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ABSTRACT 

In numerous natural and industrial situations, including 
froth flotation, particles and bubbles interact, and 
sometimes attachment is achieved.   
Through direct experimental observation of a particle 
dropping onto a stationary bubble, we have described 
particle–bubble interaction and attachment at low 
Reynolds numbers.  Increased understanding can be 
gained by comparison to numerical modelling predictions.   
Our modelling incorporated:   
• Stokes drag;   
• inertia and added mass;   
• buoyancy;  and   
• microhydrodynamic resistances, due to flow of liquid 

between the bubble and the approaching or retracting 
particle.   

The governing differential equation was resolved into 
radial and tangential components, and solved numerically 
to produce predictions of particle trajectories, and 
velocities, which can be used to predict the likelihood of 
attachment, and the ‘induction period’ for attachment.  
These can be compared to the experimental results.   
Even greater insight is obtained by explicitly evaluating 
the force components.  The evolution of these forces over 
time reveals which mechanism is controlling the 
interaction at various stages.  It also provides a basis for 
inclusion or neglect of other terms in the governing 
equation (e.g. Basset force).   
We simulated the interaction for a variety of approach 
trajectories, with different particle densities.  We also 
simulated cases in which particles approach at elevated 
speeds, as could occur in a real system where particles are 
accelerated by turbulent eddies toward a bubble that is 
enveloped by a laminar boundary layer.   
We found that increasing the initial velocity does not 
necessarily decrease the induction period, as deceleration 
can occur rapidly, before the particle is very close to the 
bubble.  Particles impinging on the bubble away from the 
bubble’s apex exhibited longer induction periods.   
If a repulsion of chemical origin prevents attachment, then 
low-energy particles ‘slide’ off the bubble, while high-
energy particles could ‘bounce’ off the bubble’s surface.   

NOMENCLATURE 

Ci coefficients in approximate formula for fr 
Di coefficients in approximate formula for ft 
fi corrections to radial (i=r) or tangential (i=t) drag for 

microhydrodynamic effects, assuming no-slip 
boundary conditions 

Fi,j radial (i=r) or tangential (i=t) force components:  
inertia and added mass (j=IAM);  Stokes drag 
(j=Stokes);  microhydrodynamic drag (j=MHD);  
buoyancy (j=grav) 

g gravitational acceleration 
mi mass of particle (i=p) or fluid displaced by particle 

(i=f) 
m = mp + mf / 2 
NRe Reynolds number 
r radial position of particle centre 
Rb bubble radius 
Rp particle radius 
s ratio of particle release velocity to Stokes settling 

velocity 
t time 
tind induction period for particle–bubble attachment 
tslide duration of sliding by particle on bubble’s surface 
vi velocity in the i-direction 
vS Stokes velocity 
 
δ gap, the shortest distance between particle and bubble 

surfaces 
δcrit gap at which hard-sphere repulsion becomes 

important 
Δ hard-sphere repulsion term 
ε dimensionless gap, δ / Rp 
 dynamic viscosity 
i density of particle (i=p) or fluid (i=f) 
τ parameter related to the viscous relaxation time 
φ polar angle of particle centre, measured from vertical 

INTRODUCTION 

The mechanism of flotation and its ability to serve as a 
cost effective and convenient separating process has 
resulted in it being used extensively within the mining, 
minerals and wastewater treatment industries. It has been 
estimated that flotation is used to process around 85 % of 
coal and minerals mined annually (Nguyen & Schulze, 
2004).   
Mineral particles in suspension interact with air bubbles 
that are introduced by various means.  The key to 
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successful froth flotation is the selective formation of 
attachments between bubbles and certain classes of 
particle.  At very close range, the surface chemistries of 
the particles and bubbles are important.  However, the 
hydrodynamics of the interaction controls the opportunity 
for attachment, inasmuch as even favourable chemistry 
will count for nought if the particle and bubble cannot be 
brought sufficiently close together.   
Traditionally this ‘opportunity for attachment’ is 
characterised in terms of the dduurraattiioonn  ooff  ppaarrttiiccllee  sslliiddiinngg 
over the bubble’s surface, tslide (Nguyen & Schulze, 2004; 
Verrelli et al., 2011).  This concept is based on the 
observation that prior to attachment a particle is seen to 
slide around the circumference of a bubble, with a small 
gap — invisible to the naked eye — between the two 
objects’ surfaces.   
The sliding duration is then compared against a threshold 
iinndduuccttiioonn  ppeerriioodd, tind, which is defined as the time to 
achieve attachment once a ‘sliding’ interaction has 
commenced (Sven-Nilsson, 1934; Verrelli et al., 2011).  
Although conventionally the induction period is tacitly 
regarded as a constant, recent results from experimental 
observation and numerical modelling (Verrelli et al., 
2012b) indicate that it can vary depending on the 
orientation of the particle’s approach trajectory with 
respect to the bubble.   
Experimentally the induction period has been directly 
determined by monitoring individual particle positions as 
they interact with a stationary bubble (Verrelli & Koh, 
2010; Verrelli et al., 2011).  The premise for this is 
illustrated in Figure 1.  After settling more-or-less freely, 
one particle is seen to slide briefly at approximately 
constant radial position and then withdraws, while the 
other particle slides for longer and manifests an abrupt 
‘jump’ in toward the bubble, signifying attachment.  The 
induction period can be obtained directly for particle b.   
In the present work we delve deeper into the numerical 
model, to determine the separate contributions of each 
major component to the radial and tangential forces acting 
upon the particle.  Such analysis is helpful immediately in 
allowing greater understanding of the particle–bubble 
interaction in general, and specifically in interpreting the 
variation of induction period with particle trajectory.  It 
also provides a useful basis for determining the 
importance of other terms that could be added to the 
governing equation.  Finally, the work can serve as a 
foundation for greater understanding of analogous 
interactions that occur in numerous other natural and 
industrial operations, such as particle–particle interactions 
in coagulation, fluidisation, and jigging.   
 

 

Figure 1:  (a)  A particle that slides briefly but does not 
attach.  (b)  A particle that slides for longer, and attaches.   

MODEL DESCRIPTION 

Scenario 

The numerical model was set up to emulate the CSIRO 
Milli-Timer apparatus (Verrelli & Koh, 2010; Verrelli et 
al., 2011), in which a particle falls under the influence of 
gravity through a quiescent medium onto a stationary 
bubble (as in Figure 1).  However, it has been extended to 
describe the case in which the particles have been 
accelerated above Stokes velocity upon their approach to 
the bubble.  Although particles may originate a large 
distance away from the bubble, presently we consider 
only the motion commencing from an initial position 
1 mm away.  It may be noted that this distance is 
approximately equal to the boundary layer that can be 
expected in a turbulent flow environment (Liu & Schwarz, 
2009), and so the present results can give broader insight 
for a variety of flow regimes in the bulk.   
The particles are presently considered to be perfect 
spheres, of diameter 150 µm.  (Other shapes have been 
considered experimentally (Verrelli et al., 2012a), but are 
not practical to model for current purposes.)  The bubble 
is taken to be a rigid sphere with a no-slip boundary 
condition, with a diameter of 1.30 mm.  (Modelling of 
bubbles with a slip boundary condition was presented by 
Verrelli et al. (2011);  a hybrid boundary condition is 
discussed in a companion paper (Verrelli, 2012).)  Both 
particle and bubble dimensions are within the range of 
sizes typically encountered in industrial operations 
(Newcombe, 2009).   
The fluid is water, with nominal density of 1000 kg/m3 
and viscosity of 1 mPa.s.  Industrial flotation cells 
commonly operate at somewhat elevated temperatures, in 
which case the viscosity would be reduced.   
The particles are modelled with two different densities:  
2450 kg/m3, representing glass or silica, and 7600 kg/m3, 
representing galena.  The different densities yield different 
velocities and kinetic energies on approach, and provide 
an indication of particle inertia effects.   
The particles are released at varying distances away from 
the vertical axis passing through the bubble’s centre.  
Moreover, varying release velocities are investigated, 
emulating the effects of more vigorous interactions in a 
flotation cell, due to rapid rise of the bubble, particle 
swarm effects, or turbulent eddies transporting the 
particles.  The release velocity is quantified in terms of a 
multiple, s, of the Stokes settling velocity.   
Particle sliding is specified to commence once the gap 
decreases to 1 µm, while nominal attachment is specified 
at a gap of 10 nm, consistent with our previous work 
(Verrelli et al., 2012b).   
To permit consideration of the trajectories of particles that 
do not attach, e.g. due to mutually repulsive surface 
chemistry effects, the predicted path of the particle 
continues beyond the nominal attachment, albeit that the 
gap is constrained never to reduce significantly below 
1 nm.   
The various important gaps are summarised in Table 1.   

 
Gap, δ  [mm] Meaning 

1 Initial separation 
0.001 Sliding commences 

0.000 01 Attachment occurs 
0.000 001 Minimum value (approximate) 

Table 1:  Important gaps and their meanings.   
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Numerical modelling 

The numerical model employed presently is adapted from 
that described previously (Verrelli et al., 2011) to predict 
particle trajectories;  the independent variables of δ (or r) 
and φ track the particle’s centre.   
The governing equations are obtained from the Basset–
Boussinesq–Oseen (BBO) equation (Nguyen & Schulze, 
2004), neglecting the Basset force.  A system of four 
equations is obtained:   
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We have made several notable changes to the equations 
and their solution since the previously described work.   
(i) The independent variable has been changed from r to 
δ, to reduce truncation errors.   
(ii) The formulæ for the drag correction functions fr and ft 
have been improved to yield improved accuracy, without 
being too computationally expensive, in the respective 
forms  
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These approximation formulæ were inspired by others in 
the literature (Chaoui & Feuillebois, 2003; Nguyen & 
Evans, 2004; Nguyen & Schulze, 2004).  The coefficients 
were determined by nonlinear optimisation in MATLAB to 
reduce the sum of squares of errors in the logarithms of 
the values, for a range of dimensionless gaps from 10−10 to 
10+3, logarithmically spaced.  For fr the approximation was 
fit to the ‘exact’ values (Nguyen & Schulze, 2004);  for ft 
the highly accurate expressions of Chaoui & Feuillebois 
(2003) were used;  note that ft is specified for the case of 
zero nett torque, and is obtained from a combination of 
four elementary resistance functions (Nguyen & Schulze, 
2004).  With these changes the accuracy of the drag 
correction functions has improved from better than ±4 % 

and ±0.2 % (radial and tangential) to better than ±0.04 % 
and ±0.02 %.  For values of Ci and Di see the Appendix.   
(iii) The governing system of equations was found to 
constitute a ‘stiff system’ whenever the predicted particle 
trajectory encountered small gaps, for which the 
microhydrodynamic resistances increased sharply.  Hence 
greatly improved computational efficiency was obtained 
by swapping from a Runge–Kutta algorithm to a variable-
order solver (implemented at order 5), based on numerical 
differentiation formulæ, that is well-suited to stiff 
problems — namely the ode15s routine in MATLAB 
(Shampine & Reichelt, 1997).   
(iv) Tolerances in solving the differential equations were 
tightened.  The solution components were required to 
achieve a fractional error of approximately 2×10−14 for all 
components greater than 1×10−14 in magnitude.   
(v) A hard-sphere repulsion has been introduced to avoid 
physically implausible gaps of less than atomic 
dimensions (or even negative values);  δcrit is set to 1 nm.  
It is beyond the scope of the present work to investigate 
specific forms of Δ, and we do not claim equation 5 to 
represent the exact response.  (Without this repulsion term 
the vanishingly small nominal gap will yield very large 
values of fr and ft, which may approximate the increase 
that actually occurs due to deformation of the bubble 
surface that is not modelled.)  It must be emphasised that 
this term only affects the trajectories of particles aafftteerr 
attachment is predicted to have occurred given favourable 
chemistry, and hence approximates the behaviour in the 
case of unfavourable chemistry when attachment is 
precluded.   
(vi) The arguments of fr and ft were not altered for small 
gaps, less than 10 nm.   

Analysis 

Cases 

Four cases are examined, as per Table 2.   
 

Case p 
[kg/m3] 

s 
[–] 

Initial NRe 
[–] 

A 2450 1 6.5 
B 2450 4 26 
C 7600 1 92 
D 7600 4 369 

Table 2:  Cases modelled.   
 

Trajectories 

Three trajectories are examined closely in each case, 
corresponding to starting positions given in Table 3.  
These correspond to particles that approach almost the 
bubble’s apex, midway between the apex and edge, and 
just at the edge of the bubble.  The trajectories are 
illustrated in the Results section.   

 
Trajectory Initial offset from vertical axis 

[mm] 
a 0.100 
b 0.400 
c 0.700 

Table 3:  Trajectories that are discussed in detail herein.   
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Force components 

For each trajectory, the governing equations are 
decomposed to identify four separate contributions 
radially, and four tangentially.  That is,  

ΔFFFF iiii  grav,MHD,Stokes,IAM,0 ,  (8) 

in which i=r or i=t, for radial or tangential terms.  The 
hard-sphere term is not shown below, but can be obtained 
by difference.   
The individual force components are evaluated as per 
Table 4.   

 
Force Radial component Tangential component
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Table 4:  Formulæ for force components.   

RESULTS 

Trajectories 

The trajectories for each case are shown in Figure 2.  The 
three trajectories identified in Table 3 are shown in 
darker, bolder lines.  The trajectories track the centre of a 
given particle.   
It is interesting to observe ‘bouncing’ in the case of the 
most energetic particles, at a density of 7600 kg/m3 and 
initial velocity 4 times greater than vS (case D).  Such 
interactions were experimentally observed by Schulze & 
Gottschalk (1981), and have also been seen in our own 
laboratory with particles impacting at high velocity, 
illustrated in Figure 3.   
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Figure 2:  Trajectories for the four cases described in 
Table 2.  The dashed outline indicates the bubble’s 
surface, while the dotted outlines denote the particles.  
Trajectories a, b & c (Table 3) are shown as darker lines.  
In B the radial and tangential components of a velocity 
vector are also illustrated.   
 

  

Figure 3:  Sequence of images illustrating a spherical 
~125 µm particle (soda–lime glass Ballotini) rebounding 
from the surface of a ~2.0 mm bubble.  Particles were 
ejected from a pipette with a high velocity.  The particle’s 
movement means only a bright spot shows up at its centre 
(the particle focuses light from behind).  The interval 
between successive frames is 40 ms, and the exposure 
time is slightly shorter.   
 

Induction periods 

The induction periods for each case are shown in Figure 
4.  All graphs share the common property that the 
induction period increases as the starting position of the 
particle moves away from the axis.  This extends the 
findings presented previously (Verrelli et al., 2012b), 
which corresponded only to Case A of the present work, 
and demonstrates general applicability of the behaviour.  
Predicted values are in the same range as those found 
experimentally.   
It is interesting to observe that cases A and B show 
indistinguishable induction periods in Figure 4.  The 
relative discrepancy between the two cases does not 

vδ 

vφ 
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exceed ±0.3 %, and indeed this is an overestimate of the 
true discrepancy (an artefact of the position of the data 
points relative to the threshold gaps).  The reason for the 
similarity is the mass of the low-density particle is 
insufficient to maintain the higher initial velocity against 
the drag effects, and the particle in case B is decelerated to 
match case A before it gets to the first gap threshold of 
0.001 mm.  The Stokes velocities by equation 4 are a 
factor of 4.55 times smaller in cases A & B than in cases 
C & D, meaning that in the former case there is more time 
for the deceleration to occur, given that the distance 
between the particle’s starting position and the surface of 
the bubble is the same in all cases.  This indicates that 
light particles will be less able to maintain the elevated 
velocities that can be imparted to them by turbulent eddies 
in an industrial flotation cell, whereas the heavier particles 
can take greater advantage.   
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Figure 4:  Inductions periods for particle–bubble 
attachment, for the four cases described in Table 2.  The 
horizontal axis extends to a value of Rb + Rp, the 
theoretical limit for which attachment could occur.   
 

Gap and force components 

Gaps and force components for various conditions are 
shown overleaf.   
In Figure 5 the results for trajectory a of case A are 
shown.  In the uppermost plot, the gap is seen to decrease 
rapidly.  Attachment is expected to occur for this 
trajectory, under chemically favourable conditions.  If the 
chemistry is unfavourable, the model predicts sliding on 
the bubble’s upper hemisphere at a constant separation, 
followed by withdrawal once the particle centre has 
passed the bubble’s equator.   
This plot demonstrates that it is the hard-sphere repulsion 
term that has introduced asymmetry into the particle 
trajectories, because it only constrains decreases in the gap 
(as for φ < 90°), not increases (as for φ > 90°).   
As the particle circumnavigates the bubble, the buoyancy 
vector gradually varies from acting toward the bubble 
centre, to acting parallel with the local bubble surface, to 
acting away from the bubble centre.  This is evident in the 
second and third plots of Figure 5.  In the second plot, we 
also see that the importance of radial Stokes drag 
decreases as the velocity drops (cf. equation 4), whereas 
the radial microhydrodynamic drag rapidly becomes 
important with the reduction in separation, only reducing 
back to zero when another force arises to prevent the 
radial motion.   

The relatively slow ‘sliding’ speed means that the 
tangential Stokes drag is also small, as seen in the third 
plot.  In contrast, the tangential microhydrodynamic drag 
is the main force balancing the tangential component of 
buoyancy force, given the small gap.  Both the radial and 
tangential Fi,IAM terms remain quite small throughout for 
this trajectory.   
In Figure 6 we see that when the horizontal offset of the 
particle’s initial position increases, the gap decreases more 
slowly due to the geometry;  this results in a smaller radial 
velocity, which yields a longer induction period according 
to our specified thresholds.   
In Figure 7 the particle is not able to reach even the 
threshold for sliding, as the microhydrodynamic drag acts 
at relatively long range, causing the particle to deviate 
from its original path while still quite far from the bubble, 
as shown in Figure 2.  Here the induction time for 
attachment is ‘infinite’, or undefined.   
Figure 8 shows the radial force components only for 
trajectory a of case B.  It is apparent that the velocity 
which is initially 4 vS decreases almost immediately — 
within approximately 15 ms the particle speed has reduced 
to the same value as the particle in case A.  Hence, after 
the first few milliseconds the forces are very similar 
between cases A & B, as evident by comparison with 
Figure 5.  This also simplifies the modelling of particle–
bubble interactions for this class of particle, as it suggests 
that the complications of high inertia (or high Reynolds 
number) are minor effects.   
In Figure 9 the gap and force components are shown for 
one of the heavy-particle scenarios (trajectory b, case C).  
This exhibits a fascinating feature beginning at δ ~ 56 nm, 
in which the rate of change of the gap suddenly changes 
its form.  It must be emphasised that this feature is totally 
uunnrreellaatteedd to the threshold for determining attachment 
(10 nm), which is a post hoc analysis, and is nnoott  aatt  aallll 
influenced by the hard-sphere repulsion term, which 
would contribute a force of (1/53)200 mp N ≈ 2×10−344 nN 
— vanishingly small.  Rather, it is a natural feature due to 
a combination of geometry and the forms of the 
microhydrodynamic drag functions.   
Examining the force components in Figure 9 reveals that 
there is a ‘runaway’ spike in the microhydrodynamic 
resistances leading up to this event.  At the same time, 
there is a drastic slowing of the particle, for 30° < φ < 35°, 
coinciding with a conversion from mostly radial motion to 
almost entirely tangential motion (or energy).  This 
suggests that these energetic interactions are pushing the 
limit of applicability of the present numerical model.  
Although the model does include inertial and added mass 
terms in the governing equation, it neglects the Basset 
force, which is important when significant accelerations or 
decelerations occur (Clift et al., 1978).  Furthermore, the 
microhydrodynamic drag functions (and indeed Stokes 
equation) were derived for creeping flow, and will become 
increasingly poor estimates as the contribution of inertia 
rises.  While an inertia-corrected form of fr is available in 
the limit of small gaps (Cox & Brenner, 1967), it does not 
rigorously handle particle acceleration or large gaps, and 
leaves open the question of how to handle ft;  a numerical 
simulation of the full flow field based on the Navier–
Stokes equations is the recommended approach.   
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Figure 5:  Gap and force components for trajectory a (see 
Table 3) of case A (see Table 2).   
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Figure 6:  Gap and force components for trajectory b of 
case A.  Legend as in Figure 5.   
 
 

10
-2

10
-1

10
0

G
ap

 [
m

m
]

-20

-10

0

10

20

R
ad

ia
l F

 [
nN

]

0 45 90 135 180

-10

0

10

20

Polar angle,  [°]

Ta
ng

en
ti

al
 F

 [
nN

]

 

 

 

Figure 7:  Gap and force components for trajectory c of 
case A.  Legend as in Figure 5.   
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Figure 8:  Radial force components for trajectory a of 
case B.  Legend as in Figure 5.   
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Figure 9:  Gap and force components for trajectory b of 
case C.  Legend as in Figure 5.  The radial 
microhydrodynamic drag spikes at just over 5000 nN, 
while the inertia & added mass term spikes down to just 
under −5000 nN.   
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Although not shown here, the inertia & added mass terms 
are even greater in case D, as expected.  Notably, as 
expected from a comparison of the trajectories or 
induction periods, the greater density of the particles in 
cases C & D has meant that the elevated initial velocity 
was able to be maintained long enough to have major 
effects on the behaviour.  In case D, even more concern is 
raised as to the necessity of extending the numerical 
models out of the creeping flow regime.   

CONCLUSION 

The present work has shown the importance of detail in 
modelling bubble–particle interactions for applications 
such as industrial froth flotation.  For the lighter particles 
examined, the effect of quadrupling the initial approach 
velocity was negligible, but it had a significant effect on 
the response of the heavier particles.   
Inclusion of a hard-sphere repulsion term introduced a 
distinct asymmetry to the particle trajectories for 
nonattaching particles.  For the most energetic particles 
‘bouncing’ on the bubble’s surface was predicted if a 
chemical repulsion prevented attachment, whereas less 
energetic particles ‘slide’ off the bubble.  This is 
consistent with our experimental observations.   
The conclusion that the induction period cannot be 
assumed constant has been extended to a range of particle 
densities and initial velocities.  Up to now this feature has 
not been appropriately considered in the general flotation 
literature.   
Extracting values of the individual force components has 
provided greater insight into the mechanisms influencing 
the particle’s behaviour as it interacts with the bubble.  
Examining these forces also provides information on the 
range of validity of the governing equations, boundary 
conditions, and assumptions made in the modelling.  It 
was seen that for particles at the larger and heavier end of 
the spectrum encountered in industrial flotation 
operations, the acceleration and inertial contributions 
could be significant, or even dominant, and the present 
analytical formulæ are unable to rigorously handle such 
conditions.   
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APPENDIX 

Values of the coefficients Ci and Di used in equations 6 
and 7 are provided in Table 5.   
 

i Ci Di 
1 13.6452247722458 0.1292257552759118
2 75.9063050402686 4.281129177286589
3 491.854093164041 7.806735049853723
4 -310.053937216871 5.349521744657736
5 5474.15594699018 1.304938272355011
6 -4855.17486956623 0.9939520955286008
7 8183.99690490305  
8 -1907.24186920391  
9 1259.36564512760  
10 51.4351824486848  
11 24.4862595399736  

Table 5:  Values of the coefficients Ci and Di.   
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