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ABSTRACT
Fluid mechanics is considered to be a privileged field in

physics because phenomena can be made visible. This is unfor-

tunately not the case in turbulence where diffusion and mixing

of passive tracers are enhanced by turbulent transport. Conse-

quently, the analysis of the rich flow physics provided by direct

numerical simulations (DNS) and by modern optical diagnostic

techniques require advanced post-processing tools to extract fine

flow details. In this context, this paper reviews most recent tech-

niques used to reveal coherent structures and their dynamics in

turbulent flows. In particular, results obtained with standard Eu-

lerian techniques are compared to those obtained from a more

recent Lagrangian technique. Even if this latter technique can

provide finer details, it is found that the two methods are comple-

mentary. This is illustrated with DNS results and with experimen-

tal data including planar measurements as well as time-resolved

measurements converted to quasi-instantaneous volumetric data

by using the Taylor hypothesis.

INTRODUCTION
Vortical structures, that form and develop in the early

stages of turbulence, and coherent structures that appear in latter

stages are difficult to capture experimentally due to their tran-

sient nature. The intermittency precludes for example the use

of ensemble-averaging techniques and therefore measurements

∗Address all correspondence to this author.

have to be performed simultaneously at different locations in

space. Direct numerical simulations (DNS) have partially cir-

cumvented these experimental limitations and became a valuable

tool to perform numerical experiments where most quantities are

still challenging to measure. However, the analysis of such com-

plex flows is often performed indirectly by the use of additional

techniques that extract averaged flow properties thanks to sophis-

ticated statistical tools.

The increasing capabilities of measurement techniques lead

to a renewed interest in experimental sciences. In particular,

while volumetric particle image velocimetry (PIV) is still in its

infancy, currently available PIV systems can capture simultane-

ously large and small-scale vortical structures thanks to enlarged

dynamic ranges and time-resolved measurements. This offers

opportunities to reconstruct accurate quasi-instantaneous three-

dimensional velocity vector fields using the Taylor hypothesis,

and thus to compute all the components of the full velocity gradi-

ent tensor over a volume. The knowledge of fine flow details that

result from these measurements allows to supplement DNS sim-

ulations whose results are highly sensitive to initial and boundary

conditions for which clear information is still lacking.

This paper presents post-processing techniques that are used

to extract flow structures and to understand the flow physics, with

a particular emphasis on Eulerian and Lagrangian methods. This

is illustrated through examples where both experimental and nu-

merical aspects can be found in the literature, most of them being

derived from turbulent boundary layers and internal flows.
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VORTEX IDENTIFICATION AND DETECTION TECH-
NIQUES
Vortex identification criteria

The identification of vortical structures is a long-standing

problem and a vortex does not have a unique definition. Most

vortex identification techniques are based on point-wise analysis

of the velocity gradient tensor (Eulerian criteria). These tech-

niques are routinely used to locate vortex cores and the now clas-

sical works of Hunt et al. [1] on the Q-criterion, Chong et al. [2]

on the ∆-criterion, Jeong & Hussain [3] on the λ2-criterion and

Zhou et al. [4] on the λci-criterion (the swirling strength crite-

rion) are widely cited in the literature. Surprisingly, while Eule-

rian criteria were known to identify similar structures in most

flows, their mathematical equivalences were clearly explained

only recently in the work of Chakraborty et al. [5]. However,

these definitions provide Galilean-invariant criteria which are not

frame-independent as for example in the case of rotating frames.

This led Haller [6] to propose an objective definition of a vortex,

based on a Lagrangian method.

The Lyapunov exponent is widely used in dynamical system

theories, but its finite-time counterpart was only introduced re-

cently by Haller [7]. The approach is based on characterizing

coherent structures in terms of the stretching of initially adjacent

fluid particles. It was shown that the extraction of Lagrangian

coherent structures (LCS) is able to provide a powerful tool to

describe unsteady flows and represents an alternative to Eule-

rian criteria. Later, Shadden and coworkers [8] provided a theory

which explained the mixing and transport properties of LCS, act-

ing as material lines thus revealing the geometry of flow systems.

The computation of finite-time Lyapunov exponent (FTLE)

involves the determination of particle trajectories over a time T

which can be positive or negative. The Lagrangian nature of

the method restricted the number of applications both by the in-

herent three-dimensional nature of the computation and its pro-

hibitive computational cost (the work of Garth et al. [9] pro-

poses an adaptive scheme to compute FTLE fields). There-

fore, applications of the FTLE computation in turbulence are es-

sentially found in direct numerical simulations, including two-

dimensional turbulence [10] and fully turbulent channel flows

[11], while experimental applications are limited to two dimen-

sional flows [see 12] and two-dimensional turbulence generated

in rotating water flows [13] (Koh et al. [14] presents results on

the stratospheric polar vortex with the finite-size Lyapunov ex-

ponent).

In experiments, all these criteria can only be obtained from

PIV results, since the PIV technique is the only method which

provides accurate instantaneous velocity information in space,

thus allowing the computation of the velocity gradient tensor.

While the spatial resolution of PIV systems is near its optimum

due to physical limitations [15], the temporal resolution is contin-

uously increasing because of technology improvements in high-

speed camera and high-repetition rate lasers. Therefore, better

measurement capabilities lead PIV systems to capture the tempo-

ral behavior of a growing range of studies, which should increase

the number of applications of the FTLE.

Furthermore, it would not be surprising that high-speed cam-

eras become the standard in PIV in the near future. At present,

this is not the case, owing to the smaller spatial resolution and

signal-to-noise ratio generally achieved by CMOS cameras [16],

which are the camera usually used for time-resolved measure-

ments, compared with standard high-resolution CCD cameras.

In turbulence, this is particularly critical, because measurements

of small-scale velocity fluctuations are more sensitive to noise.

However, in the case of the FTLE, the choice of using a high

temporal resolution to the detriment of spatial accuracy may be

justified. Since the Lagrangian criterion involves the computa-

tion of particle trajectories by temporal integrations, the method

is naturally less sensitive to the noise than in the case of spacial

differentiations, the latter being on the contrary extensively used

by its Eulerian equivalents which are derived from the invariants

of the instantaneous local velocity gradient tensor. This leads to

reliable predictions, even in the case of large velocity errors [17].

Statistical detection approaches

To identify dominant eddies embedded in turbulent flows,

statistical tools are generally used. Even if the proper orthogo-

nal decomposition technique [18] is well-developed and despite

their similarities [19], the stochastic estimation [20] is usually

preferred, probably because it is more easy to implement. This

estimation consists on using the conditional information at one or

several locations in the flow to estimate the information at other

locations by minimizing the error in a mean-square sense. This

yields to a more simple flow model but in the same time reveals

organized structures.

The linear stochastic estimation (LSE) technique is based on

first order conditional averages of the velocity vectors, which is

usually sufficient for qualitative estimates because higher-order

terms generally show marginal improvement over linear estima-

tion [21]. The procedure requires the calculation of the two-point

second-order correlation tensor and involves the reconstruction

of the conditional velocity field around the reference points. If

only one reference is chosen, single-point conditional averages

relate the size of the conditional structure to the integral scale of

the flow. If a particular length scale has to be explored, multi-

point procedures are used [22]. LSE can also include time de-

pendence by computing the space-time correlation tensor.

The choice of the event vector that is used as the reference

signal in the LSE depends on the nature of the eddies to be in-

vestigated. The reference point is placed at a location where the

local velocity fluctuations are influenced by the convection of

the vortex structure that is studied. The following section will in-

vestigate some results from the literature where different vortex

pattern have been elucidated with this method.
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Some numerical results

Zhou et al. [23] extracted the statistically most probable sin-

gle structure from the DNS database of Kim et al. [24] on a low-

Reynolds-number channel flow (the Reynolds number, based on

friction velocity and channel half-width, is Reτ = 180). The ref-

erence point was placed at a wall-normal location of y+ = 49

where a signature of a hairpin vortex can be captured, i.e. an

ejection event vector in the second quadrant Q2 (u′ < 0, v′ > 0).

The evolution of this initial vortex structure was then studied by

superposing the hairpin-like vortical structure on a clean unidi-

rectional turbulent flow. By this method, they visualized, with

the λci-criterion, the complex evolution of the initial vortex and

revealed the phenomenon of autogeneration of new hairpin vor-

tices by self- and mutual-induction as well as vortex reconnection

processes, as illustrated in Fig. 1. This phenomenon is responsi-

ble for the generation of coherent packets of hairpin vortices.

The same initial hairpin vortex was also used by Green et

al. [11] for testing of the FTLE method. Figure 2 presents two-

dimensional cuts of the resulting Lagrangian criterion together

with the structure visualized with the swirling strength criterion.

Two-dimensional planes are used instead of iso-surfaces because

the LCS are not constant value surfaces. While it is possible to

FIGURE 1. GENERATION OF A SECONDARY HAIRPIN VOR-

TEX (SHV) FROM A SPANWISE VORTEX ARCH (A) FORMING

ON THE PRIMARY HAIRPIN VORTEX (PHV); FROM [23].

FIGURE 2. TWO-DIMENSIONAL CUTS OF THE 3D FTLE

FIELD OF AN ISOLATED HAIRPIN VORTEX; FROM [11].

obtain vortex frontiers by extracting FTLE ridges in three dimen-

sions [9], visual inspection of two-dimensional cuts of the 3D

field retain more details and is generally sufficient to interpret

the LCS, except when the extraction of a particular LCS among

other ones is desired for further analysis, as it can be the case in

complex flows such as vascular flows [25]. In Fig. 2 for example,

the three planes allow to provide fine details of the vortex signa-

ture. Results shown in Fig. 3 give a visualization of the flow at

a later stage of evolution where a secondary hairpin is formed,

which is the process preceding the formation of hairpin packets.

Once again, the ability of the Lagrangian method to capture the

whole structures is emphasized.

Further analysis of the authors showed that the birth of a sec-

ondary hairpin structure corresponds to a bifurcation along the

LCS, captured by analyzing the hyperbolicity in the FTLE field.

The evolution of the vortex pattern shown by the three time in-

stants plotted in Fig. 4 clearly identifies the phenomenon. The

Lagrangian criterion offers a way to recognize the formation and

development of the second and subsequent hairpin structures.

Compared to Zhou et al. [23], the finer details obtained with the

FTLE by Green et al. allowed to detect the hairpin development

earlier.

However, the event vector is a vortex marker that is not nec-

FIGURE 3. SAME AS IN FIG. 2 BUT AT A LATER STAGE OF

EVOLUTION; FROM [11].
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FIGURE 4. SECONDARY VORTEX FORMATION VISUALIZED

BY THE RATE OF STRAIN NORMAL TO THE SURFACE OF THE

LCS IN A SPANWISE CROSS-SECTION OF THE HAIRPIN VOR-

TEX; FROM [11].

essarily a velocity fluctuation vector. For example, Christensen

and Adrian [26] applied conditional estimations based on the

swirling strength to the velocity structure in the outer region of a

turbulent channel flow. The vortices identified by averages occur

with sufficient strength to leave an imprint on the flow statis-

tics, and consequently are an illustration of the dominant flow

features. The pattern was consistent with observations of the

outer-layer wall turbulence where groups of hairpin vortices are

aligned in the streamwise direction.

Another interesting example can be found in the study by

Tinney et al. [27]. Due to the differences in the spectral be-

havior between conditional and unconditional sources, an alter-

native approach, employing estimations based on cross-spectral

relationships, is used. This spectral form of the LSE showed

good accuracies of the estimated spectral quantities, emphasiz-

ing the direct impact of filtering incoherent correlations through

the computation of coherence spectra.

These examples show that most physical aspects of vortex

formation and development processes have been obtained from

numerical computations. However, even if DNS databases rep-

resent invaluable information sources since they provide numer-

ical experiments (as demonstrated again recently by Wu and

Moin [28]), such simulations are sensitive to the prescription

of the inflow and boundary conditions. For example, in simu-

lations of homogeneous turbulence, most computations are per-

formed in periodic cubes, taking advantage of the Fourier series

in the streamwise direction. However, while the size of the cube

L should be larger than the size of the biggest structures ℓ (the

integral scale), in practice this is rarely achieved, except for low

values of the Reynolds number. Consequently, if L is only a few

multiples of ℓ, the periodicity imposed between the upstream and

downstream faces of the cube leads to the presence of an artifi-

cial anisotropy and long-range correlations on scales ∼ L (see for

example Davidson [29], chapter 7)

Even if DNS computations are now frequently used in most

of research laboratories, the range of problems is considerably

limited. In parallel, the increasing capabilities of measurement

techniques has led to a renewed interest in experimental sciences.

For example, standard high-performance PIV systems allow to

capture large velocity vector fields in time, and could provide in-

formation that is still lacking to DNS simulations. In the next

sections, we focus on experimental tools that contribute to pro-

vide such information, and we start with the interpretation of

two-dimensional measurement data.

TWO-DIMENSIONAL EXPERIMENTAL DATA

The hairpin vortex paradigm proposed by Adrian and

coworkers [32] allowed to describe the spatial organization and

evolution of the hairpin coherent structures into streamwise-

aligned packets (see Fig. 5), as the simulations of Wu and Moin

seem to confirm [28]. This also revealed the prominent role

of such structures in the development of boundary layers. It is

interesting to see that this paradigm was evidenced in experi-

ments only by two-dimensional flow inspections, including qual-

itative visualizations and quantitative two-component PIV mea-

surements in streamwise-wall-normal planes. Figure 6 shows for

example typical results obtained by Adrian and coworkers on the

organization of hairpin packets, where long packets occur inside

larger ones [30]. The color contours correspond to the swirling

strength in the lower plot and to the spanwise vorticity in the

upper, expanded plot. Since measurements are performed in a

plane, the full local velocity gradient tensor cannot be obtained,

so that a two-dimensional form of the λci-criterion is used in-

stead [33]. However, as observed in Figure 6, the criterion is

localized in space at the vortex centers. In a population of vor-

tices, characterized by a large range of wavelength, lumped in

FIGURE 5. CONCEPTUAL SCENARIO OF THE ORGANIZA-

TION OF HAIRPIN PACKETS IN A TURBULENT BOUNDARY

LAYER; FROM [30].
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FIGURE 6. EXAMPLE OF HAIRPIN PACKETS COMMONLY

OBSERVED IN EXPERIMENTS CONDUCTED BY ADRIAN AND

COWORKERS; FROM [30].

a measurement noise, the interpretation of results is not always

straightforward.

Another example is shown in Fig. 7 where the turbulent flow

generated by the development of a jet issuing from a smooth con-

striction in a pipe is measured by PIV in a meridional plane [31].

This flow is extensively used in biomechanical studies to model

stenoses in arteries. Both experimental [34] and numerical re-

sults [35] agree on the fact that critical Reynolds numbers, above

which the flow becomes unstable, are low, which allows, in ex-

periments, to describe the temporal evolution of the flow by us-

ing available acquisition frame rates of standard time-resolved

PIV systems. Results presented in Fig. 7 were obtained for

Re ∼ 1000, where the Reynolds number Re is based on the pa-

rameters of the unrestricted pipe. Figure 7a presents an instanta-

neous velocity vector field in a frame of reference moving with

the vortices while Fig. 7b shows contours of the resulting span-

wise vorticity. The growth of the disturbances developing from

the beginning of the jet results in the formation of structures

which are alternately shed from the top and bottom shear layers.

However, these shear layers are also revealed by both the veloc-

ity and the vorticity fields. In order to more precisely extract the

vortical structures embedded in the background shear, Fig. 7c

presents the fluctuating velocity vector field obtained from the

Reynolds decomposition. While the development of the shear

layers has been removed, the resulting vector field lacks clarity.

Indeed, the Reynolds decomposition reveals more vortices than

Galilean decompositions for small-scale vortices which travel at

velocities often close to the local mean velocity [see 33]. Larger

vortices, better revealed by the large uniform momentum regions

associated to the mean flow, are masked by the Reynolds de-

composition. Even if the λci contours clearly identifies differ-

ent structures (Fig. 7d), this two-dimensional equivalent of the

swirling strength criterion cannot help to identify the nature, the

form and the signature of each vortex because only their centers

are revealed, while their connections are masked. On the con-

trary, in the case of hairpin-like vortices, the structure is more

easily recognized by revealing the unsteady shear, as for example

the local shear layers resulting from the upward flow pumping of

quasi-streamwise vortices that forms the legs.

Figure 8 presents the Lyapunov exponent field computed

with data of Fig. 7, where only attracting material lines are visu-

alized. This means that the FTLE was computed by integrating

trajectories backward in time (T < 0) to reveal vortical struc-

tures, since fluid particles collect in forward times towards the

vortex centers. The top plot was obtained by using the initial

PIV mesh grid. In the upper part of the flow, the birth of a first

vortex is observed, followed by a spiraling pattern clearly indi-

cating the rolling of a structure, which is very similar to that seen

in the Kelvin-Helmholtz instability. A third structure is observed

downstream, but is destabilized by the increasing irregularity of

the flow. In the lower part of the flow, the flow is more irregu-

lar which emphasizes the asymmetry of the instantaneous flow

at this instant. However, the FTLE seems blurred, due to the

limited spatial resolution of the PIV grid. One advantage of the

Lyapunov exponent is that the resolution can be improved by

increasing the number of computed trajectories, i.e. by using in-

a)

d)

c)

b)

FIGURE 7. JET ISSUING FROM A

SMOOTH CONSTRICTION IN A PIPE:

(a) INSTANTANEOUS VELOCITY FIELD

VIEWED IN A FRAME OF REFERENCE

MOVING WITH THE VORTICES; (b)

SPANWISE VORTICITY; (c) FLUCTUAT-

ING VELOCITY FIELD AND (d) λci FIELD.

THE FLOW IS FROM LEFT TO RIGHT;

ADAPTED FROM [31].
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FIGURE 8. INSTANTANEOUS FTLE FIELDS COMPUTED WITH

DATA OF FIG. 7 FOR DIFFERENT RESOLUTIONS; ADAPTED

FROM [31].

terpolation to obtain a finer grid than the original velocity data.

While this does not provide more information on small-scale vor-

tices, this allows to increase the sharpness of large-scale vortices.

The middle plot shows results obtained by dividing the initial res-

olution ∆x and ∆y by 2, then by 8 (bottom plot). This last plot

allows to reveal more details on turbulent structures and the over-

all results clearly identifies the development and transition of the

internal jet emanating from the constriction. This is remarkably

similar to the flow details obtained from dye visualizations that

are not revealed by more classical Eulerian techniques.

An example that better illustrates the effect of the resolution

is shown in Fig. 9. Measurements were obtained in a flow cross-

section where the development of two counter-rotating vortices

is captured. The figure shows contours of the out-of-plane vor-

ticity component and details of the in-plane velocity vector field

in close-up views. In the top right boxed region, the interaction

of the main vortex (left) with the wall led to the formation of a

new spiraling pattern (right) with an opposite rotation sign. In the

bottom left boxed region, a second vortex is observed. A line of

opposite vorticity (yellow region) is also identified close to this

structure but the velocity field reveals that this vortical region

is more the result of the local shear rate, which coincides with

a region of high momentum, rather than of a rotating structure.

The other plots of Fig. 9 show the FTLE field obtained by com-

puting the trajectories on the PIV grid for different resolutions.

For this illustrative example, we assume that the flow is steady

and the FTLE is computed using only one two-dimensional ve-

locity vector field. The integration length T was chosen to best

reveal the flow structure. For the original resolution ∆x and ∆y,

the two main rotating patterns are highlighted by the spiraling

form of the FTLE contours, where white levels indicate the high-

est values. Generally, more of the flow structure is revealed with

longer integration times. This was not possible in the example of

Fig. 8 because velocity data are limited in space, and therefore

the number of fluid particles leaving the domain increases with T

and some trajectories are lost in the computation of the FTLE. In

Fig. 9, the rotating patterns that characterize the vortices should

keep most trajectories inside the domain. However, for the same

resolution and for a time interval of 2T , the FTLE contour levels

are more diffuse and the boundaries of vortices disappear. This

effect is in fact due to the coarse initial PIV mesh. By decreasing

the grid spacing, it is observed that greater details can be cap-

tured. As expected boundaries of vortices become sharper but do

not change. In turn, this allows to compute the FTLE field with

longer integration times. The last plot illustrates the result of a

computation by dividing the initial resolution by a factor of 16

(∆x, ∆y)/1, T × 1 (∆x, ∆y)/1, T × 2

(∆x, ∆y)/8, T × 1 (∆x, ∆y)/16, T × 4(∆x, ∆y)/8, T × 2(∆x, ∆y)/4, T × 1(∆x, ∆y)/2, T × 1

FIGURE 9. EXAMPLE OF FTLE COMPU-

TATION IN A CROSS-SECTION OF THE

FLOW DEVELOPING DOWNSTREAM OF

A CONSTRICTION IN A PIPE FOR DIF-

FERENT RESOLUTIONS AND INTEGRA-

TION TIMES. DETAILS OF THE VE-

LOCITY VECTOR FIELD ARE GIVEN

WITH THE STREAMWISE VORTICITY;

ADAPTED FROM [31].
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and increasing the time interval to 4T , i.e. four times the initial

value. This last computation resolves more of the Lagrangian

structure by presenting spiraling patterns particularly clear and

sharp. In particular, while previous plots did not show the bound-

aries of the new vortex forming in the top right region, the double

structure is now clearly identified. The value of the integration

time and the spatial resolution are thus chosen depending on the

amount of detail to show, since boundaries of the Lagrangian

structures are not affected by the integration time.

The sequence of FTLE fields presented in Fig. 10 illustrates

a temporal transition to turbulence downstream of the smooth

constriction. The time step ∆T and the reference time t0 corre-

spond to a time scale and a time origin chosen to provide the best

insights of the temporal flow evolution. For example, the begin-

ning of the sequence is plotted every 20∆T to show the initial

steady flow and the growth of the instability (note that vertical

lines correspond to time lines, see [31]). At t = t4, flow pertur-

bations begin to appear, and spatial oscillations of the internal jet

are observed in the subsequent frames. A weak structure appears

at t = t9 (see the white box) and at t = t10 the general shape re-

calls the vortex signature of a hairpin vortex (see Fig. 2), which

could indicate that the onset of instability is accompanied by the

formation of hairpin-like structures before breakdown to turbu-

lence. Progressively, flow perturbations occur more rapidly and

as early as the upstream region of the flow. We can distinctly fol-

low the formation of a structure between t = t12 and t = t19. At

t = t12 the vortex signature in the FTLE field appears only as an

inclined straight line. However, in subsequent frames, the line is

distorted and at t = t16 a rolling process indicates the formation

of a spanwise vorticity concentration. Again, until t = t17, the

temporal process is similar to the phenomenon shown in Fig. 4.

When the vortex is formed, a lift up process occurs and is par-

ticularly clear in frames t18 and t19. This specific phenomenon

is similar to the generation of coherent packets of hairpin vor-

tices described by Zhou et al. [23] (see Fig. 1). A mutual induc-

tion process induces the breaking of the two quasi-streamwise

vortex legs of a primary hairpin vortex. The upstream sections

of the legs then connect with a bridge of spanwise vorticity to

form a secondary hairpin vortex. The heads of the newly formed

vortices then lift-up and evolve into Ω-shaped vortices, and can

reach almost a vertical orientation. By examining results shown

in Fig. 10, this is especially clear between t = t12 and t = t19.

Finally, the vortex formation mechanism repeats itself between

t = t18 and t = t21 where a new structure forms. The last frames

t1 = t0 – 100∆T

t24 = t0 + 17∆T

t23 = t0 + 16∆T

t22 = t0 + 15∆T

t21 = t0 + 14∆T

t20 = t0 + 13∆T

t18 = t0 + 11∆T

t17 = t0 + 10∆T

t16 = t0 + 9∆T

t15 = t0 + 8∆T

t12 = t0 + 5∆T

t11 = t0 + 4∆T

t10 = t0 + 3∆T

t9 = t0 + 2∆T

t14 = t0 + 7∆Tt8 = t0 + ∆T

t19 = t0 + 12∆Tt13 = t0 + 6∆Tt7 = t0

t6 = t0 – 10∆T

t5 = t0 – 20∆T

t4 = t0 – 40∆T

t3 = t0 – 60∆T

t2 = t0 – 80∆T

FIGURE 10. EXAMPLE OF EVOLUTION WITH TIME OF FTLE FIELDS; FROM [31].
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show that the flow perturbations increase with time and indicate

the transition of the flow towards a more perturbed state and pos-

sibly turbulence.

Even if these results are of valuable interest, they are only

qualitative since fluid particle trajectories are computed in two

dimensions whereas they are three-dimensional. Some tech-

niques can however be used to obtain information in the third

direction.

THREE-DIMENSIONAL EXPERIMENTAL DATA

With the incoming of volumetric/tomographic PIV systems

[36], the measurement of the three components of velocity vec-

tors in volumes (3D3C) is now possible [37–40], and in a few

cases, data are also resolved in time [41,42]. However, the imple-

mentation of such systems requires more attention than standard

PIV systems and is still restricted to a small range of applications.

Therefore, 3D3C systems will not be investigated here. Instead,

we will focus on volumetric data that can be reconstructed from

planar PIV measurements.

Steady flows

Steady flows are the simplest examples where the three-

dimensional velocity vector fields can be reconstructed since the

volumetric data can be obtained from measurements that do not

need to be acquired simultaneously. Only one example is given

here and is provided by the authors [see 43]. The problem con-

cerns the complex steady flow developing in a model of the hu-

man carotid artery bifurcation. In the geometry shown in Fig. 11,

the bifurcation stems from the common artery dividing into two

asymmetric branches, the internal and external arteries (relative

to their progression inside or outside the skull). Near the bifurca-

tion, the common carotid widens to form the carotid sinus which

maintains adequate blood pressure thanks to its baroreceptors.

The division of flow into the daughter branches varies with time

during the cardiac cycle resulting in an average over the cycle of

approximately 30%/70% (external/internal).

To study hemodynamics phenomena, a transparent negative

of the carotid artery was build [see 44] to make it possible to use

stereoscopic PIV techniques. To illustrate the flow complexity,

Fig. 12 (left) shows iso-surfaces of the axial velocity for a posi-

tive and a negative value together with characteristic streamlines

for two flow divisions. For a flow division of 30%/70%, i.e.

for the mean physiological conditions, a reversed flow region is

located in the side of the external artery. The trajectory shown

indicates that the back flow is in fact the result of a complicated

helical path of the streamline. The iso-surface of positive veloc-

ity for this flow repartition shows no secondary motions, in par-

ticular in the internal artery. Instead, the fluid flows naturally in

the geometry which seems optimized to direct the blood through

the daughter vessels with a specific flow division. These results

common carotid artery

internal carotid artery

external carotid artery

sinus

(a) (b)

X

Z
Y

X

Z

Y

Z

FIGURE 11. EXAMPLE OF A CAROTID ARTERY BIFURCA-

TION GEOMETRY. (a) TOP VIEW, (b) SIDE VIEW; FROM [43].

agree with previous investigations [45] where flow visualizations

showed the presence of complex three-dimensional zones with

flow reversal and helices, however not identified as recirculation

regions since fluid was not entrapped inside.

In the case of a chronic disease, the flow division can be

modified. For example, atherosclerosis may result in artery wall

remodeling and narrowing, and in most severe cases, this leads

to the formation of a stenosis in the sinus region inducing a

major flow restriction. Results obtained for a flow division of

50%/50% is shown in Fig. 12 (right). For the streamline shown,

the initial fluid particle location is chosen close to the upper wall

of the carotid model. The particle follows the main artery and

moves initially towards the internal artery. As it approaches the

50%

50%

70%

30%

Z
X

Y

FIGURE 12. ISO-SURFACES OF A POSITIVE (DARK) AND A

NEGATIVE (CLEAR) AXIAL VELOCITY VALUE WITH CHARAC-

TERISTIC STREAMLINES; FROM [43].
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bifurcation, the particle takes an upstream direction, crosses the

common artery transversally and finally enters into the external

artery. Therefore, this flow distribution indicates that the flow

can reach a higher degree of complexity for non-physiological

conditions. In particular, a recirculation region could be identi-

fied contrary to the previous case.

To confirm the presence of a recirculation region for a flow

division of 50%/50%, the 3D FTLE field was computed with the

full measurement data set. Results are illustrated in Fig. 13. The

figure presents the FTLE field by characteristic two-dimensional

cuts in the axial and transverse directions together with the loca-

tion of the planes in the model (high values correspond to black

contours). In slice (1), the spiraling pattern occurring in the right

daughter branch is particularly well represented, which confirms

the presence of helical trajectories in this region. A closed region

is also clearly identified in the top left corner of slice (1). Until

now, negative values of the FTLE field have been used, since

steady or unsteady vortical structures have been investigated, as

seen previously. The FTLE can also be computed in forward

time (T > 0), and resulting structures are called repelling ma-

terial lines since the FTLE ridges indicate stretching of trajecto-

ries [8]. Therefore, the FTLE field computed in forward time can

be used to detect reattachment surfaces, since particles initially

located on either side of the surface move away from each other,

while on the contrary the FTLE field computed in backward time

can be used to detect separation surfaces. Since the two methods

yield complementary information, they can be conjointly used to

reveal complex flow structures, such as 3D recirculation regions

which are difficult to extract.

For example, the FTLE computed with T < 0 and shown in

slice (1) in Fig. 13 is also presented with T > 0. It allows to re-

veal two distinct regions. Further, the presence of a recirculation

Z
X

Y

(1)

(2)

(3)

T  >  0

T  >  0

T  <  0

T  <  0

FIGURE 13. 2D CUTS OF THE 3D FTLE FIELD WITH ISO-

SURFACES OF A POSITIVE (DARK) AND A NEGATIVE (CLEAR)

AXIAL VELOCITY VALUE; FROM [43].

region is confirmed since the boundary of the top left region ap-

pears in backward and forward time computations, which is not

the case of the spiraling structure. The constant-x cut plotted in

slice (2) computed for T > 0 provides a view of the recirculation

region showing the spatial extent in the axial direction. Slice (3)

is another cut in the axial direction but at a location downstream

of the bifurcation. While in the external artery the structure of

the FTLE is difficult to describe, a clear spiraling pattern is ob-

served in the left artery. This suggests that downstream of the

recirculation region, fluid particles which were not entrained by

the reverse flow follow a helical path as they move downstream.

This result is confirmed by the flow representation proposed by

Bharadvaj et al. [45, 46].

For heart failure patients under maximal ventricular assist

device (continuous flow pump) support, the flow rate within the

systemic circulation is constant. In this case, the flow division

between the daughter vessels may be different from the phys-

iological mean values. Therefore, these results show that the

complex flow structure that could appear as a consequence of

an abnormal flow division may be a source of further blood dam-

age due to an increase of residence time of red blood cells in the

bifurcation area. To completely assess the extent of these prob-

lematic regions, further analysis would be necessary to extract

ridges of the Lagrangian coherent structures in three dimensions,

as was performed by Shadden and Taylor [25] from numerical

simulation data in a carotid artery bifurcation flow.

In the following section, the more general case of unsteady

flows will be investigated.

The Taylor hypothesis for unsteady flows

To highlight the spatial structure of unsteady flows, an ap-

proximate three-dimensional method of vortex identification can

be applied. Stereoscopic PIV measurements obtained in flow

cross-sections, i.e. in planes normal to the main flow direction,

provide the three velocity components: two in-plane and one out-

of-plane. To estimate data in the streamwise direction, the Tay-

lor hypothesis can be used. The time-history of the flow as seen

from a fixed reference frame can be interpreted as the advection

of a frozen spatial structure traveling with the convection veloc-

ity uc, so that the time is replaced by a spatial coordinate, i.e.

u(z, t) = u(z−uct,0).

Spatial derivatives relative to the in-plane coordinates in

cross-sections can be obtained by central difference approxima-

tions and derivatives relative to the axial direction are estimated

with the Taylor hypothesis by using the relation ∂z = −u−1
c ∂t .

The sampling frequency has therefore to be high enough to ob-

tain accurate time signals to evaluate time derivatives, and this

requires also an estimate of the convection velocity uc. Zaman

and Hussain [49] showed that, in turbulent shear flows, the Tay-

lor hypothesis yields acceptable results only if a constant convec-

tion velocity is used over the entire flow field. On the contrary,
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Ganapathisubramani et al. [50] showed by direct comparisons

that the use of a convective velocity equal to the local mean ve-

locity also yields good results for reconstructing volumetric data

from cinematographic stereoscopic PIV measurements in a tur-

bulent round jet. However, the authors focused on the measure-

ment of the fine-scale structure of turbulence, which justifies the

use of a local convection velocity.

In the case of large-scale structures, the hypothesis of a con-

stant advection velocity uc is generally adopted, as in the work

of van Doorne and Westerweel [51] where the bulk velocity in

a pipe flow experiment is taken as the reference velocity. They

observed numerous streamwise vortices that reveal the internal

organization of the flow. A visualization of the vortical struc-

tures that they obtained is for example shown in Fig. 14. A

quasi-periodic formation of hairpin-like vortices is clearly ob-

served which allowed to show that such structures play a crucial

role in the late stages of the transition to turbulence.

In the work of Matsuda and Sakakibara [48], uc was de-

duced from cross-correlation measurements and used to recon-

struct, with the Taylor hypothesis, the turbulent vortical struc-

tures that develop in the far-field region of a round free jet. As

evidenced in Fig. 15, a group of hairpin-like vortices is observed

to develop at the frontiers of the jet.

FIGURE 14. VISUALIZATION OF VORTICES IN A PIPE BY ISO-

SURFACES OF THE Q-CRITERION (RED) AND THE IN-PLANE

STREAMWISE VORTICITY (GRAY); FROM [47].

FIGURE 15. VISUALIZATION OF VORTICES IN A FREE JET BY

ISO-SURFACES OF THE λci-CRITERION; FROM [48].

A similar procedure was used by Vétel et al. [34] to compute

the convection velocity in the flow downstream of the constric-

tion. Two-component, time-resolved PIV measurements were

acquired in a meridional plane and the two-point correlation

function was estimated between a fixed reference signal and a

moving probe both located on the axis of the pipe. A first ex-

ample is illustrated in Fig. 16. The perspective view in Fig. 16a

shows a typical vortical structure identified with the λci-criterion.

The arch of the vortex, essentially composed of spanwise vor-

ticity, and the neck form a Ω-shape head connected to a pair

of counter-rotating quasi-streamwise vortices forming long legs

trailing behind, typical of a hairpin-like vortex. The velocity vec-

tor field obtained in the symmetry plane [34] confirmed strong

similarities with 2D signatures of hairpin vortices available in

the literature, as in Fig. 1 and in [26]. These results finally con-

firm that the phenomenon described in Fig. 10 occurred from the

evolution of hairpin-like vortices, as previously inferred from nu-

merical simulations.
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EXTRACTED FROM THE FLOW DOWNSTREAM OF THE CON-

STRICTION; FROM [34].

A second example of flow pattern is presented in Fig. 17.

The perspective view shows several vortical structures rendered

as translucent iso-surfaces of λci whose value has been varied

to achieve the best visualization for each vortex. The exploded

view highlights the rich flow features. The structure in Fig. 17a

is a Ω-shaped vortex and in Fig. 17b the pattern is close to a

horseshoe vortex. Between these two structures, in Fig. 17c is a

small Ω-shaped vortex. Adrian et al. [30] refer to all of these vor-

tices by the unique terminology of hairpin-like structure, which

can represent deformed versions of a common basic structure at

different stages of evolution. Figures 17a–c illustrate the variety

of sizes whereas the cane-vortex of Fig. 17d shows a different

shape induced by the degree of asymmetry. Finally, the presence

of a pair of counter-rotating quasi-streamwise vortices is shown

in Fig. 17e.

Mixed methods

This last section gives examples where the different methods

presented in this paper are jointly used. In the case of the smooth

constriction [34], the LSE technique was applied on stereoscopic

PIV measurements to identify the dominant flow eddies in the

statistically stationary flow regime and to provide a basis for

physical interpretation. The LSE included time dependence by

computing the space-time correlation tensor based on the three

velocity components recorded at a fixed streamwise location.

The reference point was chosen in a radial coordinate close to

a position of highest velocity fluctuation amplitudes, and results

were found to be quite insensitive to the event vector. Finally,

since the conditional averages were estimated in space and time,

the Taylor hypothesis was used in a manner similar to that previ-

ously explained.

Results are shown in Fig. 18. In Fig. 18a, selected vortic-

ity iso-surfaces corresponding to half the maximum are almost

entirely composed of azimuthal vorticity and reflect the shear

layer development downstream of the constriction. Identifica-

tion of the vortices is performed in Fig. 18b by the λci-criterion,

which clearly demonstrates the predominance of vortex rings in

the flow. Three complete patterns are entirely described which

highlights the high degree of coherence of the structures identi-

fied, which are therefore dominated by vortex rings.

A 3D FTLE field was also computed from these volumetric

flow data. Since this computation need to estimate fluid parti-

cle trajectories, the frozen pattern was simply advected in the

streamwise direction at the convection velocity used to apply the

Taylor hypothesis. A 2D FTLE field, obtained from a cut of the

full 3D FTLE field, is shown in Fig. 18c. The three vortex rings

are clearly identified by the presence of sharp boundaries delim-

iting six elliptical patterns from the main flow. By observing the

orientation of the connections between these structures, it is pos-

sible to deduce their sense of rotation. The degree of flow details

is particularly evident in the central core of each structure which

exhibits a clear spiraling pattern illustrating the collection of fluid

particles in the vortex center (light gray).

A similar procedure was applied on original velocity data

(i.e. without LSE statistics) measured with different flow condi-

tions. Figure 19 shows a Ω-shaped vortex identified by the λci-

criterion, and 2D FTLE fields extracted in the vertical plane of

symmetry and in a horizontal plane. In the symmetry plane, the

structure is distinctly observed with sharp boundaries upstream

and downstream of the vortex core. The general shape is quite

similar to that of a wave, and the fluid particle movements in-

dicate that the rotation of the vortex core is clock-wise in this
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plane. This is confirmed by the two counter-rotating spiraling

patterns, generated by the vortex legs, observed in the horizontal

plane. More details are difficult to obtain even if the integration

time or the resolution are increased. Indeed, the strength of the

Lagrangian approach is that, by essence, the Lyapunov exponent

is determined by the history of the velocity field. By using the

Taylor hypothesis and advecting the resulting structure in time,

the flow is frozen. This implies that, on one hand, the large-scale

mechanisms, which are responsible for the highest mean parti-

cle separations, are underestimated, and, on the other hand, the

small-scale mechanisms, which are responsible for the random-

ness of the particle distribution in the flow field, are smoothed

out. As a consequence, the use of a constant convection veloc-

ity with the Taylor hypothesis limits the study to the analysis of

large-scale coherent structures, which reflects the lack of small-

scale details in the FTLE fields.

However, results shown in Fig. 19 present similar features

to the FTLE fields computed by Green et al. [11] and shown

in Figs. 2 and 3. Since in their numerical simulation the iso-

lated hairpin vortex was obtained with LSE to identify the statis-

tically most probable flow field, small-scale velocity fluctuations

was filtered by the procedure. This explains the close agree-

ments with experimental results. This confirms that the method

can yield sufficient information to obtain 2D FTLE signatures of

hairpin-like vortices from a full 3D computation and therefore

that they can be used as a vortex recognition technique.

CONCLUSION

This paper has reviewed some of the most popular tech-

niques that are presently used to extract statistics on vortical

structures as well as their identification in unsteady and tur-

bulent flows. Applications of Eulerian and Lagrangian tech-

niques to visualize structures revealed by linear stochastic esti-

mation are particularly widespread in direct numerical simula-

tions. While in such simulations the temporal behavior is natu-

rally captured, this requirement limits experimental approaches

to moderate Reynolds numbers. A considerable number of exam-

ples has therefore been derived from the flow developing through

a constriction in a tube since the transition to turbulence is ob-

served at low Reynolds numbers. With the use of the Taylor

hypothesis on stereoscopic velocity data obtained in planes nor-

mal to the main flow direction, three-dimensional structures can

be described. By performing the computation of the finite-time

Lyapunov exponent, the signature of these structures can be ob-

tained which allows to identify them in velocity data acquired

in meridional planes with only two dimensions. For these lat-

ter measurements, further analysis can be conducted. Indeed,

the use of the Taylor hypothesis is limited since the hypothe-

sis of a frozen flow is not compatible with vortex interactions.

These mechanisms were particularly well captured by using the

Lagrangian criterion which can be computed on a finer grid than

the original velocity data. Resulting phenomena were again sim-

ilar to that obtained by direct numerical simulation studies found

in the literature.

However, eventhough the recently developed Lagrangian

methods are able to capture a large amount of flow details, and

may even appear superior to the Eulerian methods, both tech-

niques complement each other. Indeed, while the Lyapunov ex-

ponent method provides detailed 2D vortex signatures, the anal-

ysis of the 3D scalar field is complex and often requires to com-

pute additional quantities to interpret the FTLE volume data.

Therefore, Eulerian methods provide the vortex skeletons needed

to analyze Lagrangian coherent structures.

It is finally interesting to note that as the hairpin-like struc-

ture and the general process of vortex packet formation are found

to play a key role in boundary layers, during transition, in the

near-wall and in the outer turbulent regions, they are also ob-

served during the transition to turbulence in internal jet flows at

Reynolds numbers as small as a few hundreds. Therefore the

hairpin vortex paradigm appears as a unifying concept for transi-

tional and turbulent wall bounded flows.
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