the
energys (V) = [[M — V|| forV € R,

The algorithm for singular value decomposition can be
rewritten in the following form.

Choose athreshold> 0 and seMy = M. Atiterationn> 1,

1) Find two vectorsR, andS, respectively inRk andR! such
that

(Rn,Sh) € argmin HMn,l—RSTH\Z/.
(RSERKxR!

(15)

2) SetMp =My 1—R.S.
3) If ||Mn|lv > €, proceed to iteration+ 1. Otherwise, stop.

In the case when we have for @R, S) c R*x R/, |RS ||y =
IIRIIv ISl the Euler-Lagrange equations associated to this
problem can be rewritten as

{

The method which is generally used (see for example [6]) to
solve these Euler-Lagrange equations is a fixed-point algorithm.

H&H%% = Mp1$S,
||RnHvtSn = (Mnfl)TRn-

5

The fixed-point procedure then simply reads (for a fixg¢dat
iterationm > 0, compute two vectoréRT, M) € RX x R' such
ISVIG R = Mn_1S,

that
{ IRT[G S = (Mn-1) TR,

One can check that this procedure is similar to the powe
method to compute the largest eigenvalues (and associated eige
vectors) of the matrixM,_1)"Mp_1.

(16)

One could think of transposing this fixed-point procedure to
the case of the obstacle problem we consider in this article. |
our case, the Euler-Lagrange equations

{

could be solved with a fixed point algorithm, which, at iteration

m, might be written as
{ (RM: R™)DYM+1 FT R+ p[Gn_1— RISTTITRY,
(DSPL: gHLRML = By ST+ p[Gy g — RIS gL

However, we have checked numerically that such a fully-explicit
algorithm did not converge for large values of the parameter
Fig 2 represents an example of the evolution of the convergenc
criterion [|RTSMT — RMISMLT 1 in the numerical case which is
detailed in the subsectiddne-dimensional membrane problem
This issue might be solved by considering an implicit formula-
tion of the algorithm but we did not test such a formulation. We
prefered a more general approach (in the sense that it can be e:
ily computed whatever the function&l) and that it respects the
general setting of Theorem 2.

(Rn: Rn)DSh = F 1Ry + p[Gn1— RaSL] T Rn,
(DSh: Sh)Ry = Fno1Sh+p[Gn_1— RS ]+ Sn.

Minimization procedure The approach we adopted
then was the following. We choose to set an initial g&ft, ) <
RK x RY and then perform a gradient algorithm to find a local
minimum of the function

%(RST)D (RS )—Fo_1: (RST)+g[Gn,1fRsT]+ {[Gn1—RS],.

The main difficulty is to find a proper initial paiiRS, <)
such that

(RIST)D: (RS — Fo1: (RISYT)
%[anl —RS; 1[G — RS+

< %[anl]Jr - [Gn-1]+,

1
2
+
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FIGURE 2. CONVERGENCE CRITERION OF THE FULLY-
EXPLICIT FIXED-POINT PROCEDURE.

to ensure that the energy decreases.

Let us describe our approach in the continuous setting with
It then consists in

the notations used in the previous sections.
finding a pair(rg,s2) € Wt x i such that

n-1 n-1
£<Zm®&+ﬁ®§><5<2m®&)
k=1 k=1

We notice that fofr,s) € 4 x V, ande > 0, we have

& (SR k@St er©s) =& (SR o &)
— (& (Ipir®@s) . r®s) +0(e),

for € small enough.

The idea is then to find a paiir,s) € 4 x Vx such that
é”(zﬂ;}rk@@sk, r®s) < 0 so that there exists> 0 small enough
so thaté (Tp-irk@sc+er®s) — & (Thire®s) < 0. Then,
rf® <) = er @ sis a good initial guess

Let us first consider the pa(r ) € t x Vx sieh that

n—-1
&' Z N®@sc | —res
K=1

In other words, we considgr?, 2) the first term of the sin-
gular value decomposition &f’ (zﬂ;irk@)sk) inV. The Euler-
Lagrange equations then imply

2

— = 1
(r9, ) € argmin =
(r,8) €Vt x Vi

\%

—(¢"(Un-1) *r0®§_8 ) =

(€' (Un-1),30 ) = IR @ G > 0.

By takingr®® 2 = —er@ @ 3, there exists thea > 0 small

enough such that

n—1 . n—1
& <Z rk®&erﬂ®§3> - & <Z rk®sk> <0.
k=1 k=1

In the discrete case associated to problem (B, ) is
obtained by taking the first term of the singular value decompo
sition of the matrixF,_1 + p[Gn-1)+. This can be done with a
fixed point procedure similar to (16).

One-dimensional membrane problem

In this section, we present the results we obtained with thi:
algorithm on the following membrane problem.

We suppose?” = .7 = (0,1). We consider a random vari-
able T following a uniform law of probability on the interval
(0,1). We wish to study problem (4) with the following values
for f andg,

Y(t,x) € (0,1)?, f(t,x)=—1
andg(t,x) = t[sin(3rx)] 4 + (t — 1)[sin(3mx)] .

We denoted bya]_ the negative part i€ R, i.e.[a]_- =0
if a> 0, andja- = —aifa<0.

This represents the problem of a rope attached=a0 and
x=1 and subjected to gravity. The teritt, x) represents the ex-
ternal forces that are applied to the rope. Here they are chosen
be constant in order to model gravity. This rope rests upon obste
cles whose altitudes are given dft, x). The quantityu(t,x) then
represents the altitude of the rope at absgiadhen the random
parametell =t.

We choose to approximate this problem by problem (5) with
parametep = 2500. Unfortunately, we were not able to perform
simulations for larger values @. Indeed, if we try to increase
more the parametey, we will encounter classical problems of
penalization methods, that is the ill-conditioning of the computec
matrices.
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The solution we obtain fou is then not exactly equal to : /"l 'l";’é§§§§§§§§:‘§§‘:$§§§ S
the solution of problem (4). Indeed, this is due to the fact that _ ;§§e‘§§§&83§8 ;,%,;”
we approximate a solution, of the penalized problem (5) for "I[";;::“:“ j;":,’;’f,ifg;’;’;’;’;ll
p = 2500. This is the main drawback of our method: we do not ' Ui ‘q‘wtzi’z"z};;;}}i/’

approximate directly the solution of the initial obstacle problem i
but the solution of a close regularized problem. In fact, error
estimations are well-known in the case of such penalized prob-
lems [10] [9]. There exists a constabt> 0 independent op
such thatju — u v <CZ.

The problems which are related to penalization methods
(thatis the ill-conditioning of matrices and the computation of an FIGURE 5. ALTITUDE OF THE ROPE.
approximate solution) are well-known. To tackle this problem,
other iterative methods have been developped [11] [12] such as
augmented-lagrangian algorithms, which avoid the problem of

ill-conditioned matrices and converge towards the real solution We then applied the algorithm described in the previous sec
of the initial obstacle problem. The extension of our work which  tions with the following stopping criterion}|F, + p[Gn]+ |lv <
icsoyv?rsktsinm combining our greedy algorithm with such methods 1074 with [|Ally = /Tr(AAT) = Z!‘:l le:1Ai2j for A e R
progress.
Here, we provide the numerical results we obtained by using Fig. 4 represents the evolution of lgg& (un) — & (u)) and
the penalization setting we described earlier. The problem was of 10g;(||Fn+ 2[Gnl+[Iv)-
discretized with a regular mesh affd finite elements in each We can see that our algorithm captures very quickly the mair
direction. We choosk= | = 40 as discretization parameters. modes of the solution and that both the energy and/tmerm
Fig. 3 represents the altitude of the obstacles giveg(by) of the residug|F, + p[Gn]+ |lv converges exponentially fast, as
for (t,x) € [0,1]<. predicted by Theorem 3.

Fig. 5 represents the results obtained for the solui{brx).

Fig. 6 represents the number of terms that are computed i
the expansion (11) for different values bf= 1 and ofp. We
can see that, the largpris the more terms need to be computed
in order to obtain a fixed level of precisian= 10~* in the ap-
proximation. This is another issue which would be solved with
the use of augmented-lagrangian methods instead of penaliz
formulations.
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that it could be possible to extend our proof of convergence ir

E * £d
B ] . . o @ the case of such hyperbolic systems.
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