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ABSTRACT 
      Steady two-dimensional natural convection in rectangular 

two dimensional cavities filled with non-Newtonian power law-

Boussinesq fluids is numerically investigated. The conservation 

equations of mass, momentum and energy  are solved using the 

finite volume method for varying inclination angles between 0
°
 

and 90
°
  and two cavity height based Rayleigh numbers,  

Ra=10
4
 and 10

5
, a Prandtl number of Pr = 10

2
 and  two cavity 

aspect ratios of 1, 4.  For the vertical inclination of 90
°
, 

computations were performed for two Rayleigh numbers 

Ra=10
4
 and 10

5
and three Prandtl numbers of Pr = 10

2
, 10

3
 and 

10
4
.  In all of the numerical experiments, the channel is heated 

from below and cooled from the top with insulated side-walls 

and the inclination angle is varied. A comprehensive 

comparison between the Newtonian and the non-Newtonian 

cases is presented based on the dependence of the average 

Nusselt number Nu on the angle of inclination together with the 

Rayleigh number, Prandtl number, power law index n and 

aspect ratio dependent flow configurations which undergo 

several exchange of stability as the angle of inclination � is 

gradually increased from the horizontal resulting in a rather 

sudden drop in the heat transfer rate triggered by the last loss of 

stability and transition to a single cell configuration. Despite 

significant differences in the heat transfer rate and flow 

configurations both Newtonian and non-Newtonian fluids of 

the power law type exhibit qualitatively similar behavior. 

 

INTRODUCTION 
      Buoyancy driven Newtonian and non-Newtonian flows in 

rectangular enclosures are found in a variety of engineering 

applications such as oil-drilling, pulp paper, slurry transport, 

food processing and polymer engineering.  Pseudoplastic fluids 

are a used in compact heat exchangers or electronic modules as 

an enhancing cooling medium.  For differentially heated two-

dimensional enclosures with adiabatic side walls, the heat 

transfer characteristics are influenced by the inclination of the 

cavity with respect to the horizontal plane, Prandtl number, and 

the Rayleigh number based on the height of the cavity.  

Although the case of Newtonian liquid has received 

considerable attention (see Gebhart et al. [1], Ostrach [2] and 

Khalifa [3] for review), there is only a limited number of 

articles dealing with the non-Newtonian case. For the 

Newtonian case, flows in such configurations have been the 

subject of several experimental and numerical studies. Thus 

Catton et al. [4] and Arnold et al. [5] investigated 

experimentally and numerically heat transfer in inclined 

cavities for a range of aspect ratios, Rayleigh numbers and 

angles of inclination. Ozoe and Sayama [6] and Ozoe et al [7-8] 

experimentally investigated and numerically computed values 

of the Nusselt number for natural convection heat transfer in 

square and rectangular channels.  They note the existence of 

several modes of two-dimensional roll cells in the flow field as 

the angle of inclination is gradually increased from the 

horizontal position.  The angle of transition between modes 

depended upon the value of the Rayleigh number and the aspect 

ratio with the Nusselt number showing a discontinuous 

behavior.  The transition of flow modes was also studied by 

Soong et al. [9] who noted the influence of initial conditions on 

the flow pattern formation.  Corcione [10], , considered the 

effect of bi-directional differential heating in horizontal cavities 

of several aspect ratios for Rayleigh number  between 10
3
 and 

10
6 

and found that the increase in the number of roll cells 

occurring as the aspect ratio increased may be explained 

through the progressive breakdown of the density stratification 

in the fluid layers adjacent to the top and bottom walls that 

bring to the formation of hot and cold fluid streams moving 
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upward and downward across the cavity with direct effect on 

the temperature distribution.  Both Ozoe et al. and Soong et al. 

[8-9] and Wang and Hamed [11] have demonstrated flow mode 

transition and hysteresis phenomenon for a Rayleigh number 

greater than 3000.  Wang and Hamed [11] for a range of 

Rayleigh numbers up to 10
4
 conducted a systematic numerical 

study of the variation of the Nusselt number with angle of 

inclination and concluded that these types of flows could have 

dual or multiple solutions due to the effect of initial conditions. 

Khezzar et al [12] conducted a comprehensive numerical study 

of natural convection in inclined two dimensional cavities for 

Rayleigh numbers of 10
4
, 10

5 
and 10

6
 of aspect ratios of 1, 3, 6, 

12. They confirm the dependence of the solution on the initial 

conditions and clarify further the successive loss of stability 

with increasing angle of inclination from the horizontal, each 

successive loss of stability leading to flow configurations with 

smaller number of vortices with the final bifurcation leading to 

a single cell configuration. The last transition from a multiple 

cell to a single cell configuration is also associated with a 

discontinuity in the Nusselt number. The size of the jump in the 

value of the Nusselt number is dependent on the aspect ratio 

and the Rayleigh number. The transition to a single cell 

configuration occurs at gradually larger angle of inclinations 

with growing aspect ratios. The size of the discontinuity with 

growing Rayleigh numbers seems to be getting smaller for 

aspect ratios smaller than 12, however for aspect ratio 12 the 

size of the discontinuity seems to increase with increasing 

Rayleigh numbers.  

      When it comes to non-Newtonian liquids there are only a 

few references in the literature.  It appears that the numerical 

study by Ozoe and Churchill [13] aimed at determining the 

threshold for the onset of Rayleigh-Bernard convection in 

power law fluids was one of the first in the field. The critical 

Rayleigh number was found to increase with the power index.  

However s the results showed a tendency to give exaggerated 

values when compared to the experimental and theoretical data 

reported by Tien et al. [14]. More recently, Kim et al. [15] 

considered transient buoyant convection in a square cavity 

subjected to hot and cold temperature on the vertical side walls 

for Newtonian and non-Newtonian power law fluids of the 

Ostwald-De Waele type .  The study concluded that for high 

Rayleigh Ra= 10
5
-10

7
 and Prandtl numbers Pr=10

2
-10

4
 as the 

power law index n decreases, the convective activity is 

intensified with decreasing power law index n   resulting in 

enhanced overall heat transfer coefficients.   Ohta et al [16] 

studied s numerically transient heat transfer in a square cavity 

heated from the bottom and cooled from the top using the 

Sutherby model for shear thinning fluids, such as aqueous 

solutions of Natrosol 250H hydroxyethyl cellulose and found 

that shear thinning resulted in larger heat transfer rates than 

Newtonian fluids. Their study revealed as well that for highly 

peudoplastic fluids and for a large Rayleigh number equal to 

10
5
 complex flow patterns consisting of unstable multiple roll-

cells are generated leading to an oscillating Nu with time. 

      Thermal convection of micro-emulsion slurry, which 

exhibits non-Newtonian power law characteristics, was studied 

numerically and experimentally by Inaba et al. [17] in 

rectangular cavities. They found that heat transfer rate is 

increased with the introduction of shear-thinning.   Flow and 

heat transfer in a shallow rectangular enclosure filled with non-

Newtonian Ostwald-De Waele liquids heated from the side 

under a constant heat flux assumption is studied analytically 

and numerically by Lamsaadi et al. [18].  They determined that 

if the aspect ratio and Prandtl numbers are large enough (>100) 

then the flow and heat transfer rate characteristics become 

independent of any increase in these parameters and the flow is 

essentially controlled by the Rayleigh number and the power-

law index. 

      In summary it seems that no study is available on thermal 

convection of non-Newtonian power law fluids in two-

dimensional tilted enclosures heated from below (and cooled 

from above) under a constant wall temperature assumption. The 

main goal of this article is to fill this gap and study the effect of 

shear-thinning and shear-thickening on heat transfer rate in 

such a configuration using the power-law model of Ostwald-De 

Waele fluids against a Newtonian fluid with a high Prandtl 

number.  The steady state numerical solution is obtained for a 

range of cavity aspect ratios, Rayleigh Ra and Prandtl Pr 

numbers and power law indices n.  

 

MATHEMATICAL FORMULATION       
A two dimensional rectangular cavity filled with a non-

Newtonian fluid is considered. The inclination angle of the 

cavity φ varies between 0
°
 ≤ φ ≤90

°
. The aspect ratio is 

AR=L/H, the ratio of the length L of the isothermal walls to the 

length H of the adiabatic walls.  The top (cold) and the bottom 

(hot) surfaces of the cavity are maintained at constant 

temperatures Tc and Th, while the two side walls are kept 

adiabatic as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Flow configuration. 

 

Flow in the cavity is assumed laminar, steady and two-

dimensional.  The Boussinesq assumption is used and viscous 

dissipation is assumed to be negligible. The buoyancy force is 

caused only by the density gradient, thus:  
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where β is the coefficient of thermal expansion, ρ is the fluid 

density at temperature T and ρ0, T0 are the corresponding 

reference values, respectively.  The field conservation equations 

of mass, momentum and energy are given by:  
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Where the velocity vector is expressed in terms of its Cartesian 

components ( ),u v along the x and y directions of the 

coordinate system shown in Fig. 1; p, ν ,κ and g represent the 

pressure, the kinematic viscosity, the thermal diffusivity and the 

acceleration of gravity, respectively. 

The fluid obeys the non-Newtonian power law given by: 
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where the rate of strain is given by ( )/ /
ij i j j i
D u x u x= ∂ ∂ + ∂ ∂  

and K and n are the consistency and the power-law indices 

respectively. n<1 defines shear-thinning, n=1 and n>1 

correspond to the Newtonian and to shear-thickening fluids, 

respectively. The introduction of a physical quantity with 

dimensions of (length)
2
(time)

-1
   to play a role analogous to the 

kinematic viscosity of a Newtonian fluid is required to facilitate 

the interpretation of results in conjunction with tools that are 

effective with Newtonian fluids. An effective kinematic 

viscosity has been adopted in previous studies on the free 

convection about a flat plate [19-20] and in a porous cavity 

[21].  In line with these efforts the following expression for the 

effective kinematic viscosity is introduced: 
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                                  (6) 

Substituting (6) into the conventional expressions for the 

Prandtl and Rayleigh numbers the corresponding dimensionless 

numbers for non-Newtonian power-law fluids are defined as: 
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The average Nusselt number on the conducting walls is defined 

as follows: 

 

 
0

1
A

wall

T
Nu dx

A y

 ∂
=  ∂ ∫             (9) 

 
NUMERICAL METHOD 
      The set of equations (2-4) is solved numerically using the 

finite volume technique.  The Simple algorithm, the Quick 

scheme and PRESTO technique were used for the velocity-

pressure coupling, convective terms discretization, and pressure 

interpolation respectively.  Convergence was assumed when the 

normalized residuals reached a value of 5x10
-5
, 10

-5
 and 10

-6
 in 

monitoring the mass residuals, momentum and energy 

equations, respectively.  All calculations were performed in 

double precision mode. 

      Although the accuracy of the method and the dependence of 

the accuracy of the method on grid size were studied 

extensively in [22] for the Newtonian case, a set of tests was 

performed to investigate the effect of the power law index on 

grid sensitivity. It was found that when the power law index is 

of order O(1) the conclusions of [22] still holds while for 

strongly non-Newtonian cases, that is when the power law 

index n deviates significantly from 1, the solution is more 

sensitive to grid size. After some tests, it was determined that a 

uniformly spaced grid with Nx=100, Ny=100 provides a 

reasonable accuracy for the geometry with AR=1 while grids 

with Nx=280, Ny=70 and Nx=600, Ny=70 are suitable for AR=4 

and AR=8 respectively. In addition, the results of [15] for a 

square cavity were used to validate the calculation method and 

approach.  This test case consisted of calculations for a square 

geometry at an angle of inclination of 90˚ with Ra=10
5
 and 

three Prandtl numbers Pr = 10
2
, 10

3
,10

4
.  The dependence of 

the relative Nusselt number on power law index is presented in 

Figure 2. The results are in full agreement with those of [15] 

with an excellent accuracy of less than 1%. Since the problem 

is rather sensitive to the initial field guess [23], a procedure 

similar to the one used in [9] is applied.  For calculations where 

the angle 
φ

 increases from 0˚to 90˚ the equations for a 

horizontal enclosure are first solved.  For 
0φ =

 the initial 

field is set at zero for the flow variables and Tc for the 

temperature.  The solution at zero inclination is then used as the 
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initial guess at 5˚ inclination. The latter solution is subsequently 

used as an initial guess for 10˚ and so on until 90˚. The 

temperature difference in all calculations was held at 10˚. 

RESULTS AND DISCUSSION 
      The results are discussed by considering first the vertically 

oriented cavity for two aspect ratios AR = 1, 4, two Rayleigh 

numbers Ra = 10
4
 and 10

5
 and three Prandtl numbers Pr = 10

2
, 

10
3
 and 10

4
.  The discussion is then extended to the detailed 

calculations of the inclined cavities for three aspect ratios 1, 4 

and 8 and Rayleigh numbers of 10
4
 and 10

5
, and a single 

Prandtl number of 100.  Prandtl numbers for most non-

Newtonian fluids are quite large. The Rayleigh and Prandtl 

number values chosen are representative of practical 

applications (see [23]).  The power law fluids considered 

include shear thinning, shear thickening and Newtonian with a 

power index varying between 0 6 1 4. .n≤ ≤ . 

      Figs. 2-3 illustrate the variation of the Nusselt number Nun 

with the power law exponent n. Nun for each exponent n is 

normalized by the corresponding value of Nu for a Newtonian 

fluid (n=1.0) when the angle of inclination is 90˚ for two aspect 

ratios AR = 1 and 4, the two Rayleigh numbers Ra =10
4
 and 10

5
 

and the effect of the Prandtl number is explored by considering 

Pr variation over three decades Pr = 10
2
, 10

3
 and 10

4
.  

Compared to the case of heat transfer with Newtonian fluids 

shear thinning clearly enhances heat transfer when the Rayleigh 

number is set at Ra=10
5 
and Prandtl numbers are in the range of 

Pr=10
2
 and 10

3
, whereas it reduces heat transfer for Pr=10

4
 as 

was observed previously by Kim et al. [15], and the opposite is 

true for shear thickening.  For a Rayleigh number an order of 

magnitude smaller Ra=10
4
, the Nusselt number variation shows 

that relative to a Newtonian fluid, shear thinning reduces heat 

transfer with Prandtl number in the range of Pr=10
3
 and 10

4
 

and increases the heat transfer rate for Prandtl number of lower 

orders of magnitude Pr ≤ 10
2
 and the opposite is true for shear 

thickening fluids. The Nusselt number ratio Nun / Nun=1 is a 

function of the aspect ratio as well. With increasing aspect ratio 

the increase or the decrease in Nun / Nun=1 is enhanced 

regardless whether the fluid is shear-thinning or thickening all 

other parameters kept constant. It appears that there is a 

competing effect between momentum and heat transfer at high 

Pr and a complex relationship between the effects of Ra and Pr 

at this aspect ratio. Nonetheless as the Prandtl number becomes 

large, it tends to inhibit the convective activities that are 

characteristic of low Prandtl number shear thinning fluids and 

counteracts the effects of shear thickening by increasing the 

convective heat transfer in comparison to the   

 Newtonian case. 

 

 
 

Fig.2. Dependence of the Nusselt number Nu ratio on the 

power-law index n for a square cavity for three Prandtl numbers 

□ Pr=10
2
○ Pr=10

3* Pr=10
4 
    (a) Ra=10

5
, (b) Ra=10

4
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Fig.3. Dependence of the Nusselt number Nu ratio on the 

power-law index n for a cavity of aspect ratio four and for three 

Prandtl numbers □ Pr=10
2
○ Pr=10

3* Pr=10
4 
    (a) Ra=10

5
, (b) 

Ra=10
4
 

     Fig. 4 shows the variation of the average Nusselt number on 

the conducting walls with angle of inclination for aspect ratio 

AR=1 and Rayleigh numbers  over two orders of magnitude 

Ra=10
4
 and 10

5 
with the Prandtl number set at Pr=10

2
.  The 

variation of Nu is continuous exhibiting lower values of Nu 

than the Newtonian case with shear thickening fluids and 

higher values with shear thinning fluids.  Increasing the 

Rayleigh number Ra enhances the heat transfer rate Nu for all 

fluid types. The enhancement in Nu is more pronounced for 

shear thinning fluids. The higher the shear-thinning capability 

the higher the enhancement and the higher the shear-thickening 

characteristic the lower is the enhancement. In all cases the heat 

transfer rate Nu in the horizontal 0˚ position is substantially 

lower than the enhancement Nu in the vertical 90˚ position with 

the vertical walls conducting. Maximum values of Nu for 

Ra=10
4
 occurs between 50˚-65˚ whereas for Ra=10

5
 the 

maximum is located in the interval 65˚-70˚ leading to the 

tentative conclusion that the higher the Ra number the later the 

maximum heat transfer occurs as the angle of inclination is 

gradually increased from the horizontal. At the higher Rayleigh 

number Ra=10
5
 all the maxima seems to occur at about the 

same inclination, but at an order of magnitude lower Ra=10
4 
the 

maxima with shear thickening fluids is shifted to higher 

inclinations that the shear-thinning fluids and the higher the 

shear-thickening index the higher the inclination at which the 

maximum occurs. The heat transfer rate Nu variation for all 

cases investigated with the aspect ratio AR=1 is smooth. This is 

due to the single cell structure of the flow field at all angles of 

inclination for Newtonian as well as shear-thinning and shear-

thickening fluids when the aspect ratio is one. 

 

 
       

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
u

n
=

n
/ 

N
u

n
=

1

Power-law index (n)

(a)

Ra=105, AR=4

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
u

n
=

n
/N

u
n

=
1

Power-law index (n)

(b)

Ra=104, AR=4

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 10 20 30 40 50 60 70 80 90

N
u

angle

(a)

Ra=105, Pr=102, AR=1



 6 Copyright © 2010 by ASME 

 
Fig. 4. Average Nusselt number Nu variation with the angle of 

inclination � for a square cavity Pr=10
2
, AR=1: (a) Ra=10

5
, (b) 

Ra=10
4
. 

 

The variation of Nu with the angle of inclination for aspect ratio 

AR=4 is shown in Figs. 5 for two values of the Rayleigh 

number which differ by an order of magnitude Ra=10
5
 and 10

4 

with the Prandtl number set at a constant Pr=10
2
. For either 

aspect ratio the heat transfer rate is higher for shear-thinning 

fluids. Similar to AR=1 the higher the power index the lower 

the Nu and the lower the power index the higher is the Nu. In 

all cases the absolute maxima for shear-thickening fluids occurs 

closer to the origin and is located at about 20˚ or close to 20˚ 

from below. At the lower magnitude Rayleigh number Ra=10
4 

the maxima of Nu is closer to the horizontal position 0˚ than the 

shear thickening case. However with increasing Rayleigh 

number it moves closer to 90˚, and proves to be a function of 

the aspect ratio as well. At the larger Rayleigh number Ra=10
5
 

the maximum heat transfer rate Nu with shear-thinning fluids 

occurs at about 75˚ when AR=4. However figures not included 

here show that when the aspect ratio is doubled to AR=8 the 

maximum occurs much earlier at about 35˚ right before the 

discontinuity in Nu. At the lower Rayleigh Ra=10
4 

and the 

higher aspect ratio AR=8 the maxima for the shear thinning 

fluids all move to the horizontal position of the enclosure and 

decrease thereafter albeit with discontinuities. For both aspect 

ratios and at either Rayleigh number the heat transfer rate Nu 

shows discontinuities, in fact two discontinuities, a steep 

decrease followed by a monotonic increase. The first 

 
 

 
 

Fig. 5. Average Nusselt number Nu variation with the angle of 

inclination � for a cavity with aspect ratio four Pr=10
2
, AR=4: 

(a) Ra=10
5
, (b) Ra=10

4
. 
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05φ =
 

                  

                                                                                                   
015φ =
 

                  

                                                                                                    
035φ =
 

                   

                                                                                                    
055φ =
 

                   

                                                                n=1.0                            
090φ =
             

                n=1.4 

Figure 6. Comparison of stream function contours, Ra=10
5
, Pr=100 and AR=4, n=1 and n=1.4. 

 

 

discontinuity, which occurs at about 10˚, is more pronounced 

for the Newtonian and shear-thinning cases in comparison with 

the shear-thickening case, in fact it is completely smoothed 

over when the fluid is shear-thickening, and it is smaller in size 

than the second discontinuity in all cases. The second 

discontinuity occurs much later as the angle of inclination is 

increased and is located in the interval 35˚< � <50˚ in all cases.  

The steep decreases in Nu stem from flow mode changes. Each 

loss of stability resulting in a decreased number of cells as the 

angle of inclination is increased also generates a steep decrease 

in Nu. The smaller the number of roll cells before the loss of 

stability the larger the decrease in Nu. Thus the second 

discontinuity occurring at a larger angle of inclination is larger 

in size compared to the first because it is associated with the 

transition to a single cell flow configuration at any aspect ratio 

except the square enclosure. In general shear thickening tends 

to reduce the heat transfer in comparison with the Newtonian 

fluid and the opposite is true for shear thinning, whereas heat 

transfer is augmented with increasing Ra in all cases. 

      Flow configuration consists of one cell structure throughout 

the inclination angle variation from 0˚ to 90˚ when the aspect 

ratio is one. There is no loss and exchange of stability and 

therefore no discontinuities exist in the heat transfer rate Nu 

variation at this aspect ratio. The Nusselt number is strongly 
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                n=1. 

Figure 7. Comparison of stream function contours, Ra=10
5
, Pr=100 and AR=4, n=0.6 and n=1. 

 
 

dependent on the power-law index at a fixed angle. 

      Figs. 6-7 illustrate contours of the stream function for the 

aspect ratio AR=4 as the angle of inclination is gradually 

increased from the horizontal in the first quadrant. The number 

of cells in the multiple cell flow structure in the vicinity of the 

horizontal depends on the power-law index.  For indices n=1-δ 

< 1, 0< δ <1 that is for shear-thinning fluids the number of roll 

cells in the horizontal position of the enclosure is smaller than 

the number of cells for the shear-thickening fluid with index n 

=1+ δ >1 with 0< δ <1. Fig. 6 and 7 depict the roll cells for δ = 

0.4. The shear thinning fluid with n = 0.6 and the shear 

thickening fluid with n = 1.4 display four and six cells, 

respectively, at 0˚. The shear thinning fluid behaves more like a 

Newtonian fluid concerning the locations of the loss and 

exchange of stability. The first loss of stability for the 

Newtonian fluid occurs at an angle less than 5˚ probably around 

3˚~4˚. The shear-thinning fluid with n = 0.6 loses stability in 

the same neighborhood. However for the shear-thickening fluid 

the transition takes place much later for an angle of inclination 

between 5˚ and 15˚, and there seems to be several exchanges of 

stability within a rather short range of angle of inclination.  At 

�=5˚ the shear thickening fluid with
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index n = 1.4 has 6 cells and at � = 15˚the number of cells are 

reduced to 3. Although a thorough search has not been 

conducted it is quite likely that several additional cascading 

loss and exchange of stability occurred for 5˚< � <15˚ as the 

angle is increased reducing the number of roll cells gradually 

from 6 to 3 within a short interval. Nevertheless this exchange 

of stability and change in the number of roll cells has almost 

no effect at all on the heat transfer rate Nu for fluids with n > 

1and minimal effect on fluids with n < 1, Fig. 5. Shear-

thickening appears to have a stabilizing effect as the flow 

pattern changes take place at relatively low angles of 

inclination. The final exchange of stability occurs in the 

transition to a single roll cell configuration. This exchange of 

stability triggers a sudden drop in the heat transfer rate which 

is more pronounced at the lower Rayleigh number Ra = 10
4
. 

The drop is a function of the aspect ratio as well and is more 

pronounced at larger aspect ratios at the same Rayleigh 

number, for instance for AR=4 it is less pronounced than for 

AR=8 at say  Ra = 10
4
. The more shear-thinning the fluid is 

the earlier and the more shear thickening the fluid is the later 

the transition to a single cell configuration occurs as the angle 

of inclination is increased although the difference in angles is 

not much. All transitions to a single cell configuration are 

completed before  � = 35˚ is reached when n is confined to the 

interval 0.6 < n < 1.4. The results also show the stabilizing 

influence of the Prandtl number Pr on the flow by comparison 

with the Newtonian fluid of a Prandtl number an order of 

magnitude lower at Rayleigh numbers of comparable 

magnitude and similar aspect ratios, [10, 18].   

V. CONCLUSIONS 

Natural convection of Newtonian and non-Newtonian power 

law type fluids in two dimensional rectangular tilted 

enclosures were investigated numerically for angles of 

inclination in the first quadrant 0˚ ≤  � ≤ 90˚.  Flow 

configurations and heat transfer rates in enclosures of aspect 

ratios 1, 4 for Ra=10
4
 and Ra=10

5
 and Pr=10

2
 have been 

examined for the range of the power law index 0.6 ≤ n ≤ 1.4 

representative of a substantial spectrum of shear-thinning and 

shear-thickening fluids. The effect of the Pr is further 

highlighted by investigating the heat transfer rates as 

compared to the Newtonian case for three Prandtl numbers 

that differ by an order of magnitude Pr = 10
2
,10

3 
and 10

4 
and 

for the aspect ratios 1, 4 in the vertical position � = 90˚. Shear-

thinning and thickening result in significant increases and 

decreases, respectively, in the heat transfer rate Nu in 

comparison to the heat transfer rate of a Newtonian fluid. The 

increase and decrease in Nu for shear-thinning n <1 and shear- 

thickening n > 1 fluids is Rayleigh number Ra, Prandtl number 

Pr, aspect ratio and power law index n dependent. The more 

shear-thinning or the more shear-thickening the fluid the 

higher and the lower, respectively, is the heat transfer rate Nu 

at the same Ra and Pr and aspect ratio. Heat transfer rates go 

up as the Rayleigh number increases with all other parameters 

kept constant at any angle of inclination. The flow 

configuration starts out with multiple roll cells at the 

horizontal position 0˚ and goes through a number of 

exchanges of stability each one of which reduces the number 

of roll cells further ending up with a single cell configuration 

as the angle of inclination is gradually increased.  Shear-

thinning fluids start out with the same number of roll cells as 

the Newtonian fluid at 0˚ and the shear-thickening fluids with 

a larger number of cells than the Newtonian fluid in the range 

of the power law indices studied 0.6 ≤ n ≤ 1.4 regardless of the 

values of the remaining parameters. The transition to a single 

cell flow structure is delayed as the power index n grows with 

n >1 and occurs earlier as the power index n gets smaller with 

n < 1, and triggers a steep decrease in the heat transfer rate Nu 

more pronounced for shear-thickening fluids in particular at 

the Rayleigh number of the lower magnitude studied Ra = 10
4
. 

In general higher Prandtl numbers as well shear-thickening 

have a stabilizing effect on the flow.        
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