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ABSTRACT 
It is known that velocity fields computed by using an 
immersed boundary-lattice Boltzmann method (IB-LBM) 
with a single-relaxation time (SRT) show unphysical 
distortion when the relaxation time, τ, is high. The authors 
proposed an immersed boundary-finite difference lattice 
Boltzmann method (IB-FDLBM) using SRT to predict 
liquid-solid flows. In simulations with IB-FDLBM, 
numerical errors in the velocity fields appear as in IB-
LBMs when τ is high. A two-relaxation time (TRT) 
collision operator is therefore implemented into IB-
FDLBM in this study to reduce numerical errors at high τ. 
Simulations of circular Couette flows show that the 
proposed method gives accurate predictions at high τ, 
provided that the magic parameter, which is a function of 
the relaxation times, is less than unity. In addition, 
predicted drag coefficients of a circular cylinder and a 
sphere at low Reynolds numbers show reasonable 
agreements with theoretical solutions and measured data.  
 

NOMENCLATURE 
A negative viscosity term  
c lattice speed, c = 1 
c discrete particle velocity, c = (cx, cy) 
CD drag coefficient 
D particle diameter 
f particle velocity distribution function 
f eq equilibrium distribution function 
f + symmetric part of distribution function 
f - anti-symmetric part of distribution function 
f eq,+ symmetric part of equilibrium distribution function 
f eq,- anti-symmetric part of equilibrium distribution 

function 
F external force, F = (Fx, Fy) 
FD drag force 
Gi direct forcing term for fi 
l norm 
Nm number of Lagrangian points at immersed boundary 
p pressure 
Q number of discrete particle velocities 
Re Reynolds number 
Rin radius of inner cylinder 
Rout radius of outer cylinder 
t time 
u fluid velocity, u = (u, v) 
uθ azimuthal velocity component 
uP velocity of solid body 

uT analytical azimuthal velocity component 
U0 free stream velocity 
Uθ rotation velocity of circular cylinder 
W weighting function  
x Eulerian coordinates, x = (x, y) 
XL coordinates of Lagrangian point, XL = (XL, YL) 
Δ domain of the smoothed delta function  
δ smoothed-delta function 
δh one-dimensional smoothed-delta function 
ΔS area segment of solid body 
Δt time step size 
ΔV computational cell volume 
Δx lattice width in the x direction 
Δy lattice width in the y direction 
Δz lattice width in the z direction 
γ Euler constant 
ε Knudsen number 
Λ magic parameter 
μ viscosity 
ν kinematic viscosity 
ρ density 
τ+ relaxation time for f + in two-time relaxation model 
τ− relaxation time for f - in two-time relaxation model 
Ω collision operator 
Subscript 
i direction of discrete particle velocity 
i  direction opposite to i 
I,J,K indexes of lattice point 
L index of Lagrangian node 
Superscript 
n discrete time 

INTRODUCTION 
The lattice Boltzmann method is now regarded as one of 
the promising methods for simulating fluid flows. Due to 
its simplicity and suitability for parallel computation, it 
has been widely used for predicting various flows such as 
turbulent flows (Martinez et al., 1994) and two-phase 
flows (Shan and Chen, 1993). In particular, the 
combination of the immersed boundary method and lattice 
Boltzmann method (IB-LBM) using a single relaxation 
time (SRT) has been adopted to reasonably predict liquid-
solid two-phase flows (Feng and Michaelides, 2004; Feng 
and Michaelides, 2005; Feng and Michaelides, 2009; 
Dupuis et al., 2008). However, Le & Zhang (2009) carried 
out simulations of circular Couette flows and pointed out 
that large non-physical velocity distortion in the vicinity 
of immersed boundaries is caused when the relaxation 
time, τ, is high.  



 
 

Copyright © 2012 CSIRO Australia 2 

 The authors recently proposed a combination of a finite 
difference lattice Boltzmann method using the single 
relaxation time and the immersed boundary method (IB-
FDLBM), which can stably and efficiently simulate liquid-
solid flows (Rojas et al., 2011). In IB-FDLBM, an 
additional collision term (Tsutahara et al., 2002), which 
works as a negative viscosity in the macroscopic level, is 
used to improve the numerical stability, and allows us to 
simulate flows at high Reynolds numbers. However the 
velocity distortion near the immersed boundary appears as 
in IB-LBM when τ is high.  
 A two-relaxation time (TRT) collision model (Ginzburg 
et al., 2008) is, therefore, implemented into the IB-
FDLBM in this study to reduce the numerical error at high 
relaxation times. One relaxation time of TRT is used to 
define the viscosity of the flow, and the other relaxation 
time is used to improve the accuracy. Simulations of 
circular Couette flows are carried out for a wide range of 
relaxation times to validate the present method.  Predicted 
velocity distributions and velocity profiles are compared 
with the predictions obtained by IB-FDLBM with SRT 
and an analytical solution. Flow past a circular cylinder at 
a low Reynolds number is also simulated and the drag 
coefficients obtained by using SRT and TRT collision 
models are compared with a theoretical solution. 
Simulations of flows past a sphere at low and high 
Reynolds numbers are also carried out. In appendix A, the 
Chapman-Enskog expansion is applied to IB-FDLBM 
with TRT to show the recovery of the macroscopic 
conservation equations for incompressible Newtonian 
flows, i.e., the continuity and Navier-Stokes equations.  

NUMERICAL METHOD 
The discrete Boltzmann equation with the direct forcing 
term, Gi, is given by 
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i GAf
t
f

+Ω=Ω+∇⋅+
∂
∂ ][c  (1) 

 
where fi is the distribution function for the ith component 
of discrete velocity and A is a parameter, which works as a 
negative viscosity in the macroscopic level (Tsutahara et 
al., 2002). The collision operator Ωi using two relaxation 
times is given by (Ginzburg et al., 2008): 
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where τ+ and τ− are the relaxation times for the symmetric 
part, f+, of the distribution function and for the anti-
symmetric one, f -, respectively. The former is used for 
determining the kinematic viscosity, and the latter is used 
to improve numerical stability and accuracy. The 
distribution functions, f+, f -, f eq,+ and f eq,-,are defined by 
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where fi

eq is the equilibrium distribution function and the 
subscript i  denotes the direction opposite to i. The 
macroscopic fluid density, ρ, velocity, u, and fi

eq in the 
D2Q9 and D3Q19 models are given by 
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where Wi is the weighting function and c the lattice 
velocity. In the D2Q9 model, W0 = 4/9, Wi = 1/9 for i = 1-
4 and Wi = 1/36 for i = 5-8. In the D3Q19 model, W0 = 1/3, 
Wi = 1/18 for i = 1-6 and Wi = 1/36 for i = 7-18. The 
kinematic viscosity is given by  
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The relaxation parameter, τ-, is determined through the 
magic parameter, 
 
 ))(( AA −τ−τ=Λ −+  (13) 
The value of Λ should be tuned to improve the numerical 
stability and accuracy. In some cases, the optimum value 
of Λ can be obtained theoretically (Ginzburg et al., 2008; 
Seta et al., 2012). 
 Fluid motion is computed at Eulerian grid points, xIJK = 
(xI, yJ, zK), by solving Eq. (1), whereas solid boundaries 
immersed in the flow field are represented using 
Lagrangian points, XL = (XL, YL, ZL). The external force, 
F(XL,t), acting on the fluid to impose the no-slip boundary 
condition is given by (Dupuis et al., 2008) 
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where Δt is the time step, uP(XL, t) the velocity at the Lth 
Lagrangian point, and u(XL, t) the velocity interpolated by 
using 
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where δ is the smoothed-delta function (Le and Zhang, 
2009), ΔV the volume of a computational cell, and Δ the 
domain in which δ ≠ 0. The delta function is given by  
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where Δx, Δy and Δz are the lattice spacings in the x, y and 
z directions, respectively, and δh is the one-dimensional 
smoothed-delta function, for which the following 4-point 
cosine delta function is adopted: 
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Then the force calculated using Eq. (14) is distributed 
onto the Eulerian grid points by using the delta function: 
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where Nm is the number of Lagrangian points and ΔS the 
area segment of a solid body. The direct forcing term is 
given by  
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 A second-order Runge-Kutta method is used for the 
time integration of Eq. (1):  
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where the superscript n is the discrete time, i.e. t = nΔt. 
The advection term is discretized using a third-order 
upwind scheme. 

SIMULATION OF CIRCULAR COUETTE FLOWS 
Simulations of two-dimensional circular Couette flows are 
carried out to demonstrate that the proposed method can 
remove unphysical distortions in a velocity field at high 
relaxation times. Figure 1 shows the computational setup. 
The numbers of lattice points in the x and y directions are 
201 and 201. The outer cylinder is at rest, while the inner 
cylinder is rotating at the azimuthal velocity Uθ = 0.01. 
The radii, Rout and Rin, of the outer and inner cylinders are 
70 and 45, respectively. The number of Lagrangian points 
is 440 for each cylinder surface. The number of these 
points is determined so as to make the spacing between 
two points on the outer cylinder comparable to the grid 
spacing. Higher spatial resolutions, e.g. 880 and 220, were 
also tested and no significant differences were found in the 
results. Periodic boundary conditions are adopted for all 
the domain boundaries. 
 First, IB-FDLBM with SRT is used to simulate the 
flows. The negative viscosity term, A, is kept at 0.5. Figure 
2 shows the azimuthal velocity component, uθ. The 
numerical error in velocity increases with τ and the non-
symmetric velocity fields appear at τ > 10. The distortion 
in velocity field at high τ is clearer in Fig. 3. The circular 
Couette flows are then simulated using TRT. The negative 
viscosity term is kept at 0.5, and the magic parameter Λ is 

set at 1/4. As shown in Fig. 4, the velocity field is not 
distorted even at high τ+. A comparison between velocity 
profiles along a horizontal cross-section obtained with 
SRT and TRT is shown in Fig. 5. The solid line in the 
fluid region is the analytical solution given by 
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Figure 1: Computational domain for circular Couette 

flows. 
uθ/Uθ 

0 1  

 
(a) τ = 1                               (b) 5  

 
(c) 10                                (d) 20 

Figure 2: Velocity distributions predicted by using IB-
FDLBM with SRT (A = 0.5). 

uθ /Uθ = 1   

  
(a) τ = 1                               (b) 20 

Figure 3: Velocity vector along the x-axis predicted by 
using IB-FDLBM with SRT (A = 0.5). 
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uθ/Uθ 
0 1  

 
(a) τ+=1(τ−=1)                   (b) 5 (0.556)   

 
(c) 10 (0.526)                     (d) 20 (0.513) 

Figure 4: Velocity distributions predicted by using IB-
FDLBM with TRT (A = 0.5 and Λ = 1/4). 
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Figure 5: Velocity profile of circular Couette flows along 

a horizontal line (τ =10). 
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Figure 6: Norms obtained by using SRT and TRT at 

different relaxation times. 

 
The solution obtained with TRT and Λ = 1/4 agrees well 
with the analytical solution, whereas that obtained with 
SRT largely differs from the analytical solution, especially 
in the vicinity of the immersed boundary. Various values 
of Λ are tested to confirm that accurate predictions are 
obtained only when the magic parameter is less than about 
one. For instance, the solution obtained with Λ = 20 
differs from the analytical solution as shown in Fig. 5. 
Figure 6 shows the errors in velocity distribution predicted 
using SRT and TRT collision terms, where l is the norm 
defined by   
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In both cases, the error decreases with increasing τ up to 
around τ = 2 and then increases at higher τ. The reason of 
this tendency is as follows. The direct forcing method 
enforces uP(XL) = u(XL) but does not ensure utheory(XL) = 
u(XL) due to the diffusive nature of δh. Because of this, the 
predicted fluid velocity in the vicinity of the rotating 
cylinder is slightly higher than the theoretical one at low τ. 
Then, the predicted velocity decreases as τ increases and 
approaches the theoretical velocity at τ = 2 in SRT and τ+ 
= 3 in TRT, where the norms take the minimum value. 
Then, the norms increase with τ at high τ since the 
velocity continues to decrease with increasing τ. The 
errors are smaller in TRT than in SRT.  

FLOW PAST A CIRCULAR CYLINDER AT A LOW 
REYNOLS NUMBER 
A flow past a circular cylinder at a low Reynolds number, 
Re = 0.1, is simulated to examine the accuracy of the 
proposed method at a high relaxation time. The 
computational domain is shown in Fig. 7. The dimensions 
of the domain are 50D and 40D in the x and y directions. 
The cylinder is located at (20D, 20D) and the ratio, D/Δx, 
is 40. The number of Lagrangian points, which are evenly 
distributed at the cylinder surface, is 126. A is set at 0.5 
for both models, and therefore, τ in SRT and τ+ in TRT are 
60.5. The magic parameter of TRT is 1/4. The uniform 
flow along the x-axis enters from the left boundary. The 
right boundary is continuous outflow. The top and bottom 
boundaries are slip wall. The drag force, FD, is calculated 
by summing up F(XL,t) for all the Lagrangian points:  
 

50D

40D
(20D,20D)

Cylinder
40Δx for D

Nm=126

Uniform inflow
at U0

Continuous outflow(0,0)

y

x  
Figure 7: Computational domain for flows past a circular 

cylinder. 
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where Fx(XL,t) is the x component of F(XL,t). The drag 
coefficient, CD, is defined by  
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 The predicted drag coefficients are compared with the 
following theoretical solution (Lamb, 1911):  
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where γ = 0.57721 is the Euler constant. Table 1 shows a 
comparison of the drag coefficients. The error in the drag 
coefficient is very large in SRT, whereas it is much lower 
in TRT.  

FLOW PAST A SPHERE 
Simulations of flows past a sphere at low and high 
Reynolds numbers are carried out. The dimensions of the 
domain are 50D, 40D and 40D in the x, y and z directions, 
respectively. The sphere is located at (20D, 20D, 20D) and 
the ratio, D/Δx, is 40. Lagrangian points are generated 
using a method proposed by Feng & Michaelides (2005). 
The number of Lagrangian points at the sphere surface is 
4958 and A is set at 0.5. The magic parameter of TRT is 
1/4. The boundary conditions are similar to those used for 
the two-dimensional circular cylinder.  
 
 
Table 1: Comparison of drag coefficients of a circular 

cylinder at Re = 0.1. 
 Re = 0.1 Error [%]

Theoretical Solution 
(Lamb, 1911) 58.4 - 

SRT model (present) 40.3 31.0 
TRT model (present) 61.3 5.0 
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Figure 8: Drag coefficients of sphere. 

 
 

 The drag coefficients are plotted against the Reynolds 
number in Fig. 8. Good agreements between measured 
data (Wieselsberger, 1922) and the predictions at high 
Reynolds numbers, i.e. Re = 400, 1000 and 10000, are 
obtained using SRT. The relaxation time τ ranges from 
0.515 to 0.5006 at these Reynolds numbers. The CD at Re 
= 0.1, however, differs from the measured value due to the 
high relaxation time; τ = 60.5. On the other hand, TRT 
gives a better prediction at the low Reynolds number than 
SRT.  

CONCLUSION 
A two-relaxation collision model was implemented into 
the immersed boundary-finite difference lattice Boltzmann 
method to reduce numerical errors appearing at high 
relaxation times. Simulations of circular Couette flows and 
flows past a circular cylinder and a sphere were carried out 
to examine the applicability of the method to low Re flows. 
As a result, the following conclusions are obtained: (1) 
TRT reduces non-physical distortion of the fluid velocity 
in the vicinity of immersed boundaries of flows at high 
relaxation times, (2) accurate predictions are obtained only 
when the magic parameter is less than about one, and (3) 
flows past a circular cylinder and a sphere at low Reynolds 
numbers are reasonably predicted with TRT. 
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APPENDIX A 

Derivation of Macroscopic Equations 
The macroscopic equations, i.e. the continuity and the 
Navier -Stokes equations, are obtained by the Chapman-
Enskog expansion: 
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where ε is the Knudsen number. The first four moments of 
the equilibrium distribution function are  
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The distribution functions fi

(m) and fi
±(m) satisfy 
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for m > 1. Substituting Eqs. (A1)-(A4) into Eq. (1) yields 
the following equations for the orders of ε0, ε1 and ε2:  
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To obtain fi

(1), the symmetric and anti-symmetric parts are 
derived from Eq. (A14) 
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Summing Eqs. (A14) and (A15) over i yields  
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Combining Eq. (A17) and (A18) gives the continuity 
equation: 
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Multiplying Eqs. (A14) and (A15) by ciα and summing the 
resultant equations over i yields  
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Combining Eqs. (A20) and (A21) yields the 
incompressible Navier-Stokes equation:  
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where the pressure p and the viscosity μ are given by 
p=ρ/3 and μ  = ρν, respectively.  

 


