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Design for reliability of stochastic dynamic systems by
algebraically derived reduced order models
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Abstract

This paper is concerned with reduced order modeling techniques for the stochastic design optimization of complex
engineering systems whose performance is dictated by their transient response. Uncertainties in design and operating
parameters are considered. A novel, extended formulation of algebraically derived reduced order models is introduced
and applied to the stochastic optimization of a structural component. The numerical studies show the potential of
reduced order modeling techniques to enable the use of high-fidelity simulation methods for stochastic design opti-

mization purposes.
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1. Introduction

Two forms of reduced order models (ROMs) have
been used to reduce the computational cost of analyzing
engineering systems. The first are physical-based ROMs
that reduce the physical interpretation of the system to a
model that is easier to analyze. An example of such is
modeling an airplane wing with a beam structure, or an
electrostatic domain as a capacitor model. The second
form of ROMs, termed algebraically derived ROMs in
the following, seek to mathematically reduce a large-
scale numerical model, while still capturing the essential
physical phenomena. Algebraically derived ROMs, uti-
lized in this paper to reduce the size of a finite element
model, have proven to be a successful means of reducing
the computational costs of a system’s response in time.
However, the utility of these ROMs lies only in a par-
ticular system’s time integration, and any changes in the
design may render the ROM highly inaccurate. The key
missing component for the application of ROMs in a
reliability-based design optimization (RBDO) frame-
work, and the focus of this work, is the extension of
algebraically derived ROMs (EAD-ROMs) into the
space of the design and uncertainty parameters.
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2. Reduced order modeling

Reduced order models are widely used to simulate the
transient response of structural systems. Assuming a
linear elastic behavior of the structure, the semi-discrete
form of the equations of motion for the full-order model
can be written as follows:

Mii + Cii + Ku = f (1)

where u is the displacement vector of size n, and M, C,
and K are (n x n) square matrices. Applying a propor-
tional damping model, the damping matrix C is a linear
combination of the mass matrix M and linear stiffness
matrix K.

The ROM dramatically decreases the size of the sys-
tem (1) from the number of degrees of freedom n to k,
where k < n. Following a Galerkin type projection
approach, the system response can be approximated
through k basis vectors ¢:

k
u(r) =" n(1)dg = ®n(t) 2)
=

where @ is the matrix of basis vectors, and 7 is the vector
of generalized variables. The equations of motion (1) are
reduced by substituting the approximation (2) into (1)
and multiplying the resulting equation by ®7, yielding
the following reduced-order system:
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Mgf + Cgn + Kgn = f (3)
and

M = @M (4)
Ckx = ®'ce (5)
Krx = @K (6)
fr = &f (7

where Mz, Cr and Ky are (k x k) matrices and fz is a
vector of size (k). In comparison to the full-order model,
the reduced order system (3) allows for time integration
of the equations with little computational expense.

For design optimization and stochastic analysis pur-
poses, the ROM needs to capture the changes of the
system’s response due to parameter variations. The
system matrices M, C, K and the basis vectors ® in (4)—
(7) are all functions of the design parameters p. As the
evaluation of the basis ® is computationally expensive,
the eigenvectors are approximated by a combined
approximation technique [1,2,3,4,5], requiring the com-
putation of the first-order derivatives of the eigenvectors
with respect to each parameter [6,7,8]. The system
matrices are rebuilt at each design change because of the
small computational cost. The reader is referred to Allen
et al. [9] for further details.

3. Model problem: connecting rod

The EAD-ROM approach is tested on a generic
structural component, shown in Fig. 1, which has been
frequently studied in the context of shape optimization
[10,11]. The rod is clamped at the inner circumference of
the left hole, and a transient force is applied to the inner
circumference of the right hole. Two geometric para-
meters, p; and p,, control the horizontal position of the
center hole, as depicted in Fig. 1.

All computations are performed within MatLab uti-
lizing the computer aided learning of the finite element
method (CALFEM) finite element toolbox [12]. The
structural response is assumed to be linear elastic. All
optimization problems are solved by a globally con-
vergent version of the method of moving asymptotes
[13].

Length = 42 mm

Thickness = 3 mm

uncertain
hole placement

3.1 Reliability-based design optimization with EAD-
ROMs

The framework is tested on a RBDO of the rod in Fig.
1. The energy dissipated between ¢ = 0.40 ms and 1.00
ms is used as the objective to be maximized in the design
problem. However, a reliability-based constraint will be
imposed on the system. The constraint will limit the
standard deviation of the dissipation energy to be less
than 300/, making the RBDO problem as follows:

Insin (_Ediss)
subject to: op—300<0 (8)
—4 S Si S 4

where E, is the energy dissipated, and o is the stan-
dard deviation of the energy dissipated. The constraint
on the standard deviation forces the optimization to a
more robust design, limiting the sensitivity of the system
performance to uncertainties. The standard deviation is
found by a Monte-Carlo simulation based on a poly-
nomial chaos expansion. This method was chosen due to
its computational efficiency and its ability to obtain the
entire probability density function (PDF) of the output
response. The derivatives of the standard deviation are
obtained by finite differencing. The intended placement
of the center hole is treated as both the design variables
and the random variables. The design variables repre-
sent the mean or intended design, but a normal
distribution is assigned to the actual horizontal position
of both ends of the hole, each with a standard deviation
of 0.20 mm.

The constraint is explored in the design and uncer-
tainty space by sampling uniformly throughout, which is
illustrated in the contour plot in Fig. 2. The plot on the
left of Fig. 2 represents the contour plots for the stan-
dard deviation of the energy dissipated in pJ. The
constraint boundary is highlighted in the figure, and the
feasible and infeasible regions are identified. The initial
design is feasible, but the deterministic design optimum
is infeasible. The right half of Fig. 2 overlays the con-
straint boundary onto the contour plot of the objective,
to give the reader the general idea of the RBDO
problem.

applied force

time

Fig. 1. Model of the connecting rod.
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Fig. 2. Stochastic constraint in RBDO problem.

Full order model

Fig. 3. Convergence of the RBDO problem.

3.2. Full order model versus EAD-ROM

The convergence of the RBDO problem using the full
order system analysis is illustrated on the left of Fig. 3,
and the convergence utilizing the EAD-ROM analysis is
illustrated on the right of Fig. 3. These plots are a
zoomed-in portion of the design and uncertainty space
illustrated in Fig. 2. The reader may note the similarities
between the two optimization procedures in terms of
search directions, step sizes, and converged solutions.
The EAD-ROM approach sufficiently models a system
within a certain region around the design point for
which the EAD-ROM was calibrated. Therefore, a trust
region framework needs to be established to incorporate

the EAD-ROM into optimization problems with large
bounds. Recalibration of the design is done at least
when a predefined outer bound is reached within the
optimization problem. For this paper the EAD-ROM is
recalibrated once for each iteration of the global opti-
mization problem. Within each iteration the stochastic
analyses and function evaluations for the line search are
computed using the EAD-ROM. The EAD-ROM
framework converges quickly to the general solution of
the RBDO problem, and the results are summarized in
Table 1.

The overall computational savings of the EAD-ROM
in an optimization framework are dependent upon the
costs of recalibration, and the frequency with which
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Table 1

Full and EAD-ROM model RBDO results

Analysis method 1 K% iterations time (hrs)
Full model 1.31 2.80 11 6.27
EAD-ROM 1.27 2.88 8 3.36

recalibration is required. Again, the EAD-ROM is most
beneficial in RBDO frameworks, which require many
analyses about a mean design that can be used as the
recalibration point. Table 1 demonstrates the effective-
ness of the EAD-ROM to save running time of the
RBDO problem. The EAD-ROM saves approximately
46% of the time it takes the full order model to run.
When moving to larger models, the time saved running
an EAD-ROM will be significant.

4. Conclusions

This study has illustrated the potential of utilizing
reduced order models for designing dynamic structures
under uncertainty. The extended formulation of the
algebraically derived reduced order models provides a
formal approach to use high-fidelity numerical simula-
tion models for stochastic analysis and design
optimization purposes at significantly lower numerical
costs. The feasibility and potential of the approach will
be studied for larger numerical models undergoing
nonlinear, transient, coupled multi-physics phenomena.
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