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ABSTRACT 
The formation of the waves on a thin liquid water film was 

analytically investigated by studying its shear mode stability. 

The inclined angle of the substrate is limited to 8
°
. The purpose 

of analytical solution is to determine the maximum growth rate 

of the generated wave as well as its corresponding wave 

number, which is realized by solving the Orr-Sommerfeld 

equations for both gas and liquid phases with the corresponding 

boundary conditions.  The results of wave formations on a 

surface with a thin liquid film of de-icing are validated by 

previous experimental data as well as compared with Yih’s 

theoretical analysis [7]. Studies have also conducted on the 

effect of surface tension or liquid film depth on the stability of a 

thin liquid film flowing along a solid substrate. 

 

 INTRODUCTION 
The studies of a thin liquid film flowing down an inclined 

plane have been an  important subject for many years due to its 

various engineering and industrial applications, such as in the 

manufacturing of photographic film or computer chips, coating, 

spraying, painting, ink-printing and water shedding on an 

airfoil. The investigation of a thin liquid film is to determine the 

uniformity and completeness of wetting on a substrate, which 

mainly depends on wave formations on the interface between 

liquid and gas, and therefore depends on the instability of a 

flowing thin liquid film. The instability can cause variations in 

both wave amplitude, and wave speed, and then leads to the 

breakup of a continuous flow.  Reviews for the stability of a thin 

liquid film driven by gravity are given by Hocking [1] and  

Lopez et al. [2]; and for surface wave formation on a 

continuous film , both isothermal and temperature driven, by 

Oron et al. [3], Joo et al. [4], Liu et al. [5] and Chang [6]. Only 

a few investigations are found to be related to the stability of a 

thin liquid film driven by shear stress. Among them, the most 

important one is by Yih [7].  The wave formation of a thin 

liquid layer used for the de-icing of airplane wings was 

investigated by studying the stability of air flowing over a layer 

of de-icing coating with a zero angle of attack. By solving the 

Orr-Sommerfeld equations with its corresponding boundary 

conditions, an equation describing the relation between the 

wave number and the growth rate of a flow was obtained, which 

is also called the dispersion equation.  However, this dispersion 

equation can be only used for the flow with very high viscosity 

ratio of liquid to gas, up to more than half million. The result of 

this work was also limited to a thin liquid film flowing on a 

horizontal plane. Therefore, the purpose of this work is to 

derive the dispersion equation for a thin liquid film driven by 

shear stress flowing down an inclined substrate. It can be also 

considered an extension of Yin’s results without the limitations 

of high viscosity ratio and zero angle of attack. 
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 NOMENCLATURE 
 

ρ density 

µ viscosity 

σ   surface tension 

m viscosity ratio of liquid to gas 

r density ratio of liquid to gas 

α wave number 

rc  phase speed 

ic  growth rate 

d depth of a liquid film 

b dimensionless boundary layer 

thickness of  gas phase 

0Û  free stream velocity of gas phase 

1Û  linear velocity for the boundary layer 

of gas phase         

2Û  linear velocity for the liquid phase   

sÛ  velocity at the interface between 

liquid and gas 

1a  coefficient of dimensionless linear 

velocity for the boundary layer of gas 

phase   

2a  coefficient of dimensionless linear 

velocity for liquid phase 

Re Reynolds number defined as 

110Re dU


  

  

Subscript  

1 gas phase 

2 liquid phase                      

    

 

METHODOLOGY 
This study focuses on a small inclined angle ( ≤ 8° ). 

Although, the flow in general is three-dimensional, it has been 

proved by Schmid and Henningson [8] that only two-

dimensional disturbances are sufficient to obtain the minimum 

critical Reynolds number, the maximum instability growth rate 

and its corresponding wave number using Squire’s theorem [9]. 

The purpose of the analytical solution is to determine the 

maximum growth rate, of the generated wave as well as its 

corresponding wave number, α. 

In this work, the gas phase (e.g. air) is considered as the 

primary flow and the liquid phase (e.g. water) is the secondary 

flow. The primary and the secondary flow are represented by 

subscription 1 and 2, respectively.  In order to simplify the 

problem, it is assumed that both the liquid and the gas are 

Newtonian, and the physical properties such as surface tension 

σ and viscosity (µ1, µ2) are constant. The primary flow is 

considered as Blasius flow [10] over an inclined flat plate at 

zero angle of incidence, shown in Figure 1. In addition, 
1Û , 

sÛ  , 

 yU1  
and  yU2  

represent the air free-stream velocity, the 

interfacial velocity, the dimensionless linear velocities of gas 

phase and liquid phase, respectively. The term d is the water 

film thickness, and b is the dimensionless boundary layer 

thickness of the gas phase (i.e. the boundary layer thickness is 

bd).  

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1 Schematic sketch of runback flow on a solid substrate  

(a) dimensional; (b) dimensionless 

 

The dimensionless parameters in Figure 1b are defined as 

follows: 

dYydXx //       
0

ˆ/ˆ UUU ss   

  yadUYUyU 1011 *ˆ)(ˆ)(   

  yadUYUyU 2022 *ˆ)(ˆ)(   

Governing Equations 
The governing equations in the dimensionless form are 

written as follows.  

For the gas phase,    
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 For the liquid phase,     
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where 
2

0

sin

U

gd
Fx 


   ,   

2

0

cos

U

gd
Fy 


  and 

110Re dU


                                                               
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 Orr-Sommerfeld equations 
When velocity and pressure perturbations, i.e. u , v , p , 

are introduced into the primary flow, the flow is resolved into 

its primary and perturbation parts. For the gas flow, the 

perturbed parameters are 

uUu  1
, vv  , and  pPp   

in which P is the dimensionless pressure for the primary flow 

and is assumed independent of x. In order to simplify the 

governing equations, a stream function ψ is introduced with the 

following definitions: 

                    
y

u





     
x

v





                                       (7) 

The following assumptions for ψ ,p' are made in order to 

represent all the spectrum of perturbations .      

                     ctxiyfyp   exp,,
                      

(8) 

where   and f represent the initial wave and pressure 

perturbation amplitude, respectively. Then, the Orr-Sommerfeld 

equation for the gas phase can be obtained upon linearization of 

the Navier-Stokes equations using the stream function ψ.  

For air   
   

                                  (9)                   

Similarly, the Orr-Sommerfeld equation for the liquid 

phase can be derived by replacing   with , and retaining the 

meaning of Re and f.  The Orr-Sommerfeld equation for the 

liquid phase is summarized as follows. 

        2

2

142 Re2  cUrmiiv    (10) 

 Boundary Conditions 
In order to obtain the boundary conditions for the gas 

phase,  is denoted by 
0  

in the free stream and 
1  for within 

the boundary layer, and   is used to represent the displacement 

of the artificial lower boundary of the free stream when the flow 

is disturbed at y=b.  

The boundary conditions for the gas phase are summarized 

as follows. 

         yas00                                           (11) 

Kinematic condition,        
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Continuity of velocity,        
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Continuity of shear stress,      
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Continuity of normal stress,                                                                                                 
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 (16) 

 

The boundary conditions for the liquid phase are described 

as follows.  

No-slip boundary on the wall,     

                         0101                                    (17) 

Continuity of velocity at the interface,   

                00       (
 


00 yy

vv )                           (18) 
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Continuity of shear stress,      
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Continuity of normal stress,                                                                                                  
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where   

    2

2

0

22 ,,1 accduTSFrF y       

and a1, a2 are the slopes of the linear velocities for the gas phase 

and the liquid phase, respectively.          

 

DERIVATION OF DISPERSION EQUATION 
 For the free stream (the gas phase), the solution for the 

Orr-Sommerfeld equation can be reduced to two terms, which 

only includes the invisicid solution due to the given four 

boundary conditions. 

    byAyA   expexp 02010
 

where                          

  22 1Re   ci

      byAyAyA   expexpexp 1312111
               

This is only an approximate solution, but still sufficiently 

accurate because the term   by     decreases toward 0 as y 

decreases from b only a small distance. 

       By applying the above equations to  the boundaries given 

as equations (13), (14), and (15), it can be shown that  if A01, 

A11, and A12 are of O(1) in magnitude, A02 and A13 are both of 

order O(Re
-0.5

). Furthermore, it can also be found that the   

and 1  are of O(1) by to substituting 0  and 1 to equation 

(15). Thus equation 13 becomes, upon division by Rei  and 

ignoring terms of O (Re
-0.5

), at y=b,  

                      
    1110 11  acc                            (22) 

in which all viscous solutions (i.e. those with coefficient A02 and 

A13) are dropped. Similarly, in equation (23), only the inviscid 

solution is needed. 

   2
1

42 Re2  cUiiv
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                              bb 10                                               (23) 

Construction of the Eigenfunctions  
        The simplification of the boundary condition at y=b to 

described by equations (22) and (23), allows us to construct   

by forming its inviscid part first, and then adding to the viscous 

part to satisfy the interfacial conditions at y=0. 

         In order to obtain the inviscid part, let 

 yA   exp00  
   yAyA   expexp 211

 

Using equations (22) and (23) result in  the following solution 

for the inviscid part. 
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In which                 
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    ( 10   ) 

Assuming that c is small compared to 1, one can rewrite 

 01  and  01   as  

                                    01 10 A                                (24) 
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0 A
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                            (25) 

Next, the viscous solution,
33A , is added to the inviscid 

solution,
1 . Thus, 

                                 331  A                                    (26) 

In which 3  is given by equation (27) (Lin [11]) 
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Where        


 cyy 
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U          

, and  
cy  is the value of y at which cU 1

. Since c is expected 

to be very small, we can henceforth take 0cy . 

Construction of the Eigenfunction  
       The Orr-Sommerfeld equation for the liquid phase is as 

follows. 

    2
2

142 Re2  cUrmiiv  

The eigenvalue of the above equation can be presented by,  

S=[0, r2, r3, r4] 

Then the general solution is described as, 

     yrDyrCyrBA 432 expexpexp   

By applying the shear stress and no-slip boundary conditions to 

the general solution, the coefficients of the above general 

solution can be determined, and then  0 ,  0 , and 

   030 2   can be expressed as follows. 

                                 DCBA  0                            (28) 

                                DrCrBr 4320                         (29) 
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                                                                                            (30) 

Wave Growth Rate  
Upon neglecting a2 in the brackets on the right-hand side 

of equation (16), eliminating φ(0) between equations (15) and 

(16) results in the following, 

                    000 cbbc                         (31) 
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where i2320.08660.0    and i2989.01154.1    

( Lin [11]).  

 

Equation (31) then takes the following form,  
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                                                                                      (32) 

 

Equations (21) and (23) enables us to write equation (15) as  
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Elimination of A3 between equations (32) and (33), and based 

on the fact that c’ is small and   , equation (33) can be 

simplified as follows. 
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Since  i6440.01155.11  , equation (31) can be 

rewritten as 

                              AAiPPcb ir 
0

                        (35) 

where    
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Equation (35) shows that  A in (33) can be neglected since both 

c’ and 
     



expsinh2 2 


 are small. 

Thus, equation (33) can be written as  
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Next step is to evaluate c  and ic  (i.e. the growth rate). 

Since a2 is small, equation (19) enables us to write equation 

(21) as,  
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                                                                                        (38) 

All functions are being evaluated at y=0 and all the terms 

involving X have been given by equations (28), (29), and (30). 

Finally, it remains to evaluate the term,   23 . 
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Taking (32) and (33) into the above equation, it can be written 

as, 
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where 
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Examination of (28), (29), (30), and (39) shows that (38) is a 

quadratic equation in c . This quadratic equation can be 

written as, 
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                                                                               (40) 

Equation (40) is the dispersion equation used to determine the 

relationship between the growth rate and the wave number.  

 

 

 RESULTS AND DISCUSSION 
The dispersion equation is obtained by solving the Orr-

Sommerfeld equations with the given boundary conditions to 

determine the relation between the wave number   and the 

growth rate ic , which can be  written as follows. 
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All the terms can be analytically determined except for 

variables   and c .  In order to validate the analysis with the 

experimental data [12] and the analytical solution from Yih [7], 

where a de-icing liquid was utilized, the same physical 

properties are used, as listed in Table 1. 

 

Table 1 Properties used in analytical calculations 

 

Properties Units 

liquid viscosity near 0
o
C 10 Pa∙ s 

air viscosity at -10
 o
C 1.67×10

-5
 Pa∙ s 

surface tension at -10
 o
C 31.3 mN/m 

liquid-air density ratio   972 

free-stream speed  27.28 m/s 

the chord length  0.279 m 

mean liquid film depth d 1.1mm   

 

The analytical results are shown in Table 2, together with 

the experimental data and the analysis from Yih [7]. It is 

observed that the results agree well with the experimental data 

in terms of the wave number. Compared to the analysis of Yih 

[7], it seems that our results are more accurate respect to the 

wave number with the same magnitude phase speed and 

maximum growth rate.  
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Table 2 Comparisons of the theoretical results with 

experimental data 

 

Characteristic wave 

number 

Phase 

speed 

Maximum 

growth rate 

Experimental data 

[12] 

0.5   

Theoretical results 

of this work 

0.5 1.657e-05  2.88e-05 

Theoretical 

results(Yih [7]) 

0.33 1.52e-05 1.46e-05 

 

Studies have also done on the effect of liquid film depth 

on the stability of a thin liquid film flowing along an inclined 

surface. The analysis is based on a film velocity of 15 m/s. The 

results are presented on Figure 2, where the range of Re number 

represents a liquid film depth d from 0.5 to 2.0 mm. Figure 2 

shows the effect of Re on the maximum growth rate and its 

corresponding wave number of a thin liquid film flow. It reveals 

that when the Re number increases (e.g. from 560 to 2240), the 

maximum growth rate shifts to a larger wave number (from 0.5 

to 0.6). Therefore, it can be concluded that an increase in the 

depth of a thin liquid film can increase the maximum growth 

rate of the flow and also shifts the corresponding wave number 

to a larger value.  
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Figure 2 Effect of liquid film depth on stability of a thin liquid film 

flowing along an inclined surface 

 

 

CONCLUSION 
       The purpose of this study is to investigate the effect of 

shear mode instability on the wave formation for a thin liquid 

film flowing down an inclined substrate (  8
o
). The Orr-

Sommerfeld equations for both liquid and gas phases are 

derived by linearizing governing equations and introducing 

perturbations for both phases. Then the analytical solutions are 

obtained by solving the Orr-Sommerfeld equations with the 

corresponding boundary conditions. The results show good 

agreement with previous experimental data and Yih’s study in 

the maximum growth rate and its corresponding wave number 

for air flowing along a layer coating with de-icer. The good 

agreement between the analytical solution and the experimental 

data suggest that for a thin liquid film flowing down a substrate 

with a small inclining angle, the shear mode instability is 

paramount in importance compared to the gravity mode 

instability. The studies on the effect of liquid film depth on the 

wave formation of a thin liquid film flow show that the 

maximum growth rate keep increasing with an increase in liquid 

film depth and the corresponding wave number also shifts to a 

larger value. 
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