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Abstract

A statistical analysis is performed on the key geometric parameters that influence hemodynamics in the human
carotid artery bifurcation. A parametric CAD model of the bifurcation is used to automatically construct a range of
different geometries. A design of experiments (DoE) approach is employed to generate a set of candidate geometries for

flow analysis using an unsteady three dimensional Navier–Stokes solver. The values of the integral of negative average
shear stress (INASS) and the maximal average shear stress (MASS) corresponding to these geometries are then used to
construct a Bayesian surrogate model. A shape optimization problem is proposed using the surrogate model which

predicts arterial geometries having minimal INASS and MASS.
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1. Introduction

Due to the nature of the geometry and the hemody-
namics in the human carotid artery, arterial disease
commonly occurs in this region. Well-established cor-

relations already exist between the geometric factors and
the development of disease. An optimal arterial design
strategy could be a useful tool for clinicians in search of

a robust surgical procedure.
The present work draws on the techniques developed

in Bhaskar et al. [1] for designing an optimum shape for

the carotid artery via minimization of a suitable objec-
tive function using a Y-shaped parametric CAD model
of the human carotid artery. A DoE technique is used to
generate a set of candidate geometries at which the flow

solver is run. The data generated from these simulations
is then used to construct a Bayesian interpolant which
approximates the desired objective function as a func-

tion of geometric variables. INMSS and MASS are
considered as objective functions to be minimized in the
shape optimization study. The paper concludes by dis-

cussing the application of Bayesian modeling to arterial
graft/stent design.

2. Overview

2.1. Bayesian modeling

A Bayesian approach is employed for surrogate

modeling in order to efficiently optimize computation-
ally expensive functions. Consider a deterministic
computational fluid dynamics (CFD) code which takes

as input the vector x 2 R
p and returns a scalar output

y(x). Further, for a given set of l input vectors X = {x1,
x2, . . ., xl} E Rp � l the corresponding output values y =

{y1, y2, . . ., yl} E R
l are assumed to be available. This

training data can be obtained by applying a DoE tech-
nique to decide geometries at which the flow solver
should be run. Using this training data, the approx-

imation problem involves the prediction of the output
y(x) given a new design point x.
The metamodel used in Bayesian interpolation can be

compactly written as

YðxÞ ¼ � þ ZðxÞ ð1Þ

where � is an unknown hyperparameter to be estimated
from the data and Z(x) is a Gaussian stochastic process

with zero-mean and covariance

Cov Zðx1; x2Þ
� �

¼ �2zRðx1; x2Þ ð2Þ

where R(.,.) is a correlation function that can be tuned to

the data and �2z is the process variance.*Corresponding author. E-mail: kvb@soton.ac.uk
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Assuming Gaussian prior over functions, and by
applying Bayes’ theorem, it can be shown that the pos-

terior distribution is Gaussian [2], i.e. Y(x)jy � N (Ŷ (x),
�2zC(x, x

0)). The posterior mean and covariance can be
computed as

ŶðxÞ ¼ � þ rðxÞTR�1ðy� 1�̂Þ ð3Þ

and

Cðx; x0Þ ¼ �2z Rðx; x0Þ � rðxÞTR�1rðx0Þ
� �

ð4Þ

where R E Rl � l is the correlation matrix computed using
the training points: the ijth element of this matrix is
computed as Rij = R(xi, xj). r(x) = {R(x, x1) R(x, x2) . . .

R(x, xl)} E Rl is the correlation between the new point x
and the training points, and 1 = {1, 1, . . ., 1} 2 R

l.
It can be observed from Eqs. (3) and (4), that the

Bayesian inferencing approach leads to an approxima-
tion of the CFD code as a multidimensional Gaussian
random field. The posterior covariance given in equation

(4) can be interpreted as an estimate of the uncertainty
involved in making predictions at a new point x.

2.2. Geometry model and methodology

It has already been observed that the bifurcation
region is most vulnerable to arterial disease [3]. Further,

the probability of plaque rupture, plaque ulceration and
thromboembolism is maximum near the bifurcation
region and more specifically on the inner walls of the

internal carotid artery (ICA) [1]. In addition to this,
studies have been performed to prove that the bifurca-
tion angles affect the magnitude of reversed velocity and

the extension of recirculation region near the sinus bulb
[4,5]. Hence, with reference to Fig. 1, in the present
study the widths proximal to the bifurcation – the
upstream width of the ICA (Location 3; Mean – 8.3

mm), a width governing the shape of the sinus bulb
(Location 4; Mean – 8.9 mm), the downstream width of
the common carotid artery (CCA) (Location 5; Mean –

8.0 mm) – and the bifurcation angles (Location 1 with
Mean – 25.18 and Location 2 with Mean – 25.48) are
used as input variables for creating the training data.

Note that these are the key geometric variables which
have been identified from previous studies [1,4]. To
construct the surrogate model, 50 design points were

created using the Latin-Hypercube sampling (LHS)
technique [6]. The perturbation of each parameter in the
design space is taken as 50% of the corresponding
parameter’s mean value. The geometries were created in

CATIA V5 and the CAD files were exported in STEP
format to GAMBIT for mesh generation. FLUENT was
used for 3D unsteady simulations. The laminar incom-

pressible momentum equations were solved and the

viscosity was assumed to be constant at 0.0035 kg/m.s.
The objective function values, INASS and MASS, were

extracted for each geometry to create the training data
for constructing the surrogate model.

3. Results and discussion

A mean pulse for the human carotid artery, as
described in [7], was used with a time step of 0.0001 s.
The meshes with a fixed interval size of 0.48 were

employed on each geometry. These spatial resolutions
were already used and validated in [1]. The density of
blood was taken as 1035 kg/m3. The mass flow split ratio
between the ICA and the external carotid artery (ECA)

was taken as 70 : 30. Due to the high perturbations
assumed for the input variables to create the training
data, 6 out of the 50 design points failed to create a valid

arterial geometry. Hence, the surrogate model was cre-
ated using the remaining design points.
The objective of the optimization study is to predict

geometries which have low values of INMSS and
MASS. The motivation for simultaneously minimizing
INMSS and MASS arises from the fact that these

metrics quantify different flow behaviors. The MASS is
related to the elevated shear stress regions and the
INASS is related to the negative shear regions and the
amount of recirculation [8]. Hence, by taking these two

metrics into account, the aggregate objective function
will quantify the relationship between the geometry
variations and the majority of the diseases occurring

near the bifurcation. A good geometry with a minimal

Fig. 1. Geometry of the human carotid artery.
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risk of disease is expected to have minimum values of

INMSS and MASS. The underlying belief is that the
resulting geometry will give rise to an optimum shape of
the carotid artery.

The objective function chosen for the present study is
of the form

FðxÞ ¼ cf1ðxÞ þ ð1� cÞf2ðxÞ ð5Þ

where c E [0,1] is a weighting factor and f1, f2 denote the
two metrics INASS and MASS, respectively. After the
simulations were performed for the 44 geometries, the
values of INASS and MASS were extracted to construct

F(x) for values of c = {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Further,
surrogate models were constructed to approximate F(x)
for all the six values of c. This was achieved by

employing the error bar predicted by the surrogate and
maximizing the following probability of improvement
(PoI) criterion.

Maximize : P½YðxÞ < F�1� ð6Þ

where F� denotes the minimum value of F(x) among all

the geometries used as the training data. Note that the
metrics INASS and MASS have been appropriately
normalized before creating F(x) using the maximum and

minimum values of the metrics in the training data.
Using the above criterion these six cases are supposed

to give rise to a set of non-dominated solutions due to

the compromise obtained with each single objective
function. However, by visual inspection of the data, it
was found that the two metrics chosen were found not to

conflict with each other. It was found that the geometry
corresponding to a minimum INASS also had a low
value of MASS.
The geometries obtained by maximizing the PoI cri-

terion on the training data set will give rise to a better
shape of the carotid artery compared to the initial con-
figurations. Note that this criterion can also be used for

updating the surrogate model to find a better optima.
The new points obtained can be appended to the initial
training data set and the criterion can be applied in an

iterative fashion to find better geometries. This iterative

Fig. 2. Variation of the multi-objective function for different values of c. F denotes the normalized objective function and N denotes

the number of geometries.
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procedure can be stopped by imposing some con-
vergence criterion. This methodology works fine when
the simulations carried to obtain the training data are

cheap to run. Note that in the present case we are
dealing with 3D pulsatile simulations which are very
time consuming. Each numerical simulation takes about

14.5 CPU hours on an AMD Athlon XP 2800+ pro-
cessor. Thus, the update procedure was conducted only
twice. Figure 2 shows the variation of the objective
function with the initial set of 44 geometries and the two

geometries obtained after employing the update strategy
for each value of c. The best geometry obtained after the
update strategy is shown in Fig. 3. It can be seen in the

Fig. 3 that the widths 3 and 4 were adjusted in such a
way that the flow into the ICA promoted smaller
reversed flow, thereby reducing the probability of plaque

formation at the sinus bulb. The magnitudes of the
downstream width of the CCA and the bifurcation
angles for the best geometry were found to be greater

than their corresponding mean values. The increase in
the width 5 reduced the flow velocity entering the
bifurcation region, which in turn influenced the shear
stress distribution downstream.

4. Conclusions

An approach to determine the geometry that simul-
taneously minimizes the INASS and MASS in a 3D

pulsatile flow of the human carotid artery is presented.

Key geometric parameters near the bifurcation were
varied to create several configurations. It was found that
the individual INASS and MASS minimum configura-

tions do generally coincide. The present study aims at
highlighting the approach and giving a flavor of the
results rather than exhaustively examining all of the

possibilities. Ultimately, these optimal design cap-
abilities can be used to handle patient specific geometric
design of arterial grafts and stents.
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