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ABSTRACT 
Direct numerical simulations (DNS) have been performed 

for drag-reduced turbulent channel flow with surfactant 
additives and forced homogeneous isotropic turbulence with 
polymer additives. Giesekus constitutive equation and finite 
extensible nonlinear elastic model with Peterlin closure were 
used to describe the elastic stress tensor for both cases, 
respectively. For comparison, DNS of water flows for both 
cases were also performed. Based on the DNS data, the 
extended self-similarity (ESS) of turbulence scaling law is 
investigated for water and viscoelastic fluids in turbulent 
channel flow and forced homogeneous isotropic turbulence. It 
is obtained that ESS still holds for drag-reduced turbulent flows 
of viscoelastic fluids. In viscoelastic fluid flows, the regions at 

which  u r r   and      
3

p

pS r S r


  with   3p p  , 

where r is the scale length,  u r  is the longitudinal velocity 

difference along r and  pS r  is the pth-order moment of 

velocity increments, in the K41 (Kolmogorov theory) -
fashioned plots and ESS-fashioned plots, respectively, are all 
broadened to larger scale for all the investigated cases. 

INTRODUCTION 
Scaling of the structure functions in turbulent flows plays 

very important roles in the statistical physics of turbulence and 
the existence of scaling is an indication of scale invariance in 
turbulence. The pth-order structure function is defined as the 
pth-order moment of velocity increments at the scale r, 

       
p p

pS r u r u x r u x           (1) 

where    represents ensemble average and u is the 

longitudinal velocity component along r. At a scale r satisfying 

L r    where L is the integral scale and  
1/ 43   , the 

scaling law of structure function might exist, 

    p

pS r r


                   (2) 

The Kolmogorov theory (K41) gives the scaling exponent 

  3p p  , which has been modified with consideration of 

the intermittency of turbulence. 
The scaling law is obvious at a range of scale, i.e. inertial 

range, only for high-Reynolds-number turbulent flow. At low or 
moderate Reynolds number, 

0Re U L  , the scaling law is 

either indiscernible or valid in a very small internal of r. Benzi 
et al. [1] proposed the so-called extended self-similarity (ESS) 
establishing an extended region of the observed scale similarity. 
Formally, ESS refers to as, 

       p q

p qS r S r
 

                (3) 

Since in K41,  3 1  , q = 3 is usually used in ESS, 

      
3

p

pS r S r


                 (4) 

Benzi et al. [1-3] showed that, with the same scaling exponents 
of fully developed turbulence, Eq. (4) is valid not only at high 
Re but also at moderate low Re with invisible inertial range 
according to Eq. (2). 

With addition of a minute amount of long-chain polymer or 
some kind of surfactant additives into a normal Newtonian 
liquid such as water turbulent flow may cause a dramatic 
reduction of frictional drag, which is named turbulent drag 
reduction (DR) [4-6]. However, the drag-reduced turbulent flow 
by drag-reducing additives is still in turbulent flow state, but 
with modified turbulence characteristics. In this paper, we 
performed direct numerical simulation (DNS) for a drag-
reducing channel flow of surfactant solution and a forcing 
homogeneous isotropic turbulence (FHIT) with drag-reducing 
polymer additives. We are aiming at further understanding 
turbulent drag reduction phenomenon as well as shedding light 
on the essence of turbulence through exploring the scaling 
properties of the structure functions in drag-reduced turbulent 
flows based on DNS database. 
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NOMENCLATURE 
C  conformation tensor (1/N) 
E  turbulent energy spectrum (m2/s2) 
F  additional body force (N) 
f(r)  non-linear spring force (N) 
h  channel height (m) 
I  unit tensor 
L   integral scale (m) 
Lx  computation domain size in x direction (m) 
Ly  computation domain size in y direction (m) 
Lz  computation domain size in z direction (m) 
l  extension length of polymer (m) 
lm  maximum possible extension of polymer (m) 

( , )p tx   local pressure (Pa) 

R  period cubic domain size (m) 
Re  Reynolds number 
r   scale length (m) 
S  rate-of-strain tensor (1/s) 

 pS r    pth-order structure function 

T  stress tensor (Pa) 
U0  characteristic velocity of the flow (m/s) 

( , )tu x   velocity vector (m/s) 

u   velocity component along r (m/s) 
Wi  Wessenberg number 
y  wall-normal coordinate (m) 
Greek Symbols 
   mobility factor 
  viscosity ratio 
ij   Kroneker delta 
   turbulent kinetic energy dissipation rate (m2/s3) 

   Kolmogorov length scale (m) 
   Taylor micro scale (m) 
   kinematic viscosity (m2/s) 

 p   scaling exponent 

   density (kg/m3) 
p   relaxation time of polymer (s) 
   total kinetic energy (m2/s2) 
Superscripts and/or subscripts 
p   viscoelastic polymer or surfactant additives 
s  solvent 

DESCRIPTION OF NUMERICAL SIMULATION 
We investigate viscoelastic fluid turbulent flows which can 

be described by the continuity and generalized momentum 
equations including the viscoelastic-additives interaction 
coupled with generalized constitutive model as follows:                  

0 u                      (5) 

[ ] [ ]1 1 1s pp
t   


          



u
u u T T F       (6) 
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[ ] [ ]2s sT S , 1
( )

2
T  S u u , [ ] [ ] ( ( ) ) /p p

p
f l  T C I (8) 

In the present study Giesekus model (for viscoelastic surfactant 
solution) with 0.001, ( ) 1f l    and finite extensible 

nonlinear elastic model (for viscoelastic polymer solution) with 

Peterlin closure (FENE-P) with    2 2 2

m m0, ( ) 3 /f l l l l      

[7] are adopted in channel turbulent flow and FHIT, 
respectively. We performed DNS for incompressible fluid with 
and without viscoelastic additives in both channel turbulent 
flow and FHIT.  

Channel turbulent flow 
The simulation of channel turbulent flow is based on the 

dimensionless governing equations for a fully developed 
turbulent channel flow with computation domain size of 

10 2 5
x y z

L L L h h h     , in which x, y, and z represents the 

streamwise, normal and spanwise directions, respectively. 
During the process of non-dimensionalization the following 

nondimensional variables are introduced: * i
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where uτ is the friction velocity; Re


the Reynolds number 

based on uτ and Wi the Weissenberg number based on uτ 

indicating the elastic strength of flow. The periodic boundary 
conditions in streamwise and spanwise direction and nonslip 
boundary condition for the top and bottom wall are used in the 
simulation.  

The finite difference schemes is adopted to discretize the 

governing equations based on a staggered grid system ( 364 ) 
with velocity components at the cell interfaces and other 
variables at the nodes. MINMOD scheme is used for 
discretization of the convective term in the constitutive 
equation and second order central difference scheme for other 
spatial terms. For the time integration, Adams-Bashforth 
scheme is employed. More details, including the grid-
dependence analysis, can be found in Refs. [8-10]. 

The simulation spans 52 10 time steps, corresponding to 
about 60 streamwise recirculation times. For every time step, 
the streamwise velocity was extracted at three different 
locations which are inside the viscous sublayer right above the 
bottom wall, within the transition layer and the logarithmic 
layer, respectively. The locations and the parameters in different 
cases are listed in Table I. In table I, y+ is the normal-to-wall 
distance normalized with uτ and the solvent viscosity ν, i.e., y+ = 

yuτ/ν = Reτy/h, and  [ ] [ ] [ ]/s s p      is a dimensionless 

measure of dilute surfactant solution concentration, and smaller 
  corresponds to denser surfactant solution).  

Table I  Locations of sampling points and the parameters in 
different cases for channel flow 

Locations Wiτ Reτ Rem   DR 

y+=4 y+=16 y+=232 0 240 7192 0 0 
y+=4 y+=16 y+=232 50 240 10645 0.5 43% 
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Forcing homogeneous and isotropic turbulence 
To solve Eq.(6), a standard pseudo-spectral code with 963 

collocation points in the periodic cubic domain of size 2R   
is used for spatial discretization with all the nonlinear terms 
fully de-aliased by the 3/2 rule. For time advancement a 
second-order Adams-Bashforth scheme is adopted. To solve 
Eq.(7), a second-order central difference scheme are used 
except for convective term using the second-order Kurganov-
Tadmor (KT) scheme to ensure the symmetric and positive 
definite (SPD) property of polymer conformation tensor [11] 
for spatial discretization and for time marching a second-order 
Adams-Bashforth scheme is adopted.  

The initial velocity field is obtained based on Rogallo’s 
procedure [7, 12] and the initial energy spectrum 

4 2

0 ( ) 0.01 exp( 0.14 )E k k k  . For initial conformation field, 

polymers are assumed non-stretched, corresponding to 
0 ( , , )ij ijC x y z  [13, 14]. In Fourier space, the turbulent kinetic 

energy spectrum '

'

2

1 / 2 1/ 2

( , ) ( ) / 2
k

k k k

E k t t
   

  u , the energy-

dissipation rate [ ] 2( ) ( , )s

k
t k E k t    and the total kinetic 

energy ( ) ( , )
k

t E k t   . The stationary isotropic turbulence 

is obtained by adding an additional force which keeps the total 
energy of the first two wavenumbers constant in time, 

1 0.31E   and 
2 0.13E  , and the details can be found in 

Refs. [15, 16]. The Taylor microscale is defined as 
[ ] 215 ( )s u t     , where 2 2 ( ) / 3u t   is turbulent 

fluctuation intensity. Taylor-microscale Reynolds number Re  

and the Weissenberg number Wi  are defined as 

[ ]Re 20 3N s N

     and [ ]Wi N s

p
   [14], 

respectively, where the superscript “N” represents the 
Newtonian fluid case. Simulations are based on the following 
parameters: Re 46  , Wi 0.27 , 0.1p  s, 0.6   for 

polymer solution case and Re 46   for Newtonian fluid case. 

During the simulation of FHIT 510 time series of velocity 
information at the center of computational domain is obtained 
to satisfy the statistical requirement. 

RESULTS AND DISCUSSIONS 
DNS has been performed for drag-reducing turbulent 

channel flow of surfactant solution and FHIT with polymer 
additives. For channel flow, a significant DR (43%) has been 
obtained at the flow conditions simulated. The overall 
characteristics of DR, statistical quantities and flow structures 
modified by the drag-reducing additives will not be shown 
here. For FHIT, although the simulated Wi was relatively small 

Wi 0.27 , we have obtained a significant polymer effect on 
the turbulence characteristics of FHIT. Fig. 1 gives such 
polymer effect as an example. It shows that in FHIT with 
polymer additives, the total turbulent kinetic energy has been 
evidently decreased as compared with Newtonian fluid case, 
and the kinetic energy spectrum is also greatly altered. Further 

analyses are then carried out on the DNS databases for drag-
reduced channel flow and FHIT with polymer additives, 
emphasizing on the scaling properties of structure functions, 
and its linkage with DR mechanism. 

We at first show  3S r  in a fashion of K41 scaling law, 

i.e., plotting  3S r versus  10log r  for all the simulated 

cases, as shown in Fig. 2. As expected, at the moderate small 
Reynolds number in the present DNS study, no visible inertial 

range at which  3 1S r   can be observed from Fig. 2. At 

small scale r (approximately below 30 for channel flow and 
below 3 for FHIT, respectively), the velocity difference is 
regular for both Newtonian fluid and drag-reducing viscoelastic 

fluid flows, i.e.,  u r r   and a clear slope 3 can be 

obtained for  3S r  against  10log r . The difference between 

Newtonian fluid and viscoelastic fluid cases is that the range of 

this small scale r at which  u r r   is enlarged in the latter, 

which can be seen from the parallel shift of the curve to larger r 
as plotted in Fig. 2. This is conceivable since the micro 
structures formed in viscoelastic fluid interacts with turbulent 
eddies and tends to smooth the velocity fluctuations, making 
the region of regular behavior broader. For other structure 
functions in different orders, similar phenomena can be 
observed for Newtonian fluid and viscoelastic fluid cases. 

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

t/s


(t

)

 

 

Newtonian fluid case

Wi=0.27, =0.6

10
0

10
1

10
10

-20

10
-15

10
-10

10
-5

10
0

k

E
(k

)

 

 

Newtonian fluid case

Wi=0.27, =0.6

(a) trace of total kinetic energy
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Fig. 1 Polymer effects on the characteristics of FHIT
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The structure functions in ESS fashion, i.e., plotting 

  10log pS r  versus   10 3log S r  are then plotted in Fig. 3. 
For clarity, only  2S r  and  8S r  are provided for all the 
cases. In our studied cases, two distinct phenomena can be 
noticed from the ESS fashioned plots. Firstly, we have not 
observed any clear region of anomalous scaling (with scaling 
exponent different from p/3) corresponding to ESS as discussed 
by Benzi et al. [2] for their wind-tunnel experiments on the grid 
turbulence behind cylinders, but only the obvious region from 
the smallest scale at which   3p p  , in both turbulent 
channel flow and FHIT for Newtonian fluid flow and drag-
reducing flows with additives, respectively. If there is the so-
called anomalous ESS scaling region as pointed out by Benzi et 
al. [2], it might be immersed in the extension of regular region 
(as shown in Fig. 2 for  3S r versus  10log r ) and with a too 
slight slope difference to be distinguished. That’s why we 
hesitated to plot such fitted slope beyond the end of the regular 
region. However, we prefer to argue that the broader linear 
region appeared in the plots of   10log pS r  versus 

  10 3log S r  as shown in Fig. 3 has been a kind of ESS 
behavior, as compared with the narrower linear region shown in 
Fig. 2 for  3S r versus  10log r . This issue will be explored 
in much more detail in the near future, by investigating more 
cases. Secondly, we found that the region at which 

   
/ 3

3

p

pS r S r has been greatly broadened to larger scale by 
the viscoelastic additives for all the inspected cases. This is 
more important for our purpose of further understanding the 
DR mechanism in both drag-reduced wall flow and FHIT with 
drag-reducing additives. Through careful investigation of the 
valid range of p/3 slope plotted in Fig. 3, the largest r/, 
designated as (r/)T below which   3p p   is apparent, is 
obtained for all the cases from the original data of Fig. 2, as 
listed in Table II, where “N” indicates Newtonian fluid case and 
“V” represents viscoelastic fluid case, respectively. It can be 
seen that the values of (r/)T have been all greatly enlarged for 
structure functions  2S r  and  8S r  investigated here (We 
calculated the structure functions up to 8th-order due to the 
limitation of sampling space of the data. For other structure 
functions, similar phenomena have been obtained) at the 3 
positions in turbulent channel flow and in FHIT for viscoelastic 
fluid case.  

The aforementioned analyses indicate that the influence of 
drag-reducing additives on the characteristics of ESS or the 
scaling properties of turbulence is distinct. From the viewpoint 
of DR mechanism, the most salient feature emerged in drag- 

 
 
 
 
 
 
 
 
 

Channel flow(r/)
T

Cases
Log-law 

layer
Transition

layer
Viscous

layer

FHIT

N 186.2 22.4 6.3 1.4
S2(r)

V 407.4 42.7 34.7 2.3

N 61.7 10.0 3.4 0.7
S8(r)

V 223.9 18.6 18.2 1.4

Channel flow(r/)
T

Cases
Log-law 

layer
Transition

layer
Viscous

layer

FHIT

N 186.2 22.4 6.3 1.4
S2(r)

V 407.4 42.7 34.7 2.3

N 61.7 10.0 3.4 0.7
S8(r)

V 223.9 18.6 18.2 1.4

Table II  Length scale (r/)T at which the validation of (p) = p/3 

for ESS                            ends.     
3

p

pS r S r




Table II  Length scale (r/)T at which the validation of (p) = p/3 

for ESS                            ends.     
3

p

pS r S r
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(b) Channel flow: in the transition layer

(c) Channel flow: in the viscous layer

(d) FHIT
Fig. 2 Log-log plot of S3(r) vs r for channel flow and FHIT
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Fig. 3 Log-log plot of Sp(r) vs S3(r) showing extended self-similarity

(i) Newtonian fluid case (ii) Polymer solution case
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reduced flows by viscoelastic additives is the broadening of 
small scale at which  u r r  , which is directly related with 
the smoothing effect of viscoelasticity on velocity fluctuations 
at scales similar to the chain length of shear induced structures 
formed in viscoelastic fluids. On the other hand, it is also 
imaginable that the broadening of small scale at which 

 u r r   (Fig. 2) could be one of the reasons of the 
broadening of the region at which    

/ 3

3

p

pS r S r  in the 
ESS-fashioned plots (Fig. 3). Further more, the extension of the 
region of  u r r   or    

/ 3

3

p

pS r S r  might provide us 
some clues in developing the unique numerical simulation 
models (such as sub-grid scale models for large eddy 
simulation) for drag-reducing flow by additives. All of these 
give us further motivations and call for further detailed studies. 

 CONCLUSIONS 
DNS study has been carried out for drag-reduced channel 

flow of surfactant solution and FHIT with polymer additives. 
The scaling properties in such turbulent flows influenced by 
drag-reducing additives have been investigated. It has been 
obtained that the range of small scale r at which  u r r   is 
enlarged in all the viscoelastic fluid cases as compared with 
their Newtonian fluid counterparts, which is linked with the 
smoothing effect of drag-reducing additives on velocity 
fluctuations in turbulence. In the ESS-fashioned plots of 

  10log pS r  versus   10 3log S r , the region at which 

     
3

p

pS r S r


  with   3p p  is also broadened in 
viscoelastic fluids. These findings are helpful in further 
understanding DR mechanism and developing numerical 
simulation models unique for drag-reduced turbulent flow. 
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