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ABSTRACT 

It is well known that the Boundary Element Method 

(BEM) based on potential flow theory is an ideal model 

to simulate high Reynolds number flows. However, for 

rising bubbles viscous effects can no longer be neglected 

since drag forces will ultimately have to compensate the 

buoyancy force for a terminal velocity to set in. We 

present a method to include viscous effects in the 

boundary element method for high Reynolds numbers, 

based on a model by Joseph and Wang (2004). The model 

takes into account surface tension effects and was used to 

predict the terminal velocity and the shape of millimetre 

sized bubbles in a pure system (Duineveld, 1995; 

Klaseboer et al. 2011) with good agreement.  

Subsequently, this model is used to predict the 

bouncing of a bubble against a surface. A thin film 

between the bubble and the (horizontal) boundary builds 

up a pressure that pushes the bubble back. A comparison 

with experimental data (Zawala et al. 2007) shows 

excellent agreement, including shape oscillations that 

occur just after the rebound. For bigger bubbles, several 

bounces are observed before the bubble settles at the solid 

boundary.  

The current framework leads to rapid simulation 

times as compared to other numerical methods, yet 

containing all the essential physics of the problem and 

could lead to a better understanding of problems 

involving bubbles in many industrial applications in terms 

of bouncing and coalescence behavior.  

NOMENCLATURE 

g gravity acceleration p pressure 

r radial coordinate  z  vertical coordinate 

u  velocity 

κ surface curvature   density     

  velocity potential 

σ  surface tension   dynamic viscosity 

1. INTRODUCTION 

Potential flow theory alone is known not to be able to 

predict rising bubbles, due to the fact that the drag force is 

not modelled. A way to introduce viscous effects in 

potential flow for the rising bubble problem was given by 

Klaseboer et al. (2011). They implemented the viscous 

pressure and the viscous normal stress condition at the 

bubble-water interface based on a model by Joseph and 

Wang (2004).  

Often potential flow problems are solved using a 

boundary element method (BEM). These methods have 

the advantage of mesh reduction (only a mesh on the 

bubble is needed) and thus the bubble can be followed 

relatively easily as compared to other numerical methods 

that use fixed spatial grids.  

Thin films have been the focus of research for 

decades (Scheludko 1957, Chan et al. 2011). It is now 

understood that the thin film generates a pressure that can 

cause the rebound of a bubble (Klaseboer et al. 2001; 

Hendrix et al. 2012). For most cases, the film is so thin 

that lubrication theory entirely dominates the flow physics 

in the film, even though the flow outside the film region 

might be mainly dominated by high Reynolds number 

flow phenomena. This realization opens the possibility to 

model such systems in a smart manner. In his review on 

numerical methods in free-surface flows Yeung (1982) 

said: “The ‘best’ numerical methods to come may well be 

those that exploit analytical simplifications that are 

appropriate for the physical phenomenon being 

examined.” The current article is written with this idea in 

mind; we keep the important aspects of the problem 

through physical insight. In the Section 2 the numerical 

model will be described, followed by predicting the 

terminal velocity of a bubble in Section 3. Then the 

rebound of a soap bubble (Section 4) and a bubble in 

water (Section 5) are investigated. 

2. MODEL DESCRIPTION 

The potential of a flow with velocity vector u (u=  ) 

satisfies the Laplace equation: 

02   .        1) 

The pressure due to the potential flow satisfies the 

Bernoulli equation: 
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At the bubble surface the pressure makes a jump due to 

surface tension and other terms: 

filmv
n

bub pp
n

u
pp 




  2 .  3) 

The term nun  /2  represents the viscous normal stress 

jump across the interface (un is the normal component of 

the velocity). The terms pv and pfilm are viscous pressures 

that result from the fact that the fluid is not entirely 

behaving as potential flow (in pure potential flow the drag 
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force would always be zero). The term pv originates from 

the boundary layer around the bubble and the term pfilm 

originates from the pressure that builds up when the 

bubble is close to a boundary. Both of these terms will be 

explained shortly. The pressure inside the bubble pbub is 

taken adiabatically (except for the section on the soap 

bubble, where another potential flow is assumed inside the 

bubble): 

 VVppbub /00       4) 

With p0 = pref + 2σ/R (pref = 1 Bar and R is the initial 

bubble radius), V and V0 are the volume and initial volume 

of the bubble respectively. The exponent γ is taken as 

1.25. The curvature of the bubble κ, is implemented as in 

Chesters (1977), where the two radii of curvature on the 

axisymmetric bubble surface are determined as 
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where Ω is the tangent angle which is related to the normal 

vector as:   cos,sinn . 

An axial symmetric implementation of the boundary 

element method has been used.  

           dSnGdSnGc /,/, 00000 rrrrrrr   

           6) 

with the Green function rrrr  00 /1),(G and c the solid 

angle at location r0.  

We apply a method based on Joseph and Wang 

(2004) to estimate the viscous pressure pv at the bubble 

surface (assuming a high Reynolds number flow). This 

pressure originates from the fact that potential flow alone 

will neglect the boundary layer that will build up around 

the bubble. According to them, the viscous pressure must 

compensate for the non-zero shear stress τ at the bubble 

surface. They derived an exact integral expression as: 

     dSdSpv tunu     7) 

For a spherical bubble an exact solution can be derived. In 

our calculations we assume that the bubble can still be 

approximated by a sphere and take  cosCpv  , where 

0<β<π is the normalised arc length of the bubble surface. 

From the above integral equation the constant C can be 

determined and thus pv is known.  More details on the 

implementation can be found in Klaseboer et al. (2011). 

Another contribution that is not represented by 

potential flow is the pressure that builds up in the thin film 

separating the bubble and the boundary. There are two 

aspects to this pressure, the first one associated with the 

energy stored due to the deforming surface (surface 

tensions acts like a spring), the second one is the viscous 

damping in the film. We assume that the pressure is a 

function of the deformation alone (thus ignoring any 

viscous losses) and behaves as simple power law: 

 4// zdRp film        8) 

Where d is a constant set to be 0.1R (the exact value does 

not appear to have much influence on the results as long 

as d << R, but not too small to cause numerical problems, 

i.e. d > meshsize). A fourth order dependence on the z-

coordinate is chosen to create a „steep‟ enough barrier, 

such that only the film region experiences the film 

pressure (as is the case in a real bouncing bubble problem, 

Klaseboer et al. 2001) and the film pressure decays rapidly 

everywhere outside the film region. The position z = 0 

corresponds to the rigid boundary (if present). Imposing a 

pressure in the above form will neglect viscous dissipation 

in the film, yet will model the energy storage due to 

surface tension. In practice, the film will flatten until a 

pressure almost equal to the Laplace pressure 2σ/R has 

been built up in the film. A recent article by Hendrix et al. 

(2012) revealed the complex behaviour of the film region 

during bubble impact on a rigid surface.  

The potential of the bubble surface is updated with a 

discretized version of the Bernoulli equation, rewritten as: 

refpgzp
Dt

D
 




2

2

1
u    9) 

Note that 2
/// uu  ttDtD  . The 

position of the bubble interface is updated with 

ur DtD /  at each time step. Then the potential is 

calculated with the above equation and the Boundary 

Element Method is used to calculate the normal velocity. 

The tangential velocity can be obtained from the potential 

distribution along the bubble surface (which is known). 

The full velocity vector u is then known and the process 

can be repeated for the next time step.  

In all the simulations, the liquid at infinity is assumed 

to be at rest. A number of 51 nodes (50 elements) were 

used on the bubble surface for all the simulations shown 

here. BEM has the distinct advantage of being very 

flexible especially for moving bubble problems such as the 

ones studied here. Only the bubble surface needs to be 

meshed, which greatly simplifies the tracking of the 

bubble as it moves and deforms. Furthermore, the 

computational resources required for the BEM are very 

modest and the simulation time takes just a few minutes 

on a PC. 

 

Figure 1: Terminal velocity of a rising „clean‟ bubble as a 

function of the bubble radius R; experimental data of 

Duineveld (1995) and Malysa et al. (2005) compared with 

the model with and without pv term.  Also indicated are 

the theoretical results of Moore (1965). The results with pv 

slightly under-predict the experimental results of 

Duineveld (1995), and when pv is neglected, they over-

predict the terminal velocity for most radii.  

3. RESULTS FOR RISING (FREE) BUBBLES 

A first test of the model is to calculate the terminal rise 

velocity and deformation for a bubble far from any walls 

and under extremely clean conditions (no surface active 

contaminants). More details can be found in Klaseboer et 

al. (2011). The results are repeated here in Figs. 1 and 2. 

The model under-predicts the terminal velocity slightly 

(Figure 1) but gives excellent agreement for the shape of 

the bubble (at its terminal speed, Figure 2). Bubbles with 
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radii smaller than 1.0 mm have been chosen in order to 

avoid the region where the bubbles move in a zig-zag or 

spiral manner (a path - instability sets in for larger bubble 

sizes, which is still poorly understood and outside the 

scope of the current theory). 

In Figures 1 and 2 the results are also shown if pv is 

set to 0. This would produce a bubble that has a too high 

terminal velocity. The term nun  /2  was retained in the 

simulations. If the contribution nun  /2  would also have 

been neglected, no drag would exist on the bubble and it 

would continue to accelerate without reaching a terminal 

velocity. This indicates that the term pv does indeed 

contribute considerably to the drag.  

 

 
Figure 2: Aspect ratio (definition see inset) of the rising 

bubble for different bubble radii at terminal velocity. The 

results with pv coincide with the experimental results of 

Duineveld (1995). When pv is neglected, the model is 

clearly under-predicting the aspect ratio. 

4. “SOAP” BUBBLES BOUNCING AT A WATER 

INTERFACE 

To exploit the possibilities of the developed model, 

we will first investigate the case of a bouncing soap 

bubble on a flat stationary water interface (C.V. Boys 

1920; Vincent et al. 2007). Since the density of the air 

inside the bubble is equal to the density of the air outside 

the bubble, the inertia of the gas inside the bubble cannot 

be ignored (the added mass of the bubble is of the same 

order of magnitude as the mass of the gas in the bubble). 

Vincent et al. (2007) reasoned that the mass of the thin 

liquid film between the soap surfaces was negligible. In 

our simulations we have also ignored this mass. A 

potential flow model using two fluids with two coupled 

potential flows is now used (Klaseboer and Khoo 2004). 

The normal velocity and pressure are coupled as boundary 

conditions for two equations of the type 1 and 2 (one for 

each flow). In order to simplify the model, the effects of 

viscosity are here ignored for this case, thus pv=0 and μ=0. 

Yet the film pressure pfilm and surface tension effects are 

maintained in the model.   

The air density is taken as  = 1.2 kg/m3. The surface 

tension of one soap-water interface was measured to be 25 

mN/m. Since there are two soap-water interfaces in the 

bubble, the value for σ is taken to be 50 mN/m for this 

case. The water surface is assumed to be non-deforming 

(rigid) during the impact. This is justified since the density 

of water is about 1000 times larger than the air in which 

the bubble moves.  

The surface is implemented using an image method 

through a modified Green function as: 

'/1/1),( 000 rrrrrr G ,  

where r‟ is the image of point r in the boundary. The 

initial conditions for the potential are (inside and outside, 

corresponding to the potential solution for the motion of a 

solid sphere): 

  2/cos  Uout   

  cosUin   

where U is the initial velocity (as given by the 

experimental data).  

                 a) 

 

b)  

c) 

Figure 3: Soap bubble with initial radius 1.1 cm 

approaching a pool of water with 65 cm/s from t=0 to 50 

ms. First rows: approach. Second rows: rebound. a) 

Numerical results. A rectangular reference frame is drawn 

around the bubble such that the deformation can be better 

observed. The horizontal line is the water surface. b) 

Experimental results t=0 to 70 ms (images reproduced 

from Vincent et al. 2007). The „contact time‟ is ~25 ms in 

the numerical results and around 30 ms in the 

experiments. c) Numerical results with pressure in the film 

indicated in red at the instants t=7.6, 9.1, 11.4, 25.9, 27.4 

and 30.5 ms after the start of the simulation.  

 

Two cases were simulated; a bubble with initial 

radius R=1.1 cm approaching at U=65 cm/s (Figure 3) and 

a bubble of 0.6 cm radius approaching at 120 cm/s (Figure 
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4). The results show a very good agreement between the 

theory and the experimental results (without any 

adjustable parameters).  

The film pressure is absolutely necessary to get the 

correct physics; otherwise no repulsive force on the 

bubble will be present that is capable of causing a 

rebound.  

In Figure 3c the pressure in the film is also indicated 

for several time instants. The maximum pressure reaches 

about 2.5σ/R (the Laplace pressure is 2σ/R). These profiles 

resemble Figure 9 of Klaseboer et al. (2001), or Figure 5 

of Klaseboer et al. 2000. In both cases, the pressure in the 

film also became slightly larger than the Laplace pressure 

in the bubble. Although smaller, the bubble of Figure 4 is 

deformed much more (Frame 5) due to its larger initial 

velocity than the bubble of Figure 3. The pressure build up 

generates a force on the bubble that is essentially 

responsible for the observed rebound.  

                 a) 

  b) 

Figure 4: Soap bubble with initial radius 0.6 cm 

approaching a pool of stagnant water with 120 cm/s. a) 

Numerical results, time increases from left to right; 

compare 5th frame with image experimental frame. b) 

Experimental results (image reproduced from Vincent et 

al. 2007); only an image of the most deformed state is 

available for this experiment. 

5. “WATER” BUBBLES BOUNCING AGAINST A 

SUBMERGED RIGID PLATE 

 Experimental data of Zawala et al. (2007) are now 

used to test our model under more severe conditions, 

namely that of an air bubble approaching a flat horizontal 

submerged surface under ultra pure conditions. The 

challenge here is not only to get the terminal velocity 

correct during the pre-bounce period (as in Section 3), but 

also to predict the bouncing behaviour. Since the inertia of 

water is much higher than that of air, it is expected that the 

inertial terms will play a much greater role in the bouncing 

dynamics. 

The image method is again used to model the flat 

plate. The bubble contents are modelled with Equation 4 

(since the density of the air is much less than that of water, 

there is no need to model the flow inside the bubble with 

another potential flow as in Section 4). We thus allow 

(very small) volume changes of the bubble to occur. Both 

the viscous pressure (Equation 7) and the film pressure 

(Equation 8) are taken into account.  

In Figure 5 a bubble approaching a flat submerged 

wall is shown with initial terminal velocity = 35 cm/s 

(experimental). Our model gives a terminal velocity of 

~31 cm/s. The radii of both the experimental and 

numerical bubble are R = 0.735 mm. The frames are taken 

at exactly the same instant for the experiment (right) and 

the numerical model (left). Remarkable agreement can be 

observed indicating that the physics of the model are 

implemented correctly. The model also predicts violent 

oscillations that result from inertia and surface tension but 

could not be predicted with the simpler point force model 

of Klaseboer et al. (2001). The bubble hits the wall at 

almost terminal speed (Figure 5a and 5b). It does not seem 

to slow down much before the very last moment it reaches 

the wall. The top then flattens considerably (Figure 5c). 

The bubble then bounces back while exhibiting shape 

oscillations (Figure 5e to 5g). The bubble bounces back 

several bubble radii before slowing down and reversing its 

trajectory once more. In Figure 5h and 5i the second 

approach is shown. A second rebound occurs in Figure 5j.   

Due to the fact that damping in the film was 

neglected, the numerical bubble bounces back slightly 

more and thus a slight time delay between the experiment 

and the simulation can be observed. If a more realistic 

model is needed, the full lubrication equations must be 

solved (such as in Klaseboer et al. 2001). Although this 

can be done, the implementation would be more 

troublesome, since a mesh for the film and the potential 

flow must be generated and pressures must be transferred 

from one model to the other (remember that the film 

thickness usually is in the micrometer order of magnitude, 

which was recently confirmed experimentally in Hendrix 

et al. 2012).  

DISCUSSION AND CONCLUSION 

Through clever insight it is possible to simulate 

bouncing bubbles, including viscous effects without any 

adjustable parameters using the Boundary Element 

Method. Both a bouncing soap bubble and a bubble in 

water were simulated.  For the soap bubble viscous effects 

were negligible, but the flow inside the bubble had to be 

taken into account. For the „water bubble‟, viscous effects 

had to be included. The pressure resulting from the thin 

film was also modelled as a „spring-like‟ pressure; that is, 

the pressure as implemented in Equation 8 only stores 

energy, but is not able to simulate viscous dissipation in 

the film. The fact that this does not have a discernable 

effect on the results when compared to experiments, 

indicates that film dissipation is of minor importance and 

can be neglected (at least in the cases investigated).  

Due to the fact that the BEM calculates the whole 

fluid domain, added mass effects are automatically 

included in the simulations. Added mass effects will occur 

during strong accelerations of the fluid, such as will be the 

case during the impact of bubbles on rigid plates.  

The simulation times using the BEM are several 

minutes for each case as compared to many hours for other 

methods. 
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a) 

b) 

c)

d)

 e) 

Figure 5: The bouncing „water‟ bubble at different 

instants (each frame plotted at corresponding time; left 

numerical, right experimental results from Zawala et al. 

2007) for a bubble with initial radius R=0.735 mm and 

fluid viscosity μ=1.0 mPa s. a) and b) approach phase at 

terminal velocity. c) and d) strong flattening of the bubble. 

e), f) and g) rebound phase with violent shape oscillations. 

h) and i) second approach. j) second rebound. The cross 

with the red dot indicates the experimental centre of mass 

which is also plotted on the numerical data.  

 

f)

 g) 

h)

 i) 

j) 
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