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ABSTRACT

The conventional Discrete Element Method (DE
typically has a one-tone correspondence betwe
number of particles in the simulatioN, and the number
of particles in the system being simulatn. However,
large scale industrial systems usually involve priblrely
high n for a fully resolved simulation. These are ti
usually modelled witiN << n, over a limited domain ¢
with a larger particle diameter and the correspon
assumption of scalénvariance. These assumpts are,
however, especially problematic in systems wt
granular material interacts with gas flow, as tlyaainics
of the system depends heavily an This has led to
number of suggested modifications for coupled-grain
DEM to effectively increase the number of particlesnie
simulated. One such approach is for each simu
particle to represent a cluster of smaller parieed to r-
formulate the DEM based on these clusters. Thiewkr
as a ‘coarse grain’ methodpotentially emulates
simulations withN ~ n for low computational cost. W
investigate the effectiveness of this coarse gagiproact
for gas flow through particle beds using resolvedl
coarse grain models with the same effective par
numbers. The presee drop and fluidisatio
characteristics in the beds are measured and cem
and the relative saving in computational cost isgived
against the effectiveness of the coarse grain agh

INTRODUCTION

The rapid and accurate simulation of coupled-grain
system has become increasingly important from
industrial perspective for modelling applicationgls as
fluidised beds, pneumatic conveyers, die fillingd

raceway formationPopular approaches for computatio
methods include two-fluid methodis, which the particle
phase is represented as an incompressible fluidl &
specialised stresstrain relation, and coupled discr
element (DEM) and CFD methods, in which the motib
each particle is simulated using the DEM, coupleditag
relationsto a background fluid flow field. Although tv-

phase methods are fast and effective at capt
fluidisation dynamics, computational resolution damit

the resolvable small scale particle flow struct (van der
Hoefet al. 2006). Coufed DEM and CFCmethods work
at a granular levelnd are capable of resolving the mot
of each grain within the system. This ability makieesm
exceptionally powerful for resolving the granule
dynamics over all length scales within the systSuch
detail, however, ames at a computational cost wh
scales as @), where N is the number of simulate
particles in the system. Asast industrial systems 1
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interest contaimmany more particles than are able to

simulated within reasonable timeframes a numbe

methods to reducdl are usually applied in simulatior

These include reduction in tigeometic volume modelled
and/or application of periodic boundary conditiorns,

exploit symmetries within the system being model

restriction of particle sizesuchas omitting fine particles,
and application of algorithms to capture the dyranof

sub-resolution scale particlé3f the last of these, the mc

interesting are representative particle modelghiith one

‘coarse scale’DEM particle represents a collein of

actual ‘fine scaleparticles in the simulatio A schematic
diagram of this method is shown in two dimensionEig.

1, where the dashed circle represents a coarse

particle made up of aumber of fine scale particls

P ~ o Fine scale
particles

/

/
Sl - "\ Representative,
or coarse scale

Gas flow field particle

Figure 1: A coarse scale particle representing a collec
of fine scale particles.

For large systems of particldt is computationally
unfeasibleto run a DEM simulation wittN = n. Such
representative particle methods, however, allow
number of fine scale particléd to be equal to, where a
smaller, computationally feasible, number of coasale
particles,N°, are actually used in the DEM simulatis
Let:

Nf = kN€ (1)

where k is the number of fine scale particles withir
coarse scale particle. The ratios chosen to be equal to
the ratio of coarse and fine scale particle volynsegh

that:
3
ve d°
K=—= <—> (2)

Vs dr
whereV is the particle volume ard the particle diameter
and, throughout, we employ the superscc to represent
a coarse scale variable afdo represent a fine sce
particle. Let:

dC

S=E (3)

1
3

where the scaling factos = k3 is chosen for the

simulation. Thigjives Eq. (1) a



f

ne =" (@)
S

This dependence @#¢ ons* gives representative particle

models their strength, as the computational cosiescas

O(s*n).

Such models were first suggested by Kazari et al.
(1995). A later development to the model was mage b
Sakano et al. (2000), in which the coarse scalécpawas
assumed to be a sphere containing packed fine scale
particles in an FCC arrangement. However, this method
produced bubbles in fluidised beds smaller than
experimentally observed bubbles (Mokheaal., 2012). A
model called the ‘similar particle assembly’ (SPAddel
has been given by Kuwagi et al. (2004), based oficfea
scaling arguments. This model has been shown te giv
similar results fors = 3, 6 in fluidised beds (Mokhtaat
al., 2012). Sakai introduced a closely related maodtéd
the ‘coarse grain model’ (CGM) which, additionally,
incorporates energy conservation arguments betwleen
coarse particle and group of representative pagitbakai
et al. 2009, 2010).

REPRESENTATIVE PARTICLE APPROACH

DEM is a Lagrangian method for modelling the indival
trajectories of every particle in a granular systérhe
equation of motion for a particle in a gas flowldias
given by:
av

Mo~
where m is the particle massy the velocity, F. the
collisional forcesf, the drag forcef, the force from the
gas pressure gradient over the particle, andthe
gravitational acceleration. DEM calculates the isihal
forces,F., and performs a discrete time-integration of Eq.
(5) to give the particle velocities and positiomghe next
timestep. In systems with gas flow a CFD methodsisdu
to calculate the gas flow through a granular medtze
CFD and DEM methods are calculated using drag
relations, which givéy andF,

The collisional force is composed of the normal
collisional force,F,, and the tangential collisional force,
Fi, acting on the particleF. = F, + F,. These force
components act along the normal and in the tangjene
at the contact point, respectively. The magnitufie¢he
normal force is given by a linear-spring dashpotieio

F, = Cpup — k6l (6)

wherek, is a spring stiffnessC, is the normal damping

F.+F; +F, +mg (5)

coefficient, which gives a required coefficient of
restitution, andv, is the relative normal speed. The
magnitude of the tangential force is calculated

incrementally using:

] Uk,
Ft = min Ctvt + kt Z UtAt

where u is the Coulomb coefficient of frictionk, a
tangential spring stiffnessy, the relative tangential
velocity, At the time-step and’, a tangential damping
coefficient. The incremental sum is taken over the
duration of the contact, and models the tangeetdtic
deformation of the surface, limited by the Coulomb
friction uF,, acting in the direction opposing the applied
force.

(7)
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The gas-particle drag force is given by:

Fa{d} = ;Ca{d}Apy|u, °8, (®)

where(C, is the drag coefficient for a particle of diameter
d, A the cross sectional area projected in the dineabid
the gas flow fieldp, the gas density, anal.the relative
gas-particle velocity, where a normal is represtiethe
circumflex. The drag coefficier@, is a strong function of
both the local bed porosity and the Reynolds nunities.
gas pressure gradient force is given by:

F, = ,Vp (9)

whereV, is the particle volume arglthe gas pressure.
Representative particle approaches are derived by

Sakaiet al. (2010) and Mokhtaet al. (2012) using the

following approach. First, the equation of moticor fa

fine scale particle is considered, given by Eq. (5)

ov/
mf7=mfg+F,’:+F{+F£{df}+F£ (10)

Taking the sum of both sides over the number digas
in a coarse scale particle, gives:
ovf 3
ot
K
xkm/g + Z(F,{ +F/ +Fj{d’} +E])
K

ms
(11)

where it is assumed that the mass of all the ficedes
particles within the coarse scale particle arestmae. The
velocities of the fine scale particles are alsaasd to be
identical and equal to the velocity of the coarsales
particle. This is set to be the average velocityhef fine

scale particles:
1
2
K

K

v (12)
From Eq. (11) this gives:
c

ov
o =m°g+Z(F,{+F[+F§{df}+F£) (13)
K

mC

asxkm/ = m€. Each of the summations on the right-hand
side of Eq. (13) are now considered in turn.
Coarse grain normal Collisional Force

For collisional forces, the coarse grain is assutoeatt as
a linear superposition of collisions of fine graiarticles.
Eq. (6) gives:

Y =cly vl ) o
K K K

From Eqg. (12) all the normal velocities are ideatic
Making the further assumption that the coarse scale
overlap is the average of the fine scale overlapssg

Z El = k(clvg — kL 61°)
K

(14)

(15)
Setting the coarse scale particle normal dampind an

spring stiffness as:

cs =xc!

16
i (16)

gives:



El =

Civ, — k56l = Ef (17)

k
Coarse grain tangential Collisional Force

Using the same assumptions as for the normal fdhee,
representative approach gives the coarse grairemdiag
collisional force, Eq. (7), as:

( uz an )
Z th =min K (18)
K K (thvt + k{ Z vtAt)

where a tenuous assumption has been made that the
vectorial sum of the fine grain sliding contactedual to

the coarse grain sliding contact. From Eq. (17)s th
becomes:

f HEy
ZF = min Cfvt kuvtAt

Setting the coarse scale particle tangential dagnpimd
spring stiffness as:

(19)

ce =xc!
y e (20)
= kk;
gives:
; pFy
— y — c
Z Fe = min Cfv + kfz veAt| Fe (1)
K
Drag force

The drag force is given by Eq. (8). Summation oxer
gives:

D E{a} = Loyl P co{df} ) af
K K

where C4{d'} indicates that the drag coefficient is
calculated using the fine scale particle diameteor
spherical particles and using Egs. (2, 3), thiegithe area
summation as:

(22)

DA =i (23)
K
As the coarse scale drag force is given by:
F{d} = 2pglu,128,Co{d}A° (24)
The drag expression, Eq. (22) becomes:
1
> Ej{af} = wrg{ar) (25)

K

Pressure gradient force
The summation over the pressure gradient force(3q.

f _ f
Z F, = sz Y (26)
K K
straightforwardly becomes, from Eq. (2):
f _ f_
Z F, = «VpVy) = Vplyy (27)
K
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Comparison of equations of motion
In the representative particle approach, the eguat
motion, Eq. (13), therefore becomes:

ave

c

at

where Egs. (17, 21, 25 and 27) have been used.
Comparison of Eqg. (28) to the corresponding motmmaf
fine scale grain, Eq. (13), shows that tbmuations of
motions for the fine and coarse scale grains are identical,
apart from the drag term. The sub-scale dependamdiye
gas flow from the finer-scale granular materialréfiere
acts entirely through this drag term. This ressiitiue to
inherent assumptions in the model, namely, equdtieg
coarse grain overlap and relative velocities wit sub-
cluster average fine particle overlap and theirraye
relative velocities. These are strong assumptidhs,
consequences of which have not been evaluateddo da
The equations of motion given here are the same as
the SPA model (Mokhtaet al., 2012) and the CGM
method (Sakagt al. 2010). The SPA method appears to
have equal damping and spring stiffness in both the
normal and tangential directions for both coarse fme
scale particles. Such an approach is allowablbesyring
stiffness can be freely chosen afidis calculated by the
DEM to give a required coefficient of restitutiolm the
investigation carried out by Mokhtat al., (2012) the

highest value o is 6, givingk = 216. Settingk§; =

rather thanky = xk,’: would therefore make only a sllght
difference to the observed maximum particle overlap

The CGM additionally uses an assumption that each
of the fine scale particles are rotating aroundirthe
individual centres of mass. This assumption leadthée
inclusion of a scaling term in the equation foratanal
motion. Here, we make the assumption that the mbmen
balance on the collection of fine scale particteglentical
to that of the coarse scale particle. This apptats the
same assumption used in the SPA model.

= m°g + FS + FE + k3FS5{d/ ) + FS (28)

m

Analytical test of a falling particle

As an initial test case we consider the simplessitde
gas-grain system: a single particle freely fallinga gas.
Both a single particle of diametet and a cluster of
particles of diameted” represented by a coarse particle of
diameterd®¢ should fall at the same velocity. From Eqgs. (8
and 10), neglecting the pressure gradient, theteoquaf
motion for a particle of diametet” falling in a gas with a
vertical velocityv,, is:

av
y d{ - = O (29)
which, for a spherlcal partlcle, reduces to:
av p
—>_3 A9 2_ 4=
o ~Cafd }df LW 0 (30)

the solution to which has the form, « tanh (t). For a
coarse grain particle, Egs. (24 and 28) give:

av.

6—+K3cd{df} ”g v2—g=0 (31)
which reduces to:

A {df}"_%p_gvz_ -0 (32)

ot e ige, T I



But, asksdf = d¢, Eqg. (32) is exactly the same equal
of motion as Eqg. (30). Thereforboth the fine scal
particle and collection of fine scale particlrepresented
by a coarse scale particle fall at the same rabe.tlfis
simple analytic case the representative icle model
therefore gives a correct result.

IMPLEMENTATION

The analysis carried out in the previous sectiongiwn
that a representative particle model can be imphtedt
with great simplicity in a coupleBEM/CFD formulation,
as only the drag term défrs between fine and coarse s¢
models. The steps to modify the formulation are
follows:
1. Choose a coarse grain diameted®, which
represents a collection of finer particles of diten
d’.
2. When calculating the drag force, use the ¢
coefficient ford”, C4{d”}.

3. Multiply the drag force bys = x5 = d¢/d/ and
apply to the particles.
All calculations in the DEM method use the coarsairt
diameterd®, apart from the drag ternuhich is calculated
as described.

In our implementation the CFRomponent of the
model is based on the constitutive equations fad, or
gas,flow through a porous bed, formulated such that
interstitial flow is assumed incompressibThe method is
covered in detail in Hiltoret al., (201(), and has been
applied to numerous gagain systerr, including
pneumatic conveying(Hilton and Cleary 201, and
raceway formatiorfHilton and Cleary 201..

Computational modelling of a fluidised bed

A model of a fluidised bedvas used to compare t
representative padie method to fully resolve
simulations. The bed containesbherical particles ¢
varying diameter andlifferent gas flow velocities. Tt
setup used is shown schematically in Fig A uniform
inflow with gas velocityr, was applied over the base
the particle bed, with an identical outflow over tiop of
the domain. The domain was filled by creating pet
over a regular grid at the top of the domain arowahg
them to freely fall under gravity ungl of the domain by
height had been filledThe boundary conditions in trx
and z directions were solid walls, with a -slip zero
velocity boundary condition applied for ¢

The parameters used in the simulations are give
Table 1.Each simulation was run for a total of 2 s. °
grid resolution in the, y andz directions was10 x 30 x
10, giving a grid resolution of 10.2 m

Parameter Value

Particle density Py 1000 kg/m3
Gas density Py 1.2 kg/m3

Gas viscosity n 1.8x 1075 Pas
Particle friction u 0.1

Spring stiffness k 1.0 x 10% N/m
Coefficient of restitution e 0.5

Table 1: Simulation parameters used

The inflow gas velocity was varied from 0.2 to 2sni
increments of 0.2 m/sVerification of the pressul
gradient was carried out by comparimgasuremen from
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the simulations to an empiricaekpression given bErgun
(1952):

dp _ pgvy (1—e,) (150n(1 — &)
dy  d & pgvyd

+ 1.75) (33)

whereg, is the bulk packing fraction, calculated from
number of particles multiplied by the volume of fe
particle divided by the total volume enclosingm. This
is slightly different from the bed packing fractice, due
to the reduction of the packingraction from boundary
effects near the wall&luidisationoccurs when the weight
of the bed balances the applied pressure grac
Neglecting wall friction, this is given kt

d
(%)C =1- 5)(ps - pg)g (34)

The inflow gas velocity required to reach point is the
‘lift-off’ velocity.

Gas Qutflow

0.2m

Gas Inflow x

Figure 2: Fluidised bed test case -up.

Fluidised bed with fully resolved particles

For comparison, the fluidised bed was first simedafor a
range of particle diameters, given in Tableusing a
standard coupled DENCFD method. These results we
then compared to simulations using a represent
particle approachThe pressure gradients as a functiol
inflow velocity are shown in Figs. 3, 4, and 5 resolved
particle diameters of 4 m, 3 mm and 2 mm respective
The Ergun equation, Eq. (B& shown as a dashcurve
in each figure, and the error bars shown one stdt
deviation of the measuregressure gradie within the
particle bed. The lifoff pressure gradient is also shovs
the horizontal dotted line in each figt

d £ &p N

2mm 0.626 0.611 291,914
3 mm 0.624 0.604 85,585
4 mm 0.623 0.597 35,640
5 mm 0.620 0.591 18,079
6 mm 0.619 0.587 10,374

Table 2: Particle diameters used wicorresponding bed
and bulk packing fraction, and number of partic
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Figure 4: Pressure gradient faf = 3 mm particles.
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Figure 5: Pressure gradient fat = 2 mm particles.

The behaviour of the fluidised bed was exactly
expected, closely following the empirical expressior
all particle diameters until the pressure gradieachec
the bed weight. At tlsi point the bed fluidise
characterised by a large spreadiristantaneoupressure
gradient and, visually, by welnown bubbling an
slugging characteristics (van deroéf et al. 2006), as
shown in Fig. 6 for 2 mm particle&raphs of diameter
mm and5 mm have been omitted due to space limitati
but show the same behaviour.
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Figure 6: Fluidisation behaviour in a bed witfully
resolved particles of diameter 2 mm and an infl
velocity of 1.0 m/s. A cross section over bed is shown,
and the particles are shaded by their velocithéertical
(y) direction.
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Comparison with representative particle model

The representative particlmethod was used to simulé

fine particles of 4, 3 and 2 mm using a coarsengsaie of

6 mm. A summary of the parameters used and rel:

computational time compared to the fully resol

simulations is given in Table As in the study by
Mokhtar et al., (2012), the spring stiffness was set to

same value in each simulation, given in Tab

daf d¢ N NS T/TCGM
2mm 6 mm 3.0 280,098 68.64
3mm 6 mm 2.0 82,992 15.73

4 mm 6 mm 1.5 35,012 4,22

Table 3: Parameters forthe representative particle

simulations. T/TM is the ratio of computational tin
taken for the fully resolved simulation,T, to the
representative, coarse grain, simulatT¢é™,

The pressure gradients for the representative rde
as a function of inflow velocity are shown in Fi(7, 8,
and 9for particle diameters with fine grain diametersi
mm, 3 mm and 2 mm respective Comparison of the
results from the fine scale andly resolved simulations
at the same particle diameter show that the flattha
characteristics matcheasonably we, despite the very
basic subscale drag dependency. Ttrepresentative
particle method also matchede Ergun expression un
the lift-off velocity was reachedlthougl small deviation
from the empirical curvevas found at smaller rticle
diameters.This deviation appear to grow s increased,
which we attribute to the increasing importancettod
absent sulzluster structure and dynars. After lift-off
the bed showedimilar fluidisation characteristics to t
fully resolved bed. Howevethe lift-off point was found
to be moderately highethan the empirical expressi
given by Eq. (34when using the representative parti
approach, ashown by the circle points in Figs. 8 and 9,
respectively.



12644 ,
- = Ergun )
_ 10E+4 x Simulation )
E S )
& 80F+3 | /!
a
B 6.08+43 oo
by /
: /1
S /
2 40643 %'
2
[-N I
s
20643 | ’,%
K
0.0E40 e

00 02 04 06 08 11 13 15 1.7 19

Flow velocity (m/s)

Figure 7 - Pressure gradient faf = 4 mm particles.

L2E+4 | .
/
- - Ergun ’
/
__ LOe+s x Simulation ’
!

£ e Lift-Off /
= ’
< 8.0E+3 | ’
. |
2
-E 60E+3 ................................................... Ié - ]
oo /
2
=1 s
2 4.0+3 ’ %
[ ’
& /{‘I

2.0E43 | .

%
x
0.0E+0 ‘ — ‘ ' '

00 02 04 06 08 11 13 15 1.7 19

Flow velocity (m/s)

Figure 8 - Pressure gradient fa¥ = 3 mm particles.

1.2E+4 ;
- - Ergun ]
/
__ LOE+4 | x Simulation
1
N Lift-off  +
T I
S 8O0E+3 |- .
: @ |
2 [/
B 6.0E+3 ””l “““
oo
g /
2 ’
2 4.0E+3 p
g ’
o
2.0E+3 14
4
£
0.0E+0 L L L

00 02 04 06 08 11 13 15 1.7 19

Flow velocity (m/s)
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Despite the higher transition velocity the over
behaviour of therepresentative partic method showed
sumprisingly similar results to the fully resolved rhet, al
a fraction of the computational time. As shown able 3,
a two second simulation can be comple around 70
times faster thara fully resolved simulation fod/ =
2 mm. For moderate scale ratigs the modeltherefore
appears to be able to provide useicomputational
acceleration with limited loss of accure
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CONCLUSION

Fully resolved andepresentativisimulations of fluidised
beds with the saméine scale particle diameters sh
broadly similarpressure and fluidisation characterist
Deviation from the empirical curve given by the Hn
relation was found for small fine grain diameteks. the
maximum ratio used was= 3, more work is required to
understand this deviation at larger values. The bed lift
off point was also found to bmoderately higher than
expected when using the representative m

Such straightforward fluidised bed simulations h
only minor dependence othe system geometry. It
likely that in gasparticle systems dominated by ir-grain
or grain-boundary collisionthis method me not give the
correct dynamics as the DEM componwould be limited
by the coarse grain size. Examples of such sysiertude
die filling and discharge of fine powders from roawr
outlets, both of which are affected by gas, but also
strongly influenced by geometrical factoConsiderable
testing is necessary tonderstand the limitation of th
method in relation to sucdystems

For fluidised beds, at least, the ‘coarse grain
representative particle approa@ppears to provide a
plausible method to increase the effective number
particles in an extremely straightforward mal. Such
coarse grain simulations can run in a fraction of the
time of the fully resolved simulations, and therel
provide a significant computational saving with litt
overhead. Althoughueh a method could potentially allc
industrial systems to be simulated wN ~ n, further work
must be undertaken to understand the limitations of
modeland the many assumptions used to constr. In
particular, the behaviour of the model at high ealofthe
coarse grain scaling factehould be investigated befc
this can become a viable appch for industrial gi-grain
systems.
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