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ABSTRACT

Generalized Lattice Boltzmann Equation (GLBE) was used for
computation of turbulent channel flow for which Large Eddy
Simulation (LES) was employed as a turbulence model. The
subgrid-Scale turbulence effects were simulated through a
Shear-Improved Smagorinsky Model (SISM) which is capable
of predicting turbulent near wall region accurately without any
wall function. Computations were done for a relatively coarse
grid with shear Reynolds number of 180 in a parallelized code.
Good numerical stability was observed for this computational
framework. Results of mean velocity distribution across the
channel showed good correspondence with Direct Numerical
Simulation (DNS) data. Negligible discrepancies were
observed for computed turbulent statistics between present
computations and those reported from DNS. Three-
dimensional instantaneous vorticity contours showed complex
vortical structures appeared in such flow geometries. It is
concluded that such framework is capable of predicting
accurate results for turbulent channel flow without adding
significant complication and computational cost to the
standard Smagorinsky model.

INTRODUCTION
Lattice Boltzmann Method (LBM) has attracted much
attention as a promising alternative for simulation of fluid

flows with complex physics in the last two decades [1-3]. LBM
is a method based on the solution of Boltzmann equation on a
lattice with discrete velocity field. It was shown that basic
conservation equations of fluid flow (Navier-Stockes
equations) recover from Boltzmann equation [4]. Solution of
Boltzmann equation provides a velocity distribution function
from which macroscopic fluid properties, such as density,
velocity and pressure can be obtained. Some advantages of
using LBM in computing fluid flow problems as compared to
CFD are: the lack of convective term in Boltzmann equation
and simple pressure computation using an equation of state
[2]. Moreover, the streaming-and-collision computational
procedure of LBM, which is a local operation in computation,
makes it an excellent candidate for parallel computing [5, 6].
Turbulent flow occurs in many engineering applications. Its
computation suffers from two main restrictions: inability to
solve the wide range of all scales especially at high Reynolds
numbers and accurate modeling of eddies in unresolved
subgrid scale. While Direct Numerical Simulation (DNS) of
turbulent flow is the most accurate method for turbulent flow
computations, its high computational cost made it unreachable
in many situations. Large Eddy Simulation (LES) has been
considered as an alternative to DNS due to its ability to
compute large scales directly while modeling universal small
scales with an appropriate subgrid scale (SGS) modeling. In
fact, LES is an affordable means for simulation of turbulent
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flow as compared to DNS. An important advantage of LES is
its ability to approach DNS with improving computational
facilities and more accurate SGS modeling.
LES computations can be done using LBM, for which different
configurations have been considered recently [5-9]. The
simplest SGS model used in LES is Smagorinsky model.
Fernandino et al. [7] performed a LES of free surface duct flow
using LBM in which Smagorinsky sub-grid scale (SGS) model
was used. Their results showed that the simple SGS model
could be used as a possible tool for the simulation of free
surface duct flow. In another study, Lammers et. al. [8] showed
that a high resolution DNS of plane-channel turbulent flow at

180Re  using LBM is capable of producing statistics of the
same quality as pseudo-spectral methods, at resolutions
comparable to, and in fact overall better than, those of the
pseudo-spectral runs.
Premnath et. al. [10] presented a framework for LES using
GLBE with forcing term, for wall-bounded flows in which, the
forcing term shows the effect of external forces, such as
constant body forces representing pressure gradient in a
periodic domain. Assessment of their method was done for two
geometries: fully-developed free surface channel flow and
shear-driven flow in a cubical cavity. Free surface channel flow
studies were reported for Reynolds number of 183.6 based on
friction velocity and channel half-width. Their results showed
good agreement with DNS and experimental data.
Recently Lèvêque et. al. [11] proposed a shear-improved
Smagorinsky model (SISM) in which the Smagorinsky eddy
viscosity is computed from the difference between the
magnitude of mean shear and that of the instantaneous
resolved strain-rate tensor. Their results for LES of channel
flow showed excellent agreement with DNS and dynamic
Smagorinsky model. Moreover, no wall function is needed for
this model and its computational cost was reported to be lower
than  DNS.  This  model  was  employed  for  the  present
computations of channel flow.
The present work is focused on the application of SISM [11] in
LES computation of turbulent flow which is carried out
through GLBE. A benchmark problem of wall-generated
turbulent flow, i.e. a fully-developed turbulent channel flow at
shear or friction Reynolds number of 180 was considered as a
test case for evaluating the above-mentioned computational
procedure. There is an extensive experiment and DNS data
available for assessment and comparison of the detailed
structure of turbulent statistics for this geometry [10, 12]. It is
worth mentioning that all of the previous applications of SISM
were reported using computational methods based on CFD.
This model which is capable of revealing near-wall flow
characteristics without any wall-damping function was not
used in MRT LBM before. Computational results showed that
this model is also applicable to a coarse grid with good
numerical stability and possibility of doing parallel processing.

Generalized Lattice Boltzmann method with forcing
term
Lattice Boltzmann Method computes the evolution of a
distribution function of particles as they move and collide on a
lattice grid. The collision process considers their relaxation to
their local equilibrium values, and the streaming process
describes their movement along the characteristic directions
given by a discrete particle velocity space represented by a
lattice [1-3]. Generalized Lattice Boltzmann Equation, GLBE,
computes collision in moment space, while the streaming
process is performed in the usual particle velocity space [13,
14]. GLBE with forcing term [10] which incorporates an
additional forcing term represents the effect of external forces
as a second-order accurate time-discretization in moment
space. Using multiple relaxation times in GLBE enhances the
numerical stability. GLBE with forcing term can be written in
the following form [10]:
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where and u are the macroscopic density and velocity
respectively, the bold face symbols such as f  stands for 19-
component vectors, 19 is the number of discrete velocities. In
this equation f is the 19-component vector of the discrete
distribution functions, m  and eqm are 19-component vectors
of moments and their equilibria, S  is the 19-component
vector of the source terms in moment space, M is the
transformation matrix and Ŝ  is the diagonal matrix of
relaxation rates.
The collision and source term are expressed in moment space
in this equation. Here M is an orthogonal transformation
matrix with 19×19 elements, mapping velocity distribution
vector f to moment vector m  in the moment space. The
collision matrix in velocity space, , is related to Ŝ  in Eq.
(1) through the relation 1ˆ MMS  such that Ŝ is  a
diagonal matrix. The elements of M  are  obtained  in  a
suitable orthogonal basis as combinations of monomials of the
Cartesian components of the particle velocity e through the
standard Gram-Schmidt procedure, which are provided by
d'Humieres et al. [14]. Components of moments, m , their
equilibria, eqm , and source term, S, are mentioned in [10].
The last term in Eq. (1) shows the effect of external force field
on the evolution of distribution function. While different
external force fields may exist such as gravity, Lorentz or
Coriolis forces, pressure gradient in a periodic domain may
also consider as an external force field, a technique which is
used in the present computation.
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Fig. 1 shows the three-dimensional, nineteen particle-velocity-
lattice (D3Q19) model which has widely and successfully been
used for simulating three-dimensional flows.
The macroscopic density and momentum on each lattice node
are calculated using the following equations:

18

0
f (2)

18

1
feuj (3)

Fig. 1 D3Q19 lattice Model

Pressure can be obtained from an equation of state which is
similar to the one for an ideal gas, i.e. 2

mcP . The speed of

sound,
sc , in D3Q19 model is written as 3ccm

. Through
a multiscale analysis based on the Chapman-Enskog expansion
[15] applied to the GLBE with relaxation time scales
augmented by an eddy viscosity, it can be shown that the grid-
filtered weakly compressible Navier-Stokes equations with
external force can be recovered. It should be noted that all
quantities, i.e., , u  and other moments of f , are filtered
quantities.
The diagonal matrix Ŝ of relaxation rates is  is given as:
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where some of the relaxation times s  in this diagonal
matrix, i.e. those corresponding to hydrodynamic modes can
be related to the transport coefficients and modulated by eddy
viscosity due to SGS model as follows[10]:
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with 0 being kinematic viscosity and t  the eddy viscosity
determine from the Shear Improved SGS model which is
discussed in more detail in the next section.  The other

relaxation rates are usually indicated through von Neumann
stability analysis of the linearized GLBE [14]
as 19.11s , 4.112102 sss , 4.1864 sss  and

98.1181716 sss .
The source terms in moment space are functions of external
force F  and velocity fieldsu . The driving force in the present
channel flow computation is pressure gradient which is related
to w  and therefore shear velocity as:
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Subgrid Scale Model

The shear-improved Smagorinsky model (SISM) which was
proposed by Lèvêque et. al. [11] is a model for computing
subgrid scale stresses used in LES computations of the present
work. It is based on the fact that SGS eddy viscosity should
encompass two types of interactions: (i) between the mean
velocity gradient and the resolved fluctuating velocities (the
rapid part of the SGS fluctuations) and (ii) among the resolved
fluctuating velocities themselves (the slow part of the SGS
fluctuations). The rapid part is related to the large-scale
distortion, while the slow part is associated with the
Kolmogorov’s energy cascade. These developments end up
with a shear improved Smagorinsky model (SISM) [11] for the
SGS eddy-viscosity, in which it appears that the shear should
be subtracted from the magnitude of the resolved rate-of-strain
tensor. This improvement accounts for the large-scale
distortion in regions of strong shear (e.g., near a solid
boundary) and, at the same time, allows us to recover the
standard Smagorinsky model in regions of locally
homogeneous and isotropic turbulence (at grid scale). The
SISM  does  not  call  for  any  adjustable  parameter  nor  ad  hoc
damping function; it does not use any kind of dynamic
adjustment either. Results concerning a plane-channel flow
[11] and a backward-facing step flow [16] have shown good
predictive capacity of this model, essentially equivalent to the
dynamic Smagorinsky model [17], but with a computational
cost and manageability comparable to the original
Smagorinsky model. SISM Eddy viscosity is obtained by
subtracting the magnitude of the shear from the instantaneous
resolved rate of strain:
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Here ),( txS  denotes the shear at the position x  and time t,

),( txS shows the magnitude of instantaneous resolved rate

of strain at position x and time t, SC is the Smagorinsky
constant for homogeneous and isotropic turbulence
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( 18.0SC ) and 3/1)( zyx is width of the grid

filter and, x , y and z  are  the  local  grid  spacing  in  x,  y
and z direction, respectively. It is assumed that the flow is well
enough resolved in the direction of the shear, so that

txStxS ,(),( (13)

In flow regions where the fluctuating part of the rate of strain
is much larger than the shear, i.e. SS , width of the grid

filter SL  by assuming that /uS .  In  that  case,

turbulence can be considered as homogenous and isotropic at
scale comparable to . The SIMS then reduces to the original
Smagorinsky model, which is known to perform reasonably
well.  In  flow  regions  where SS , width of the grid filter

SL  and therefore shear effects are significant at scales

comparable to .  In  that  case,  the  SIMS yields  a  SGS energy

flux of order
22 SS  , which is fully consistent with the

SGS energy budget that can be derived from the Navier-Stokes
equations in the case of a locally homogenous flow [11].
In present work, spatial averaging over x and y directions
(homogenous directions in channel flow) is used to

compute txS ,(  and equations (5)-(11) are employed to

obtain the magnitude of instantaneous resolved rate of strain.
Therefore equation (12) can be written in the following form:
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SISM
T obtained from above equation is used as eddy

viscosity, t , in 5.0)(35.03 0
1

ts .

Computational details

The geometry for fully-developed channel flow is shown in
figure 2. The linear dimensions of domain are 6H and 3H in
the stream-wise and span-wise directions respectively, where H
is  the  channel  half  height.  The  flow  is  assumed  to  be
homogeneous in both span-wise and stream-wise directions.
There are no mean gradients (other than pressure) in the
stream-wise direction, therefore the flow is considered as a
fully-developed one. Reynolds number based on the shear
velocity and channel half-width is considered
as 180H/uRe , for which there is some previous

published data [12].
Periodic boundary condition was considered in the stream-wise
and span-wise directions due to the assumption of homogeneity

in these directions. A bounce-back boundary condition was
applied for the bottom and top solid walls of the channel.
A  uniform  grid  was  used  for  the  present  computations.  The
number nodes in stream-wise, span-wise and cross-stream
directions were selected as 240 by 120 by 80 respectively
which is correspond to a mesh with a resolution of 6 wall units
in each direction. Although the total number of 2304000 grid
points corresponds to a coarse grid distribution, the accuracy of

Fig. 2 Simulation geometry

the computational results has not affected significantly as will
be discussed in the results part of the paper. The computer code
was parallelized with MPICH2 parallel algorithm in which the
domain was divided in slices along the stream wise direction.
The initial mean velocity is specified to satisfy the 1/7 power
law, while initial perturbations satisfying divergence-free
velocity field. A suitable initial condition can significantly
decrease the number of iterations needed for convergence of
the solution to a statistically steady state condition, and the
GLBE computations was implemented until reaching
statistically steady state.

RESULTS AND DISCUSSION

Fully developed turbulent channel flow is a simple flow
geometry which may be considered as a benchmark problem in
assessing various computational procedure and turbulent
models. This flow geometry has been studied by various
authors, e.g. DNS and LES based on Navier-Stokes equations
[11, 12], LES and DNS based on SRT-LBE [8] and MRT-LBE
[10]. Recently, a SISM of LES computation of channel flow
[11] showed its accuracy as compared to dynamic LES models
with lower computational cost. The present results were
presented with the aim of evaluation of SISM of LES based on
GLBE computations for a relatively coarse grid. The flow
Reynolds number considered in the present study was selected
as Re =180 based on shear velocity and half channel width.
The first computational result presented here is the mean
velocity profile normalized by the shear velocity u  versus
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distance from the wall in terms of wall units, i.e., /zz
where  is the viscous length scale, see figure 3. The DNS data
of Kim et. al. [12] was presented in this figure for comparison.
It is observed that present mean velocity profile corresponds to
DNS data relatively well, especially for the near wall region. It
should be noted that Kim et. al. [12] used a grid which was
more finer than the one used in the present computations. The
small differences observed in the regions far from the wall,
may be due to the turbulence model used in the present work
as compared to DNS data.

Fig. 3 Comparison of mean velocity profile with DNS
data

Figures 4, 5 and 6 show variations of root-mean-square (rms)
of stream-wise, span-wise and cross-stream velocity
fluctuations, respectively along with the data from DNS based
on NSE (Kim et al. [12]). Reasonable agreement is observed
between the present work and previous DNS data.
A sample of instantaneous velocity fields at different cross-
sections are shown in Figures 7, 8 and 9. As it is illustrated in
Figure 7, flow field in y-z plane shows a random pattern.
Moreover, this figure shows the movement of near-wall eddies
toward and away from the wall. Figure 8 displays the velocity
vector plot in x-z plane. The random deviations from the
expected profile are obviously shown. In figure 9, the velocity
field in the x-y plane, at 5/Hy  from bottom wall is
displayed which clearly shows the stream wise velocity is
predominant in this direction. Furthermore, the random
pattern of flow field in this plane is obvious.

Fig. 4 Root-mean-square, stream-wise velocity
fluctuations normalized by the wall shear velocity

Fig. 5 Root-mean-square, span-wise velocity
fluctuations normalized by the wall shear velocity
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Fig. 6 Root-mean-square, wall-normal velocity
fluctuations normalized by the wall shear velocity

Fig. 7 sample velocity vector plot in y-z plane

Fig. 8 sample velocity vector plot in x-z plane

Fig. 9 sample velocity vector plot in x-y plane

CONCLUSION
A Generalized Lattice Boltzmann Equation (GLBE) using
multiple relaxation times along with a forcing term was
employed for simulation of turbulent channel flow at Re =180.
Turbulence simulation was done through LES with a recently-
proposed subgrid scale model called Shear-Improved
Smagorinsky Model (SISM) [11]. This subgrid scale model has
shown reasonable results with a lower computational cost
compared to turbulent flow simulation using CFD methods.
Results of turbulence statistics obtained from SISM LES were
shown to be comparable to those obtained from Smagorinsky
model while lower grid points were employed in the present
computations. Using SISM LES in GLBE reveals its ability to
predict accurate results in computational framework of LBM.
Computational results for the mean turbulent quantities such
as mean velocity distribution across the channel height,
showed good correspondence with DNS data. Comparison of
the results for turbulence statistics such as rms velocity
fluctuations with DNS and those obtained from Smagorinsky
subgrid scale model reveals the accuracy of the present
computational results which are obtained using a smaller
number of grid points. This computational framework predicts
Reynolds stresses with a reasonable accuracy as compared to a
high-resolution DNS data reported earlier. Various
instantaneous velocity vectors also showed complicated 3D
vortical structures of turbulent channel flow. Based on the
present computational results, it seems that GLBE with SISM-
LES has the capability of predicting turbulent flow
characteristics for turbulent wall flows with a relatively coarse
grid as compared to DNS.
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