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Abstract

This paper presents CONDOR, an algorithmic extension of Powell’s UOBYQA algorithm (‘Unconstrained Opti-

mization BY Quadratical Approximation’). CONDOR stands for ‘COnstrained, Non-linear, Direct, parallel
Optimization using trust Region method for high-computing load noisy objective functions’. CONDOR opens new
possibilities in the field of industrial shape optimization based on CFD (Computation Fluid Dynamic) codes or PDE

(partial differential equations) solvers where the evaluations of the objective functions are very CPU intensive and very
noisy. We also report comparative numerical results between UOBYQA, DFO and CONDOR. The experimental
results are very encouraging and validate the approach. Finally, we present a new, free, easily comprehensible and fully

stand-alone implementation in C++ of CONDOR.
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1. Introduction

The aim of CONDOR is to find the minimum x	 2 <n

of an objective function f ðxÞ 2 < using the least number

of function evaluations. It is assumed that the dominant
computing cost of the optimization process is the time
needed to evaluate the objective function f(x). CON-

DOR is a direct optimization tool (i.e. the derivatives of
f(x) are not required). The only information needed
about the objective function is a simple function (written

in Fortran, C++, etc.) or an executable which can
evaluate the objective function f(x) at a given point x.
The algorithm has been specially developed to be very

robust against noise inside the evaluation of the objec-
tive function f(x).
CONDOR has been successfully used during the

European LTR project NNE5 1999 20130 named

METHOD. The goal of this project is to optimize the
shape of the blades inside a centrifugal compressor.
Each evaluation of the objective function involves a long

CFD computation (more than one hour).
The algorithms used inside CONDOR are part of the

gradient-based optimization family. Usually, classical

quasi-Newton gradient-based optimizers are seen as a

poor choice because they are adversely affected by
function inaccuracies [1]. This poor behaviour is mainly
due to the fact that these kinds of optimizers need
explicit gradient information, usually obtained by the

classical finite difference equation:

@f

@xi
ðxÞ ¼ fðxþ hieiÞ � fðxÞ

hi

In the field of aerodynamic shape optimization, the
objective functions are based on expensive simulation of
CFD codes [2,3,4,5] or PDE solvers. For such applica-

tions, choosing an appropriate step size hi for
approximating the derivatives by finite differences is
quite delicate: function evaluation is expensive and can
be very noisy.

In opposition, direct optimization methods [6] are
relatively insensitive to the noise. Unfortunately, they
usually require a great number of function evaluations.

Gradient-based algorithms can still be applied but a
clever way to retrieve the derivative information must be
used. One such algorithm is DIRECT [7,8,9], which uses

a technique called implicit filtering. CONDOR uses a
technique called multivariate Lagrange interpolation,
making evaluations of f(x) in a way that reduces the
influence of the noise. Since CONDOR is using the*Tel.: +32 (479) 992768; E-mail: fvandenb@iridia.ulb.ac.be
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classical gradient-based optimization theory (Restricted
Newton’s Steps on quadratical local model of the

objective function) it can easily obtain fast convergence
speed.

Some of the advantages of CONDOR over UOBYQA

[10] are:
1. CONDOR can handle box, linear and non-linear

constraints. The algorithms used are part of the

active set family [11]. For in depth explanation of the
constrained part of CONDOR, see [12].

2. CONDOR is able to make simultaneous evaluations
of the objective function f(x) using several CPUs in a

cluster of computers to speed up the optimization
process.

This paper is structured in the following way:

1. The introduction.
2. Basic description of the CONDOR algorithm.
3. Experimental results.

4. How to get the code and conclusions.

2. Basic description of the CONDOR algorithm

A very basic description of the CONDOR algorithm
is:

1. Build an approximation (also called a ‘local model’)
Qk(�) of the objective function f(x) around the cur-
rent point xk. Qk(�) is a polynomial of degree two

built using multivariate Lagrange interpolation
technique [13,14].

2. Find the minimum �k of the local model at Qk (�k). �k
is the minimization step.

Qkð�kÞ ¼ min
�

Qkð�Þ subject to �k k � �k ð1Þ

�k is called the ‘trust region radius’. It is the extent

to which we can ‘trust’ the local model Qk(�) of f(x).
Equation (1) is solved using Moré and Sorensen’s
algorithm [15]. Evaluate the objective function at the

new point: f(xk + �k) = y.
3. Compute the ‘degree of agreement’ �k between f(x)

and Qk(�):

�k ¼
fðxkÞ � fðxk þ �kÞ
Qkð0Þ �Qkð�kÞ

Update xk and �k using the classical trust region
update mechanism:

�k < 0.01

(bad iteration)

0.01 � �k < 0.9

(good iteration)

0.9 � �k
(very good iteration)

xk+1 = xk xk+1 = xk + �k xk+1 = xk + �k
�k+1 = 0.5 �k �k+1 = �k �k+1 = 2 �k

The main idea of step 3 is to only increase the trust
region radius �k when the local model Qk(�) reflects
well the real function f(x) (and gives us good
directions).

4. Use y to build the new ‘local model’ Qk+1(�), pos-
sibly performing more function evaluations to ensure
a non-degenerate local model. Increase k and go
back to step 2.

CONDOR is inside the class of algorithm that is proven
to be globally convergent to a local (maybe global)
optimum. It uses conditional models as described in
[16,17].

The different evaluations of f(x) are used to:
(a) Guide the search to the minimum of f(x) (see eva-

luation performed at step 2). To guide the search, the

information gathered until now and available in
Qk(�) is exploited.

(b) Increase the quality of the local model Qk(�) (see

evaluations performed at step 4). To avoid the
degeneracy of Qk(�), the search space needs to be
additionally explored.

Points (a) and (b) are antagonistic objectives. The main
idea of the parallelization of the algorithm is to perform
the exploration on distributed CPUs. Consequently, the
algorithm will have better models Qk(�) of f(x) at its

disposal and choose better search directions, leading to a
faster convergence. The parallel version of CONDOR
uses a client-server approach. The server is moving

inside the search space using the algorithm described
above. Only the server is updating the current position
xk. The client computers are ‘sampling’ the search space

around the current point xk in order to always have
inside the server non-degenerate Qk(�).
If the local model Qk(�) has been found degenerate,

some evaluations are performed during the exploration

step (step (b) or step 4). The test of degeneracy of Qk(�)
involves the following heuristic due to Powell:

1

6
M xk � Pik k3max

d
Liðxk þ dÞj j : dk k � �f g � "

where M is an upper bound on the third derivative of
f(x). For more in-depth explanation of this formula, see
[12].

The evaluations performed during the exploration step
(step 4) and performed inside the client computers are
placed in the search space such that:

1. The quality of the updated local model Qk(�) is
maximized.

2. The influence of the noise that is present at each
evaluation of f(x) is reduced.

This implies an inner optimization process. The full
procedure is described in [10,12]. The importance of the
exploration steps is clearly stated in the excellent ‘opti-

mization by surrogate theory’ [18]. Any algorithm that
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does not check the validity of its local model is subject to
failure and early stops. Unfortunately some algorithms

based on neural networks and genetic algorithms do not
check if their local model is degenerate and thus exhibit
slow and uncertain convergence (see, for example, [19]).

Let us assume that the current minimization step �k
pushes CONDOR to enter into the infeasible space. We
then activate all the box and linear constraints which

have been violated and we re-compute a solution of Eq.
(1) in the Reduced-Space of the Active Box and Linear
Constraints (RSABLC) to obtain a new �k. A basis of
the RSABLC is needed and is built using a QR factor-

ization with pivoting [11,20]. If some non-linear
constraints are active, an SQP algorithm [21] performed
inside the RSABLC is used to compute the new �k. The
decision to remove a constraint J out of the active set of
the constraints is mainly based on the value of the
Lagrangian variable J (also called dual variable) asso-

ciated with the constraint J. For in-depth explanation of
the constrained step inside CONDOR, see [12].

3. Numerical results

We will now compare CONDOR with UOBYQA
[19,22] and DFO [16,23] on a part of the Hock and
Schittkowski test set [24]. More numerical results can be

found in [12]. The test functions and the starting points
are extracted from SIF files obtained from CUTEr, a
standard test problem database for non-linear optimi-

zation [25]. We are thus in perfect standard conditions.
The test problems are arbitrary and have been chosen by
Conn et al. [23] to test their DFO algorithm. The per-
formances of DFO are thus expected to be, at least,

good. DFO has been designed for the same kind of
problems as CONDOR: derivate-free, noisy optimiza-
tion. DFO also uses a model built by interpolation. We

list the number of function evaluations that each algo-
rithm took to solve the problem. We also list the final
function values that each algorithm achieved. We do not

list the CPU time, since it is not relevant in our context.
The default values for all the parameters of each algo-
rithm are used. The stopping tolerance of DFO was set

Table 1

Numerical results for comparison between CONDOR 1CPU, 2 CPU, 3 CPU, and UOBYQA and DFO

Name dim Number of function evaluations on main node Final function value

Condor
UOB. DFO

CONDOR
UOBYQA DFO

1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3 CPU

ROSENBR 2 82 (80) 81 (1.2%) 70 (14.6%) 87 81 2,0833E�04 5,5373E�05 3,0369E�03 4,8316E�04 1,9716E�03
SNAIL 2 316 (313) 284 (9.6%) 272 (13.4%) 306 246 9,3109E�07 4,4405E�09 6,4938E�05 1,8656E�06 1,2661E�04
SISSER 2 40 (40) 35 (12.5%) 40 (0.0%) 31 27 8,7810E�03 6,7290E�06 2,3222E�08 2,5398E�03 1,2473E�02
CLIFF 2 145 (81) 87 (40.0%) 69 (52.4%) 127 75 1,9978E+03 1,9978E+03 1,9978E+03 1,9978E+03 1,9979E+03

HAIRY 2 47 (47) 35 (25.5%) 36 (23.4%) 305 51 2,0000E+05 2,0000E+05 2,0000E+05 2,0000E+05 2,0000E+05

PFIT1LS 3 153 (144) 91 (40.5%) 91 (40.5%) 158 180 2,9262E+00 1,7976E+00 2,1033E+00 1,5208E+00 4,2637E+00

HATFLDE 3 96 (89) 83 (13.5%) 70 (27.1%) 69 95 5,6338E�03 1,0541E�02 3,2045E�02 6,3861E�03 3,8660E�02
SCHMVETT 3 32 (31) 17 (46.9%) 17 (46.9%) 39 53 �3,0000E+04 �3,0000E+04 �3,0000E+04 3,0000E+04 �3,0000E+04

GULF 3 170 (160) 170 (0.0%) 122 (28.2%) 207 411 2,6689E�05 5,7432E+00 1,1712E+02 3,8563E�04 1,4075E+01

BROWNDEN 4 91 (87) 60 (34.1%) 63 (30.8%) 107 110 8,5822E+08 8,5826E+08 8,5822E+08 8,5822E+08 8,5822E+08

EIGENALS 6 123 (118) 77 (37.4%) 71 (42.3%) 119 211 3,8746E�05 1,1597E�03 1,5417E�03 2,4623E�03 9,9164E�03
BIGGS6 6 284 (275) 232 (18.3%) 245 (13.7%) 370 1364 1,1913E�01 1,7741E�02 4,0690E�03 7,7292E�05 1,7195E�01
HART6 6 64 (64) 31 (51.6%) 17 (73.4%) 64 119 �3,3142E+04 �3,3184E+04 �2,8911E+04 �3,2605E+04 �3,3229E+04

CRAGGLVY 10 545 (540) 408 (25.1%) 339 (37.8%) 710 1026 1,8871E+04 1,8865E+04 1,8865E+04 1,8865E+04 1,8866E+04

VARDIM 10 686 (446) 417 (39.2%) 374 (45.5%) 880 2061 8,7610E�09 3,2050E�08 1,9051E�07 1,1750E�07 2,6730E�03
MANCINO 10 184 (150) 79 (57.1%) 69 (62.5%) 143 276 3,7528E�05 9,7042E�05 3,4434E�04 6,1401E�04 1,5268E�03
POWER 10 550 (494) 294 (46.6%) 223 (59.4%) 587 206 9,5433E�03 3,9203E�03 4,7188E�03 2,0582E�03 2,6064E�02
MOREBV 10 110 (109) 52 (52.7%) 43 (60.9%) 113 476 1,0100E�03 8,0839E�04 9,8492E�04 1,6821E�01 6,0560E�03
BRYBND 10 505 (430) 298 (41.0%) 198 (60.8%) 418 528 4,4280E�04 3,0784E�04 1,7790E�04 1,2695E�01 9,9818E�04
BROWNAL 10 331 (243) 187 (43.5%) 132 (60.1%) 258 837 4,6269E�05 1,2322E�04 6,1906E�05 4,1225E�04 9,2867E�03
DQDRTIC 10 201 (79) 59 (70.6%) 43 (78.6%) 80 403 2,0929E�14 2,0728E�27 3,6499E�25 1,1197E�16 1,6263E�16
WATSON 12 667 (580) 339 (49.2%) 213 (68.1%) 590 1919 7,9451E�03 1,1484E�01 1,4885E+00 2,1357E�01 4,3239E�01
DIXMAANK 15 964 (961) 414 (57.0%) 410 (57.5%) 1384 1118 1,0000E+04 1,0000E+04 1,0000E+04 1,0000E+04 1,0000E+04

FMINSURF 16 695 (615) 455 (34.5%) 333 (52.1%) 713 1210 1,0000E+04 1,0000E+04 1,0000E+04 1,0000E+04 1,0000E+04

Total number

of function

evaluations

7531 6612 4732 3947 8420 14676
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to 10�4. The comparison between the algorithms is
based on the number of function evaluations needed to

reach the SAME precision. For the fairest comparison
with DFO, the stopping criterion of CONDOR has been
chosen so that CONDOR always stops with a little more

precision in the result than DFO. In particular, in some
cases, the CONDOR algorithm can find a better opti-
mum after a few more evaluations (for a stricter

stopping criterion). Table 1 shows all the numerical
results. The number in parentheses in column 4 of Table
1 indicates the number of function evaluations needed to
reach the optimum without being assured that the value

found is the real optimum of the function. For example,
for the WATSON problem, we find the optimum after
(580) evaluations. CONDOR still continues to sample

the objective function, searching for a better point, but
loses 87 evaluations in this search. The total number of
evaluations (reported in the first column) is thus 580 +

87 = 667. Table 1 indicates the number of function
evaluations performed on the master CPU (to obtain
approximatively the total number of function evalua-

tions cumulated over the master and all the slaves,
multiply the given number on the list by the number of
CPUs). The CPU time is thus directly proportional to
the numbers listed in columns 3, 5 and 7 of the table.

The percentage given in columns 6 and 8 indicates the
gain in term of computing time compared to 1 CPU. We
can observe that:

1. CONDOR is a good choice compared to DFO when
the dimension of the search space is above 4.

2. When the dimension of the search space is low, there

is no need to make many samples of f(x) to obtain a
good approximation Qk(�). Using many CPUs is
thus interesting only when the dimension of the
search space is at least 4.

For numerical results demonstrating the robustness of
CONDOR against noise, see [12].

4. Conclusions

Given a search space dimension between 2 and 35,
and given some noise of small amplitude and high fre-
quency on the objective function evaluations, among the

best optimizers available are UOBYQA and its parallel,
constrained extension CONDOR. When several CPUs
are used, the experimental results tend to show that

CONDOR becomes the fastest optimizer in its category
(fastest in terms of number of function evaluations).

The code for CONDOR is a complete C/C++ stand-
alone, multi-platform (windows/UNIX) package, and is

currently freely available at the homepage of the author
(http://iridia.ulb.ac.be/�fvandenb/). Condor does not
use any external, unavailable, copyrighted, expensive

libraries. The only library needed is the standard TCP/

IP network transmission library based on sockets (only
in the case of the parallel version of the code), which is

available for almost every platform. Different platforms/
operating systems can be mixed together to deliver a
huge computing power. The full description of the

algorithm can be found in [12].
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