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ABSTRACT 
In polymer processing, it is established that the flow causes the 

polymer chains to stretch and store the energy, by changing 

their quiescent state free energy.  Koscher et al. [1] presented in 

2002 an experimental work concerning the flow induced 

crystallization. They made the assumption that the polymer melt 

elasticity, quantified by the first normal stress difference, is the 

driving force of flow-induced extra nucleation. In their work, a 

constant shear stress is considered, and the first normal stress 

difference agrees with the use of the trace of the stress tensor. 

The stored energy due to the flow “∆ Ge” is commonly called 

elastic free energy and associated to the change in 

conformational tensor due to flow. By extending the Marrucci 

theory [2], several studies link this ∆ Ge to the trace of the 

deviatoric stress tensor (first invariant). In this paper, a 

numerical model able to simulate polymer crystallization is 

developed. It is based on the assumption that flow induced extra 

nucleation is linked to the trace of the deviatoric stress tensor. 

Thus a viscoelastic constitutive equation, the multimode Upper 

Convected Maxwell (UCM) model, is used to express the 

viscoelastic extra-stress tensor ττττVE
, and a damping function is 

introduced in order to take into account the nonlinear 

viscoelasticity of the material. In Koscher’s work [1], the 

integral formulation of the Upper Convected Maxwell (UCM) 

model is used too, but without any damping function, i.e. they 

assume that the polymer behaves as linear viscoelastic. 

As an application, a 2D isothermal flow configuration between 

two plates is simulated. A comparison between the proposed 

model and the Koscher’s one is then performed, and interesting 

results are presented: without introducing a damping function, 

the two models give similar results in the same configurations, 

but the introduction of a damping function leads to important 

discrepancies between the two models, seeming that the 

assumption of a linear viscoelastic behavior is not realistic 

when the fluid strain and /or stresses are greater than a given 

values. 

Keywords :  Crystallization, Flow induced nucleation, Polymer, 

Viscoelasticity 

 

 

1. INTRODUCTION 
To simulate the heat transfer in polymers materials during their 

processing in an accurate way, it is necessary to take into 

account all the thermodynamical and physical transformations. 

One of them, which concern specifically the semicrystalline 

polymers, is the crystallization phenomenon.  
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 The thermomechanical history of polymers affects their 

crystallization kinetics during their processing. The shear stress 

modifies both the crystallization morphology and kinetics. It 

orients the macromolecular chains, which helps the nucleation, 

accelerates the crystallization and generates oriented 

morphologies. We can summarize the effects of shearing 

stresses on the crystallization as follows: 

- acceleration of the crystallization kinetics;  

- increase in the number of nuclei, resulting in a decrease of the 

size of crystallites; 

- orientation in the deposition of nuclei in rows parallel to the 

direction of flow; 

- increase of the anisotropy of the crystalline lamellae; 

- increase of the crystallization temperature and decrease of the 

induction time.  

Several studies concerning the flow induced crystallization can 

be found. Usually, they aim to find a set of simple and 

experimentally accessible parameters to describe the 

crystallization kinetics. Several authors have modeled the flow 

effect on the crystallization kinetics using the isokinetic 

Nakamura equations. The models obtained account for the 

relative crystallinity evolution without describing the crystalline 

morphology.    

One can quote the work of Guo et al. [3], which links the flow 

effect on the crystallization kinetics to the increase of the 

equilibrium melting temperature Tm
0
 in the Nakamura model.  

For a more detailed review on crystallization kinetics modeling, 

see [4]. 

 

Two types of approaches were employed during the 

development of the global theories of crystallization kinetics: 

the geometrical approach, which express the volume occupied 

by the semicrystalline entities, and the probabilistic approach, 

which calculates the probability that an element of volume is 

transformed. The main differences lie in the mathematical 

treatment, but the basic assumptions and especially the results 

are identical. 

The geometrical approach considers the free growth of 

crystalline entities of simple geometries, and then applies a 

correction taking into account the so-called impingement (i.e. 

the fact that the growth of each entity is not free, but blocked by 

the contact with the closest entities).  

For a finite volume, the variation of the crystallinity dα is 
related to the variation of the crystallinity for an infinite 

available volume dα’ by: 
(1 ) 'α α α= − ⋅d d     

                (2)  

This expression can be integrated over time and gives: 

( ) ( )( )1 exp 'α α= − −t t    

     (3)  

α’is a fictitious crystallinity, obtained for a free growth of the 
crystallites. Equation (3) represents the basis of all the Avrami 

type models. 

In the probabilistic approach, Kolmogorov [5] and Evans [6] 

chose to calculate the probability that a representative point of a 

volume is crystallized. They assume that, within a good 

approximation, this probability represents the crystallinity 

( ).tα Billon in [7] showed that the two theories of Evans and 

of Avrami are equivalent because they are implicitly based on 

the same assumptions. In this work, the global approach of 

Avrami is used. 

 

A variety of approaches have been proposed to model the 

flow effect on crystallization kinetics. The most interesting ones 

explicitly take into account the nucleation and growth process. 

Indeed, experimental observations have clearly shown that the 

number of nuclei per unit volume (or nucleation density) is 

considerably increased under shear conditions [8,9]. This 

additional nucleation rate can be linked to various parameters: 

free energy related parameters [10], shear rate [11], 

combination of the shear strain and the shear rate [12], 

recoverable strain tensor [13].  

 

Koscher et al. [1] carried out a consequent experimental work 

to characterize the flow-induced crystallization kinetics of an 

isotactic polypropylene. The samples were melted in a Linkam 

shearing device (plate-plate geometry), brought to the wanted 

crystallization temperature and subjected to short term shearing 

treatments (up to 100 seconds) at various shear rates. The 

subsequent crystallization was then observed using polarized 

light microscopy. It was shown that the number of nuclei and 

thus, the rate of crystallization, are dramatically raised by the 

increase in shear rate. The corresponding kinetic model, based 

on the Avrami theory, connects the extra number of activated 

nuclei to the first normal stress difference induced by the shear 

treatment. The stress tensor is calculated according to a 

viscoelastic Maxwell model, leading to a semi-analytical 

expression of the degree of crystallinity in the case of an 

isothermal pure shear flow. This model, in its current form, 

doesn’t predict the formation of oriented crystallites, but it takes 

into account the link between the rheological behavior of the 

melt and the crystallization kinetics enhancement.  

It is established that the flow causes the macromolecular chains 

to stretch and store additional energy, resulting in an increase in 

the melt free energy. The quantity of stored energy is commonly 

called elastic free energy (∆Ge) and is related to the flow-

induced change in conformational tensor. Extending the 

Marrucci theory [2], several studies link ∆Ge to the trace of the 

extra-stress tensor, see the recent review by Mazinani et al. [14] 

for instance. In Koscher’s work [1], the assumption is made that 

the polymer melt elasticity, quantified by the first normal stress 

difference, is the driving force of flow-induced extra nucleation. 

They consider a pure shear flow, in which the first normal stress 

difference is equivalent to the trace of the extra-stress tensor. 

Using the experimental data presented by Koscher et al. [1], we 

develop, in the present paper, a numerical model able to 

simulate the crystallization of polymers. We make the 
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assumption that the polymer melt elasticity, quantified by the 

trace of the extra-stress tensor is the driving force of flow-

induced extra nucleation. In the case of pure shear flow, this 

assumption agrees with Koscher’s approach of considering the 

first normal stress difference as the enhancement factor. Thus, 

the sensitivity of the crystallization kinetics to the flow is not 

only a consequence of the flow kinematics, but is determined by 

the rheological behavior of the melt. 

 

2. MATHEMATICAL FORMULATION 
 

2.1. Balance Equations 
In the general compressible and non-isothermal case, 

modelling the polymer melt flow requires a coupling between 

the mass conservation or continuity equation (1), the 

momentum equation (2) and the energy equation written in the 

temperature form (3): 

0
t

ρ ρ∂ + ∇ ⋅ =
∂

v                  (1) 

where ρ is the density and v the velocity vector; 

V
p

t
ρ ρ∂ + ⋅∇ = −∇ + ∇ ⋅ + ∂ 

v
v v I τ f               (2) 

where p is the hydrostatic pressure, I the identity tensor, ττττV
 the 

viscous extra-stress tensor and f the specific body forces vector; 

. 

2.2. Crystallization Kinetics 
 
Polymer crystallization can be described as a nucleation and 

growth process: nuclei are activated and grow into crystallites at 

rates depending on the thermo-mechanical state of the molten 

polymer.   

The spherulitic growth process is modeled using two sets of 

Schneider rate equations [24], i.e. one set for each type of 

nucleation: 
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           (4) 

It should be noticed that the Schneider rate equations are 

mathematically equivalent to the generalized Kolmogorov 

formulation [15], which is itself the basis of the Avrami-

Nakamura theory. In these sets of equations, convective terms 

are necessary to take into account the advection of crystallinity 

by the flow. The superscript “T” denotes thermally induced 

crystallization, whereas the superscript “f” denotes flow 

induced crystallization. For more details, see [15] 

The extended global crystalline volume fraction ϕ0global is 
simply the sum of the thermally induced extended crystalline 

volume fraction and the flow induced extended crystalline 

volume fraction: 

0 0 0

global T fϕ ϕ ϕ= +
                          (5) 

The real global crystalline volume fraction (or the relative 

crystallinity) α is finally obtained using the Avrami model for 

spherulitic impingement: 

( )01 exp
globalα ϕ= − −

           (6) 

 

2.2.1. Thermally Induced Nucleation  
A logarithmic variation of the density of thermally 

activated nuclei N
T
 with the degree of supercooling ∆T = Tm

0
 – 

T (Tm
0
 being the equilibrium melting temperature) is assumed 

[16]: 

( )ln TN b T d= ∆ +               (7) 

where b and d are material parameters to be determined 

experimentally. More details are given in [17]. 

 

2.2.2. Flow Induced Nucleation  
As discussed in the introduction, the connection between the 

flow characteristics and the enhancement of nucleation have 

been described by various phenomenological models, using a 

more or less easily experimentally accessible variable, such as 

the shear rate, the stress tensor or an energy-based function. It is 

not yet possible to affirm which option is the best, mainly 

because the physical basis of the interaction between flow and 

crystallization are not completely understood. Nevertheless, the 

most widespread explanation is that flow tends to orientate and 

stretch the macromolecular chains constituting the polymer 

melt, thus decreasing the entropy, increasing the local molecular 

ordering and the predisposition to give new homogeneous 

nuclei, whereas in quiescent conditions the heterogeneous 

nuclei are the precursors of the crystallization process. Based on 

these considerations, it appears clearly that a realistic flow 

induced crystallization model should take into account 

information about the macromolecular chain dynamics. This 

seems particularly important in the case of short-term flows: 

after the cessation of flow, the molecular orientation is not 

relaxed instantaneously but progressively: an ordered state 

remains for a more or less long time depending on the 

molecular weight distribution. As a consequence, the flow 

induced nucleation process can continue although the melt is 

not flowing anymore. 

 In the present paper, the first invariant of the viscoelastic extra-

stress tensor tr(ττττ), which quantifies the elasticity of the melt and 

thus the molecular orientation, is used as the driving force of 

flow induced nucleation according to the following proposed 

relationship: 
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( ) p
f VEN C tr =  τɺ     (8) 

where C and p are two material-related parameters to be 

determined using the experimental data obtained by Koscher 

[18] for isotactic polypropylene.  

 

2.2.3. Crystalline growth rate 

 

As discussed in the introduction section, the radial growth rate 

of the spherulites GT is assumed to be temperature dependent 

only; hence a classic Hoffman-Lauritzen [12] expression is 

used: 

( ) ( )
*

0 exp exp
g

T

KU
G T G

R T T T T∞

   
= − −    − ∆  

 (9) 

where U
*
 is a parameter similar to an activation energy of 

motion, R is the gas constant,  

T∞ = Tg – 30 K is the temperature below which molecular 

motion becomes impossible, Tg is the glass transition 

temperature and ∆T is the supercooling degree. The parameters 

G0 and Kg have to be determined by experiments, for instance 

differential scanning calorimetry (DSC). 

 

2.3. Rheological model 
 

Our crystallization kinetics model links the flow-induced extra 

nucleation to the trace of the extra-stress tensor, thus a 

viscoelastic constitutive equation is required to express the 

viscoelastic extra-stress tensor ττττVE
. In Koscher’s work [1], the 

rubber-like liquid (RLL) constitutive equation, also known as 

Lodge equation, is used without any damping function, i.e. the 

polymer is assumed to behave as a linear viscoelastic material: 

The original Lodge equation is based on the assumption that 

temporary polymer network strands are deformed affinely with 

the macroscopic strain. However, large strains induce a change 

in the structure of the temporary network (Wagner 1976b). 

According to Wagner, there are two independent decay 

mechanisms for network strands: 

- linear-viscoelastic (time-dependant) relaxation, related 

to a memory function, 

- disentanglement by deformation, related to the 

damping function h (non-linear effects). 

Hence, assuming time-strain separability, the relaxation 

modulus can be expressed as: 

( ) ( ) ( ),G t G t hγ γ= ⋅     (12) 

where the damping function is that proposed by Wagner 

[Wagner 1976b]: 

( ) 2n
h e

γγ −=      (13) 

Since the choice of the damping function does not affect 

drastically the rheological behavior, preference was given to a 

simple form in which only one material parameter n is required. 

As our model, the Upper Convected Maxwell (UCM) 

differential formulation equivalent to the Lodge integral 

formulation, is introduced [2]: 

1VE VE h η
λ λ

∇ ⋅+ =τ τ D     (12) 

VE
∇

τ is called the upper convected derivative of the viscoelastic 

extra-stress tensor; it is a frame invariant quantity that can be 

defined as: 

( )
VE

TVE VE VE VE

t

∇ ∂= + ⋅∇ − ⋅∇ − ∇ ⋅
∂
τ

τ v τ τ v v τ   (13) 

λ is a relaxation time and η is a viscosity. The latter is linked to 
the linear relaxation modulus by the following simple 

relationship: 

Gη λ= ⋅       (14) 

A multimode description is convenient to model and 

characterize the relaxation spectrum using rheometry. Similarly 

to equation (14), a viscosity can be defined for each mode: 

i i iGη λ= ⋅       (17) 

The UCM constitutive equation gives the viscoelastic extra-

stress tensor corresponding to the i
th
 mode: 

1VE VE i

i i

i i

h η
λ λ

∇ ⋅
+ =τ τ D      (18) 

and the total extra-stress tensor is simply the sum of the modal 

extra-stress tensors: 

1

N
VE VE

i

i=

=∑τ τ   

 

3. APPLICATION OF THE MODEL 
 

In this section, the general model described above is applied to 

a polypropylene melt in a 2D pipe flow configuration, under 

isothermal conditions (isothermal crystallization,). 

Computations are carried out using a transient numerical 

procedure based on finite elements method. The aim is to 

compare the results obtained using our model considering with 

a linear viscoelastic behavior (Koscher’s configuration) and to 

those obtained with non linear viscoelastic model, by 

introducing the damping function. 

First, a validation of the model is proposed in a simple shear 

flow. 

 

4. MATERIAL DATA 
 

An isotactic polypropylene (iPP Eltex HV 252, commercialized 

by Solvay) is studied. Its weight average molecular weight is 

Mw = 180.8×103 g.mol
-1
 and its polydispersity index is Mw/Mn = 

7.3 (where Mn is the number average molecular weight). An in-

depth characterization of this polymer has already been carried 

out and is available in the literature: thermophysical properties 

in [18,19], rheological properties and crystallization kinetics in 

[1]. 
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4.1.  Thermophysical Properties 
 

All the thermophysical properties are given as a function of the 

liquid state and the solid state by means of mixing low, 

weighted by the relative crystallinity, see [17].  

 

4.2. Rheological Properties 
 

The viscoelastic behavior of the polymer was studied by 

Koscher assuming an eight-mode Maxwell model. Information 

about the measurement and identification procedure can be 

found in [20]. The values of the relaxation times and the 

corresponding contributions are reported in Table 1.  

 

  TABLE 1 - RELAXATION SPECTRUM OF PP FOR THE 
MAXWELL MODEL AT T = 203 °C 

Mode no. i Relaxation time λi  (s) Contribution Gi   (Pa) 

1 3.162 × 10-3 7.796 × 104 
2 1.118 × 10-2 1.489 × 104 
3 4.394 × 10-2 1.321 × 104 
4 1.638 × 10-1 4.202 × 103 
5 6.105 × 10-1 1.279 × 103 
6 2.276 × 100 2.490 × 102 
7 8.483 × 100 2.541 × 101 
8 3.162 × 101 5.244 

In addition to the viscoelastic properties, solving the 

balance equations (2) and (3) requires parameters for the 

generalized Newtonian model. These parameters are found 

using the dynamic frequency sweep experiments carried out by 

Koscher. All the parameters of the generalized Newtonian 

model are listed in Table 2. 

 

5. RESULTS 
 

5.1. Isothermal shear flow: validation of the model 
This section is devoted to the validation of our numerical model 

against existing experimental data and computational results, in 

a simple configuration: the isothermal crystallization with short-

term shearing treatment at constant shear rate for the whole 

flow. In this configuration the trace of the extra stress tensor is 

identical to the first normal stress difference, so that, the 

comparison with Koscher’s model become possible. The effects 

of the shearing intensity and of the temperature on 

crystallization kinetics are presented in Fig. 1 in terms of half-

crystallization time. On one hand, the acceleration of 

crystallization becomes noticeable when the shear rate exceeds 

a value ranging between 0.1 and 1 s
-1
: this can be considered as 

the critical shear rate. On the other hand, the decrease in 

crystallization temperature has an enhancing effect on the 

kinetics whatever the shear rate. In order to validate our 

numerical model, the results are compared to Koscher’s 

experimental measurements [18]. The agreement is quite good. 

In particular, the critical shear rate value and the half-

crystallization time decrease are well predicted.  

 
FIGURE 1 –  COMPARISON OF CALCULATED (OUR MODEL, 

KOSCHER’S MODEL, ZENG’S MODEL° AND 
EXPERIMENTAL HALF-CRYSTALLIZATION TIMES VERSUS 

SHEAR RATE FOR SEVERAL CRYSTALLIZATION 
TEMPERATURES  (SHEARING TIME : 10 S) 

Moreover, our numerical results are very close to those 

obtained by Koscher et al. with their semi-analytical model. 

This was expected, since we have used many of their modeling 

assumptions (rheological behavior, quiescent crystallization 

kinetics) and the same material data. However, the introduction 

of a damping function and the use of a different flow-induced 

nucleation model can explain the deviation between our results 

and theirs when the shear rate increases. We have also plotted 

the numerical results obtained by Zheng et al. [21] for the same 

polymer. Slight discrepancies can be observed in the results, 

obviously because the two models are not based on identical 

assumptions. In Zheng’s predictions, the crystallization kinetics 

enhancement is effective even for the lowest shear rates (lower 

than 1 s
-1
) and the critical shear rate values are generally higher 

than ours. Nevertheless, the average deviation between the 

measurements and the calculations is equivalent for both 

models.  

 

5.2. Isothermal 2D flow 
 

In our model, the flow effect is taken into account by an 

enhancement of nucleation linked to the trace of the extra-stress 

tensor, i.e. the normal stress in pure shear flow. Fig 2 clearly 

explicit this relationship. The shearing intensity determines the 

maximal stress level and increase rate. As the strain grows, the 

relaxation modulus decreases because of the non-linear effects 

(damping function). Consequently, when the strain reaches 

some critical value, the stress begins to decay. Moreover, when 

the shearing stops, i.e. ts is elapsed (Fig. 2), the stress decays 

more steeply, but doesn’t relax instantaneously due to the fluid 

elasticity. This represents the polymer relaxation kinetics, which 

depends on the model chosen to describe its viscoelastic 

behaviour.  
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FIGURE 2–  EVOLUTION OF THE VISCOELASTIC NORMAL 
STRESS FOR ISOTHERMAL CRYSTALLIZATIONS UNDER 

SEVERAL SHEAR RATES AND SHEARING TIMES 
(SYMBOLS INDICATE THE SHEARING TIMES) 

 

Lets now analyse the effect of choosing a non lenar beaviour, 

and its discripency to that obtained considiring a linear 

viscoelstic one. After validation of the model in simple shearing 

flow, a 2D isothermal analysis is carried out.  

For this configuration, a polymer melt, at a given temperature 

(140 °C), is considered flowing in an isothermal rectangular 

cavity, having 5mm thickness and 10 cm large. A parabolic 

velocity profile is imposed on the entrance zone during 2 

seconds time, and then suppressed. The polymer flow stops 

after relaxation during a short time.  

Figure 3 shows the fluid strain after a two second imposed inlet 

parabolic velocity, at several locations in the cavity with and 

without a damping function. As expected, the same flow 

displacement is obtained for the two models. It is imposed by 

the inlet conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 3–   FLOW STAIN FOR SEVERAL LOCATION IN THE 
CAVITY THIKNESS 

           

If we analyze the corresponding stress state generated by this 

flow. The same flows do not exhibit the same stress tensor, 

depending on considering a damping function to describe the 

rheological behavior of the fluid or no. 

Figure 4 presents the evolution of the trace of the stress tensor 

versus time, in the case of a linear viscoelastic model, us 

assumed by Koscher. The same quantity is represented in figure 

5, considering a non linear model (our model).  In the first case, 

the trace of the stress tensor growth gradually as the inlet 

velocity acts. This means, that if the velocity continue for a long 

time, a very high value of the stress will be reached, and this 

value growth to infinity. It seems to be an aberration. By 

introducing a damping function, the relaxation of the fluid is 

then taken into account, and the evolution of the stresses 

becomes more reasonable. As the strain continue, the relaxation 

modulus decreases because of the non-linear effects, leading to 

a break down of the stress values when the strain reaches some 

critical value. When the flow is stops, the stress decays more 

steeply, but doesn’t relax instantaneously due to the fluid 

elasticity. This represents the polymer relaxation kinetics, which 

depends on the model chosen to describe its viscoelastic 

behaviour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4–  TRACE OF THE VISCOELASTIC STRESS 

TENSOR? AT DEFFERENT LOCATIONS IN THE CAVITY 
THICKNESS? WITH THE LINEAR MODEL  
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FIGURE 5– TRACE OF THE VISCOELASTIC STRESS 
TENSOR, AT DIFFERENT LOCATIONS IN THE CAVITY 

THICKNESS, WITH THE NON LINEAR MODEL (DAMPING 
FUNCTION) 

 

The damping function introduced into the model is an 

exponential function. For higher shearing stresses, the damping 

function value decreases quickly, and its effect on the flow is 

more important. As this function decreases, some modes in the 

Maxwell model become negligible. Near the wall, the shear rate 

is greater than in the core zone. For this reason, the evolution of 

the nucleation density versus time, presented in figure 6, shows 

that the crystallization induced by the flow is maximum close to 

the wall, where the stretching stresses are higher. If we compare 

the nucleation density calculated with the non-linear model, the 

number of nuclei is approximately two times less important than 

in the linear case, because of stress relaxation during the flow as 

illustrated in figure 7, where Nrf represents the number of flow 

induced nuclei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 6–  FLOW INDUCED NUCLEATION DENSITY WITH 

THE NON LINEAR MODEL (DAMPING FUNCTION) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 7–  NUCLEATION DENSITY WITHOUT THE 

DAMPING FUNCTION 
 

 

 

5. CONCLUSION 
 

In this work, a flow induced crystallization model is 

developed taking into account the viscoelastic behavior of semi-

crystalline polymers. 

Two distinct nucleation rates are considered. On one hand, the 

thermally induced nucleation rate corresponds to the nuclei that 

would be activated in quiescent conditions and only depends on 

the temperature level. On the other hand, the flow induced 

nucleation rate is linked to the trace of the extra-stress tensor, 

via a suggested empirical non linear relationship, which is a 

representative measure of the elasticity in the polymer melt, i.e. 

the orientation and stretching of the macromolecular chains.   

 

The viscoelastic extra-stress tensor is calculated using the 

differential formulation of the Upper Convected Maxwell 

(UCM) model. The rheological behavior of the studied polymer 

(PP) is described by means of an eight mode relaxation 

spectrum and a damping function is introduced to account for 

the non-linear viscoelastic effects. 

A comparison of stress tensors computed considering linear and 

non linear viscoelastic models shows that strong errors can be 

made, when assuming a linear behavior with large strain cases, 

as it was the case in several works related in the literature 

The effect of this error impact strongly the crystallization rate 

induced by the flow, because it is linked to the chains 

orientation, due to the stress state generated by the flow. 
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