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ABSTRACT
We consider the flow of an electrically conducting fluid in

a duct in the presence of a constant magnetic field perpendic-
ular to the flow. The technologically relevant approximation of
small magnetic Reynolds number is adopted. The focus of inves-
tigation is on the nonlinear mechanism of transition consisting
of transient growth and subsequent breakdown of finite ampli-
tude perturbations. Numerical analysis demonstrates that the
strongest growth is experienced by perturbations localized in the
sidewall boundary layers parallel to the imposed magnetic field.
This result and the direct numerical simulations of the transi-
tion process indicate that the commonly accepted picture of the
transition in MHD duct based on the numerical and theoretical
analysis of the flow in the Hartmann channel is misleading. The
flow may become turbulent within the sidewall layers long before
the Hartmann layers on the walls perpendicular to the magnetic
field are able to sustain nonlinear transition.

INTRODUCTION
Constant magnetic fields are applied in several metallurgical

and materials processing technologies, for example, in continu-

ous casting of steel [1] and growth of large semiconductor crys-
tals [2]. The purpose is usually to control the melt flow by sup-
pressing unwanted fluid motions. The magnetic fields are strong
(for example, fields up to 1 Tesla are not uncommon in the con-
tinuous steel casting), which results in strong suppression of the
flow so that it acquires laminar, transitional, or weakly turbulent
state even though the Reynolds number is typically large.

The technological flows of liquid metals are usually char-
acterized by small values of the magnetic Reynolds number
Rem = UL/η , where U and L are the typical velocity and length
scale and η = (σ µ0)−1 is the magnetic diffusivity, σ and µ0 be-
ing the electric conductivity of the fluid and magnetic permeabil-
ity of vacuum, respectively. The distinctive feature of the low-
Rem flows is the one-way coupling between the magnetic field
and the flow. The flow is affected by the Lorentz force. At the
same time, the magnetic field perturbations associated with in-
duced currents are negligible by comparison with the imposed
field. This separates the liquid metal MHD from its high-Rem
counterpart in plasma and geo- and astrophysical applications.

In this paper, we analyze the transition to turbulence in the
flow of an electrically conducting incompressible fluid in a rect-
angular duct with electrically insulating walls. A steady uniform
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magnetic field is imposed in the direction parallel to one set of
wall and perpendicular to the flow. This flow is an archetypal
flow of liquid metal magnetohydrodynamics, since it represents
the key features found in the MHD applications: suppression and
anisotropy, uniform core flow, interaction between the magnetic
field and mean shear, and typical MHD boundary layers.

Remarkably, very little is known about the instability of the
MHD duct flow. The linear stability problem has not been solved.
It can be noted that such a solution would predict the critical
Reynolds numbers much larger than observed in reality and, thus,
would fail to provide an explanation for the transition. The rea-
son is that, as illustrated in figure 1, the MHD duct flow belongs
to the same type of wall-bounded parallel flows as the classical
hydrodynamic flows in pipes and channels. Base flow profile is
characterized by monotonous variation of velocity from the max-
imum at the center of the duct to zero at the walls. Such flows
are known to experience transition to turbulence at much lower
Reynolds numbers than predicted by the analysis of infinitesimal
exponentially growing or decaying perturbations.

The accepted explanation of the inability of the linear stabil-
ity theory to predict the transition in wall-bounded parallel flows
is the concept of bypass transition [3]. Due to the non-normality
of the linearized operator, a combination of eigenfunctions of a
linear problem can experience significant transient growth prior
to eventual exponential decay. An essential physical mechanisms
of the growth is the ’lift-up effect’, the redistribution of the mean
flow velocity by the perturbations [4]. Considered in the frame-
work of a nonlinear problem, the transient growth can produce
finite-amplitude amplification of the perturbations sufficient to
temporarily modify the base flow to the state unstable to sec-
ondary infinitesimal perturbations. A transition according to the
bypass scenario was demonstrated, among other flows, for the
plane channel [5], pipe [6]), and rectangular duct [7] flows. In
all cases, the ‘optimal’ modes providing the strongest transient
growth were found to have the form of streamwise-independent
rolls evolving into streamwise streaks.

The effect of the imposed magnetic field on the transition
scenario was studied in [8] and [9] for the channel flows, in
which the magnetic field was, respectively, in the wall-normal
(Hartmann channel) and spanwise directions. In the Hartmann
case, the computations showed the optimal modes in the form of
streamwise rolls evolving into streaks limited to the Hartmann
boundary layers. At the reasonable initial amplitude of the op-
timal modes, transition was realized at the values of Reynolds
number close to the critical number detected in the experiments
[10].

In the case of spanwise magnetic field, the base flow remains
the same as in the hydrodynamic channel flow. The imposed
magnetic field has, however, strong impact on the nature of the
optimal modes. As found in [9], the strongest amplification is
provided by rolls oriented at an oblique angle to the flow direc-
tion. The rolls evolve into streak-like structures in the course of

growth. The orientation angle increases with the strength of the
magnetic field and eventually reaches the limit corresponding to
purely spanwise rolls (TS-waves). Direct simulations of transi-
tion show that two symmetric oblique rolls with opposite values
of the spanwise wavenumber can effectively trigger the transition
serving as secondary perturbations to each other.

In this paper, we present the results of a numerical study of
the bypass transition in the MHD duct flow. The study starts with
identifying the optimal modes in a wide range of the strengths of
the magnetic field and duct aspect ratios. This part is presented
in great detail in our recent publication [11]. The analysis is
continued by simulation of the entire transition.

MODEL AND PARAMETERS
We consider a flow of an incompressible electrically con-

ducting fluid in a duct with electrically insulating walls at z =
±d/2 and y = ±a/2. The flow in the streamwise direction x
is driven by applied pressure gradient, which is maintained to
conserve the bulk flow rate. Uniform constant magnetic field
B0 = B0e is imposed, where e = (0,0,1). In the quasi-static ap-
proximation valid at low magnetic Reynolds number, the non-
dimensional governing equations and boundary conditions are

∂v
∂ t

+(v ·∇)v =−∇p+
1

Re
∇2v+N (−∇φ +(v× e))× e, (1)

∇ · v = 0, (2)
∇2φ = ∇ · (v× e) , (3)

vx = vy = vz =
∂φ
∂ z

= 0 at z =±d/(2L), (4)

vx = vy = vz =
∂φ
∂y

= 0 at y =±a/(2L). (5)

The flow is assumed periodic in the x-direction.
The problem has three independent non-dimensional param-

eters: the Reynolds number

Re≡ U0L
ν

, (6)

the aspect ratio

r ≡ a
d

, (7)

and the magnetic interaction parameter

N ≡ Ha2

Re
, (8)
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FIGURE 1. Base flow for Ha = 50, Reynolds number Re = 5000 and the aspect ratio r equal to 1/9 (left), 1 (middle), and 9 (right). Contour plots of
streamwise velocity are shown. Arrows indicate the orientation of the magnetic field.

where Ha is the Hartmann number,

Ha≡ LB0

√
σ

ρν
. (9)

As typical scales, we used the half of the smaller channel width
L≡min(a/2,d/2) and the centerline velocity of the laminar base
flow U0. The scales of time, pressure magnetic field and electric
potential are L/U0, ρU2

0 , B0, and LU0B0.
The optimal perturbations are found as Fourier modes of

streamwise wavenumber α computed by the fixed-point itera-
tion method based on the direct and adjoint equations [11]. The
perturbations are optimized in the sense that modes having the
maximum amplification are found as function of Re, Ha, r, and
the time T , at which the amplification is measured. The global
optimal modes presenting the maximum amplification over all
times T are also found. The problem is solved numerically us-
ing the projection-type explicit finite-difference scheme of the
second order. The grid is orthogonal and non-uniform with clus-
tering applied near the wall in order to provide the necessary
resolution of the MHD boundary layers. The grid includes up
to 82 points in the direction of the shorter side and up to 288
points in the longer side direction. The time integration is based
on the Adams-Bashfort scheme of the second order. Further de-
tails of the numerical procedure and verification data are avail-
able in [11]).

The Reynolds number is kept at 5000. The Hartmann num-
ber varies between 0 and 50. A wide range of aspect ratios is in-
vestigated with r taking values 1/9, 1/3, 1, 3, and 9. Importance
of considering various aspect ratios stems from the possible sim-
ilarity between the duct flow and the MHD channel flows with
spanwise and wall-normal magnetic field, which correspond, re-
spectively, to the asymptotic limit of duct with r→ 0 and r→∞.
To stress the possible similarity, the flows in ducts with r < 1 are
in the following referred to as the ‘spanwise case’ and the flows

in ducts with r > 1 as the ‘Hartmann case’.

OPTIMAL MODES
The base flow is illustrated in figure 1. One can see the char-

acteristic features of the MHD flow: a nearly uniform core and
specific boundary layers: Hartmann layers of thickness Ha−1

at the walls normal to the magnetic field and sidewall (Shercliff)
layers of thickness Ha−1/2 at the walls parallel to the magnetic
field.

Before presenting the results for the optimal modes, it is
useful to recall the general features of the effect of the imposed
magnetic field on the flow structure in the case of low magnetic
Reynolds number. As derived from the equations (see, e.g., [12])
and demonstrated in numerical computations of MHD turbulence
(see, e.g., [13]), the effect is two-fold. The Joule dissipation of
induced electric current leads to suppression of the flow. Fur-
thermore, since the Joule dissipation is proportional to the co-
sine squared of the angle between the magnetic field lines and
the wavenumber vector of the velocity, the suppression is the
strongest for the flow modes with strong variation in the mag-
netic field direction and zero for the modes uniform in this direc-
tion. Applied to the case of growing perturbations, this means
that the growth is suppressed and that stronger growth tends to
be experienced by perturbations aligned with the magnetic field.
This effect was manifested by oblique character of the optimal
modes in the channel with spanwise magnetic field [9].

In the hydrodynamic case we found, in agreement with [7],
that, except for small times T , the maximum amplification is due
to the streamwise rolls evolving into streamwise streaks.

The global amplification data for non-zero magnetic fields
are summarized in figure 2. In addition to the optimal modes
obtained for modes with arbitrary streamwise wavenumber, the
maximum amplifications for purely streamwise modes with α =
0 are included. One can clearly see the effects of the imposed
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magnetic field. One effect is the suppression of perturbations
by the magnetic field. The amplification reduces with growing
Hartmann number. Another effect is that the strongest growth is
consistently by non-streamwise perturbations.

The effect of the duct aspect ratio on the amplification is fur-
ther illustrated in figure 3. The amplification factor maximized
over wavenumbers α is shown as a function of time T for the
case Re = 5000 and Ha = 10. The results of a periodic channel
with either wall-normal or spanwise magnetic field are shown for
comparison in dots.

One can see in the left plot of figure 3 that at r → 0 the am-
plification factor G approaches the factor obtained in a channel
with spanwise magnetic field [9]. The maximum amplification
increases significantly when r is reduced to r ¿ 1. This behav-
ior appears natural since in this case perturbations localized near
the long side walls parallel to the magnetic field are expected to
dominate. It is not surprising that their behavior becomes similar
to the behavior of the perturbations in the channel as r → 0.

On the contrary, for large r (long Hartmann walls) the am-
plification factor G is significantly higher than for periodic Hart-
mann channel (right plot of figure 3). In fact, r has little effect
on the amplification. This observation suggests that the Shercliff
layers, which do not depend on r when r À 1, still provide the
dominant contribution to the amplification even though they are
much shorter than the Hartmann walls.

Our interpretation of the results presented in figure 3 is con-
firmed by visualization of the optimal modes shown in figures 4
and 5. The pattern, which is visualized by the streamwise ve-
locity perturbations, corresponds to the global optimal modes at
the maximum amplification time. It is clearly seen that the struc-
tures are largely confined to the Shercliff boundary layers near
the sidewalls (walls parallel to the magnetic field). Remarkably,
this is also true in the case r > 1. This clearly separates the duct
flow from the Hartmann channel flow. Also important is that in
all cases, the optimal perturbations are not streamwise (α 6= 0).

DIRECT NUMERICAL SIMULATION OF TRANSITION
Further insight into the nature of the transition can be ob-

tained from fully non-linear simulations. Systematic simulations
are currently under way. First results are presented in figure 6.
Transition in the flow at Re = 5000, Ha = 10, and r = 6 is trig-
gered by random 3D noise imposed at the initially laminar flow
state. The figure shows snapshots of the mean velocity profile
corresponding to various phases of transition. It is clearly seen
that the basic conclusion of the linear analysis is confirmed. The
instability originates in the boundary layers near the side walls.
The transition process proceeds with the perturbations growing
in amplitude and spreading into the core flow. Similar behavior
was observed at r = 3 and r = 1.

CONCLUSION
The main conclusion of our work is that the transition to tur-

bulence in the MHD duct flow occurs first in the Shercliff layers
near the walls parallel to the magnetic field. This is true in a
wide range of aspect ratios, including, rather unexpectedly, the
cases of a duct strongly elongated in the direction perpendicular
to the magnetic field, in which the Shercliff layers occupy a very
small fraction of the duct. The transition appears to follow the
conventional scenario of transient growth of roll-like structures
evolving into streaks and secondary instability and breakdown of
the streaks. The scenario is modified by the magnetic field in the
sense that the optimal modes causing the transition are not purely
streamwise.

One implication of the results is that we have to be care-
ful while interpreting the data of liquid metal experiments. Vi-
sual observation of flow structure is impossible in such experi-
ments and the transition is typically detected by the change in
the Reynolds number dependency of the friction coefficient (see,
e.g. [10]). This event is usually attributed to the lost of stabil-
ity by the Hartmann layers. This may be correct in the cases
of very high Hartmann numbers (as indicated by the agreement
between the results of [10] and our analysis of the Hartmann
channel flow [8]). In such cases, the turbulence generated in the
earlier transition within the Shercliff layers would likely remain
confined to these layers and, thus, would not affect the friction.
In flows with moderate vaules of Ha, however, the possibility
that the observed sharp bend of the friction curve corresponds to
the instability of Shercliff layers should be considered.
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FIGURE 4. Spanwise case (r = 1/9). The optimal perturbation at Topt corresponding to maximum amplification Mopt(Re,Ha,r) is shown using
iso-surfaces of the streamwise velocity perturbation for Reynolds number Re = 5000 and Hartmann numbers Ha = 10 (left), Ha = 50 (right). The
arrow indicates the orientation of applied magnetic field B.

FIGURE 5. Hartmann case (r = 9). The optimal mode corresponding to the maximum amplification Mopt(Re,Ha,r) for Reynolds number Re = 5000
and Hartmann numbers Ha = 10 (left), Ha = 50 (right). Spatial structure at Topt is shown by iso-surfaces of the streamwise velocity in one half of the
domain. The arrow indicates the orientation of applied magnetic field B.

lation of forced MHD turbulence at low magnetic Reynolds
number”. J. Fluid Mech., 358, pp. 299–333.
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FIGURE 6. Streamwise velocity in the duct cross-section at different stages of transition for Re = 5000, Ha = 10, r = 6.
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