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ABSTRACT 
In this study, the flow pattern in the novel viscous pump is 

analyzed using the lattice Boltzmann method (LBM) to 
simulate the whole flow field in the pump with three shape 
cross-sections of cylinders, the circular, rectangular, as well as 
square. The solid curved wall boundary condition based on 
interpolation and bounce-back on the wall of the LBM 
simulation is used in steady and unsteady flow, and the moving 
boundary condition is also used in the latter. The analyses 
predicted the distributions of streamlines and the average 
dimensionless velocities at the exit profile which change with 
time. The numerical results of the average dimensionless 
velocities at the exit profile are in agreement with previous 
experimental works, which indicate that the circular contour is 
better than the rectangular or square ones. 

INTRODUCTION 
Interest in the fluid mechanics of micromachines has been 

boosted by recent impressive advances in the technology of 
microfabrication. There are certain physical effects that become 
important at these small scales which have to be taken into 
account in the design of appropriate machinery. Large viscous 
forces in relation to inertia are one effect. Due to these 
differences, micromachines that are simple reduced in size may 
not work. 

From the point of view of application, pumps are one of 
the kinds of fluid micromachines that have been conceived. At 
such small scales, conventional principles of rotating 
turbomachinery based on centrifugal and inertial forces are not 
very useful. Reciprocating pumps, though feasible, require 
rather intricate microfabrication on account of the need for 
valves and seals. Since viscous forces tend to be important at 
small scales, a pump based on viscous action seems to be 
logical [1-4]. 

The lattice Boltzmann method, a derivative of lattice gas 
automata (LGA) method, has been successfully demonstrated 

to be an alternative numerical scheme to traditional numerical 
methods for solving partial differential equations and modeling 
physical systems, particularly for simulating fluid flows with 
the Navier-Stokes equations. In traditional numerical methods, 
the Navier-Stokes equations are solved by some specific 
numerical discretization. In contrast, the fundamental principle 
of lattice Boltzmann method is to construct a simplified 
molecular dynamic that incorporates the essential 
characteristics of the physical microscopic processes so that the 
macroscopic averaged properties obey the desired macroscopic 
equations. This microscopic approach in the lattice Boltzmann 
method incorporates several advantages of kinetic theory. It 
includes clear physical pictures, easy implementation of 
boundaries and fully parallel algorithms [5-6]. In particular, the 
Lattice Boltzmann method has been successfully applied to 
problems such as fluid flows through porous media [7], 
multiphase fluid flows [8], and suspension motions in fluids [9-

11]. 

TRANSVERSE-AXIS ROTARY VISCOUS PUMP AND 
DESIGN PRINCIPLES 

Pumping devices, which is appropriate for microscale 
applications, can be divided into two mean categories: 
mechanical pumps and nonmechanical pumps [2]. 

The first category usually utilizes moving parts such as 
check valves, oscillating membranes, or turbines for delivering 
a constant fluid volume in each pump cycle. The second 
category adds momentum to the fluid for pumping effect by 
converting another energy form into the kinetic energy. While 
the first category was mostly used in macroscale pumps and the 
micropumps with relatively large size and large flow rates, the 
second category discovers its advantages in the microscale. 
Since the viscous force in microchannels increase in the second 
order with the miniaturization, the first pump category cannot 
deliver enough power in order to overcome its high fluidic 
impedance. 
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The transverse-axis rotary viscous pump is the type of 
mechanical pumps. It is based on the rotation of a cylinder 
placed asymmetrically in a narrow duct; the differential viscous 
resistance between the small and large gaps causes a net flow 
along the channel. 
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Fig. 1 Schematic of flow configuration 

Fig. 1 shows the geometrical configuration of the problem 
under investigation. The plate B is positioned at a vertical 
distance 2h from the bottom of the open tank A filled with a 
viscous fluid. A cylindrical rotor C (with the largest distance 2a 
of cross-section) is placed at distance hU and hL from the plate 
B and the bottom of the tank, respectively. In the present 
configuration, fluid flow from right to left in the channel 
portion is induced by counter-clockwise rotation of the 
cylinder. The space within the channel walls, indicated by the 
dashed line, as the pump portion; the rest will be a lord external 
to the pump. 

 

Fig. 2 Three type cross-sections of cylinders 

Fig. 2 shows the three shape cross-sections of cylinders, 
the circular (8.98 mm diameter), square (8.98 mm diagonal) 
and rectangular (8.98 mm1 mm). The latter two shapes are 
unsteady as well as moving boundary problem. 

Some parameters of pump are defined below: 
Dimensionless length s h a  

Dimensionless velocity   aU u  

Eccentricity ( ) 2Uh a h a     

Reynolds number 22 Re a  

GENERAL LBGK MODEL 
A popular kinetic model adopted in the literature is the 

single-relaxation-time (SRT) approximation, the so-called 
Bhatnagar-Gross-Krook (BGK) model [12]  

(0)1
( )


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where (0 )f is equilibrium distribution function (the Maxwell-

Boltzmann distribution function), and  is the relaxation time. 
To solve for f numerically, Eq. (1) is first discretized in the 

velocity space using a finite set of velocity vectors { }  in the 

context of the conservation laws: 
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In the above equation, ( , ) ( , , )f t f t x x   is the distribution 

function associated with the th  discrete velocity 
 and 

( )eqf  is the corresponding equilibrium distribution function in 

the discrete velocity space. The nine-velocity square lattice 
model, being referred to as the 2-D 9-velocity (D2Q9) model 
(Fig. 3), has been widely and successfully used for simulating 
two-dimensional (2-D) flows. In the D2Q9 model, 

e  

denotes the discrete velocity set, 
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where /c x t  , x  and t  are the lattice constant and 
the time step size, respectively. The equilibrium distribution for 
D2Q9 model is of the form [13] 
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where 
  is the weighting factor given by 
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Fig. 3 A 2-D 9-velocity lattice (D2Q9) model 

In the discretized velocity space, the density  and 
momentum fluxes u are defined as particle velocity moments 
of the distribution function, 

8 8

0 0

,     f f  
 

 
 

  u e                            (6) 

The speed of sound in this model is / 3sc c  and the 

equation of state is that of an ideal gas, 
2
sp c                                          (7) 

In the LBM, Eq. (2) is discretized in a very special manner. 
The completely discretized equation, with the time step t  
and space step x t  e , is 

( )1
( , ) ( , ) [ ( , ) ( , )]     


      eq

i i i if t t t f t f t f tx e x x x    (8) 

inlet 
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where t   , and 
ix  is a point in the discretized physical 

space. Eq. (9), termed the LBE with BGK approximation or 
LBGK model, is usually solved in the following two steps: 
collision step:  

( )1
( , ) ( , ) [ ( , ) ( , )]   


    eq

i i i if t t f t f t f tx x x x          (9a) 

streaming step: 
( , ) ( , )i if t t t f t t       x e x                     (9b) 

where f represents the post-collision state. 

In order to derive the Navier-stokes equations from LBE, 
the Chapman-Enskog expansion is used. The corresponding 
viscosity in the Navier-stokes equation derived from Eq. (8) is 

2 1

6

 
                                        (10) 

 

Fig. 4 Layout of the regularly spaced lattices and curved wall 
boundary 

SOLID BOUNDARY TREATMENT AND MOVING 
BOUNDARY CONDITION OF LBM 

Chronologically, LBM was evolved from the LGA method. 
In dealing with straight walls, the bounce-back condition was 
proposed in conjunction with the LGA method. Curved walls 
were treated as a series of steps. This method has been 
extensively used in LBM simulation. Only more recently, 
efforts have been made to preserve the geometric integrity of 
the curved walls which is important in simulating high 
Reynolds flows. 

In Fig. 4, a curved wall separates the solid region from the 
fluid region. The lattice node on the fluid side of the boundary 
is denoted as 

fx  and that on the solid side is denoted as
bx . 

The filled small circles on the boundary,
wx , denote the 

intersections of the wall with various lattice links. The 
boundary velocity at 

wx  is 
wu . The fraction of an intersected 

link in the fluid region is , that is, 

f w

f b


 



x x

x x
, 0 1                                (11) 

The horizontal or vertical distance between 
bx  and 

wx  

is x  on the square lattice. The particle momentum moving 
from 

fx  to 
bx  is 

e  and the reversed one from 
bx  to 

fx  

is 
  e e . 

Second-order Accuracy Models for Curved Walls 
Filippova and Hänel [14] presented a curved boundary 

condition which, for the first time, provided a second-order 
accurate treatment for a curved solid wall. To improve the 
numerical stability, Mei et al. [15] presented an improved curved 
boundary condition based on the scheme of Filippova and 
Hänel. Bouzidi et al. [16] proposed a different but simple 
boundary condition for curved wall based on interpolation and 
the bounce-back scheme. 

To construct ( , )bf t
 x  based upon known information in 

the surrounding fluid nodes, Filippova and Hänel [14] proposed 
the following linear interpolation: 

( )
2

3
( , ) (1 ) ( , ) ( , ) 2            

b f b wf t f t f t
c

x x x e u    (12) 

with 
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In the above, ( , )f f tu u x  is the fluid velocity near the 

wall and 
bfu  is to be chosen. 
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u u
u  and (2 1) /    for 0.5     (14a) 

bf fu u  and (2 1)

( 1)



 




 for 0.5                (14b) 

This scheme was used in the simulation of flow over 
asymmetrically placed cylinder in the channel flow. 

Mei et al. [15] suggested using different nodes to obtain 
( , )bf t

 x  when 1/ 2  . The purpose was to improve the 

numerical stability over Filippova and Hänel’s scheme. Thus, 
Eq. (14b) was replaced by 

bf ffu u  and (2 1)

( 1)



 




 for 0.5                 (15) 

where 
ffu  is the fluid velocity at the ff node in figure 4. 

Bouzidi et al. [16] presented a simpler boundary condition 
based on the bounce-back for the wall located at arbitrary 
position. In their work, both linear scheme and the quadratic 
schemes were given to obtain ( , )ff t t x  which is 

equivalent to ( , )bf t
 x . The linear version was as follow: 

1 2 1
( , ) ( , ) ( , )

2 2f f ff t t f t f t    
  

 
 x x x  

for 0.5                                      (16a) 

( , ) 2 ( , ) (1 2 ) ( , )f f ff t t f t f t t           x x x e  

for 0.5                                      (16b) 
In the above, it is noted that 

f tx e  is at the ff node in 

Fig. 4. They computed flow over a 2-D periodical array of 
cylinders and reported the second-order convergent results for 
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the inverse of the permeability. 
The above three boundary condition treatments all have 

second-order accuracy for curved boundary. The difference is 
that the first two needs to construct a fictitious fluid point 
inside the solid wall, and perform a collision step at that node, 
while the scheme of Bouzidi et al. only requires the known 
values of f  on the fluid side and no additional collision is 

required. It is emphasized that all three methods need to treat 
the boundary condition separately for 0.5   and 0.5  . 

In this paper, the solid curved wall boundary scheme of 
Bouzidi et al. was used to simulate flow within viscous pump 
for its simple form as well as good computational stability. 

 
Fig. 5 Scheme of moving boundary condition in LBM 

Moving Boundary Condition for Unsteady Flow 
Using LBM, solid region is separated from fluid region by 

walls. When walls are moving with velocity 
wu , some nodes 

will move out of the solid region into the fluid region, it must 
be specified some number of unknown distribution function on 
these nodes. Referring to Fig. 5, 

fx  denotes node becoming 

fluid node from solid region at one time step t . In this paper, 
the extrapolation formula proposed by Lallemand et al. [17] is 
used to compute the unknown distribution functions 

( ) 3 ( ) 3 ( ) ( )f ff fff fffff f f f     x x x x                 (17) 

where   is the direction which maximizes the quantity 

 e n  , and n  is the out-normal vector of the wall at the 

point through which the node moves to fluid region. 

NUMERICAL SIMULATION OF TRANSVERSE-AXIS 
ROTARY VISCOUS PUMP 

In this paper, the two-dimensional transverse-axis rotary 
viscous pump flow at Reynolds number of 0.56, dimensionless 
length S of 1.78, and eccentricity of 0.17 are simulated with 
LBM method described above, and the results are compared 
with experimental works reported previous. 
Computation Region, Grid and Boundary Condition 

The present simulation uses square grids with 978110 
lattice units to whole tank, while each lattice unit corresponds 
to 0.5 mm. The interpolation and bounce-back is used to solid 

curved wall, and the bounce-back boundary conditions are used 
at other walls. The shear-free boundary condition is used in free 
surface of tank. 

 

Fig.6 Streamlines of circular rotary axes 

  

(a) t=20000 

  

(b) t=40000 

  

(c) t=60000 

  

(d) t=80000 

  

(e) t=100000 

Fig.7 Instantaneous streamlines of non-circular rotary axes 

Simulation Results and Analyses 
1. Distributions of stream lines in pump 

Fig.6 and Fig.7 show the streamlines in viscous pump with 
circular/non-circular rotary axes. The primary vortices are 
formed around cylinder, at the meanwhile, other two secondary 
vortices exist. The size and location of vortices varies with the 
shape of cylinder section. The more symmetry of cylinder 
cross-section, the smaller of primary vortices size is. 
2. Evolvement history of average dimensionless velocity at 
outlet profile 

Fig. 8 shows the evolvement history of average 
dimensionless velocity at outlet profile of three shape cross-
section rotary axes. The tendency of the evolvement is similar, 
and non-circular cross-section rotary axis fluctuates 
periodically due to its moving boundary. However, the more 
symmetry of cylinder is, the large value of dimensionless 
velocity is. 
3. Comparison of computational and experimental results of 
average dimensionless velocity 

primary 
vortices

secondary 
vortices 
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Fig.8 Evolvement history of average dimensionless velocity at 
outlet profile of three shape cross-section rotary axes 

Table.1 Computational and experimental results of average 
dimensionless velocity 

U’ Computational Experimental[3] 
circular 0.0472 0.046 

rectangular 32.52% 31.8% 
square 63.46% 64.4% 

The computational and experimental results reported are 
listed in Table 1. For non-circular axes, it is the phase-average 
value in last three periods before computation finished. It can 
be viewed that the both two results are in agreement with each 
other, which indicate that the circular contour is better than the 
rectangular or square ones. 

CONCLUSION 
In this paper, a transverse-axis rotary viscous pump is 

described. The lattice Boltzmann method simulations are 
carried out to study the influence of various geometric 
parameters, which the results are compared with the experiment 
ones reported previous. The solid curved wall boundary 
condition based on interpolation and bounce-back on the wall 
of the LBM simulation was used in steady and unsteady flow, 
and the moving boundary condition is also used in the latter. 
The numerical results indicated that the more effective 
pumping and better performance is obtained with the increase 
symmetry of cylinder cross-section. 

Being a derivative of kinetic method, LBM has the several 
advantages on solving problems of unsteady and moving 
boundary, and will be getting extensive application in future 
with the progress of computational technique. 
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