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Abstract

The reduced basis method on parametrized domains is applied to approximate blood flow through an arterial bypass.
The aim is to provide (a) a sensitivity analysis for relevant geometrical quantities in bypass configurations and (b) rapid

and reliable prediction of integral functional outputs (such as fluid mechanics indexes). The goal of this investigation is
(i) to achieve design indications for arterial surgery in the perspective of future development for prosthetic bypasses, (ii)
to develop numerical methods for optimization and design in biomechanics, and (iii) to provide an input–output

relationship led by models with lower complexity and computational costs than the complete solution of fluid dynamics
equations by a classical finite element method.
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1. Design and optimization in arterial bypass

configurations

When a coronary artery is affected by a stenosis, the
heart muscle cannot be properly oxygenated through
blood. Aorto-coronaric anastomosis restores the oxygen

amount through a bypass surgery overcoming an
occlusion. At present, different kinds and shapes of
aorto-coronaric bypasses are available and, conse-

quently, different surgery procedures can be devised to
set up a bypass. Numerical simulation of physiological
flows allows better understanding of phenomena
involved in coronary diseases (see [1]) and a potential

reduction of surgical and post-surgical failures. It may
also suggest new means in bypass surgical procedures as
well as with less invasive methods to devise improved

bypass configuration (see [2] and [3]). Efficient schemes
for reduced basis techniques [4] applied to parametrized
partial differential equations (P2DEs) have been devel-

oped to provide useful and real-time indications
(outputs) in a repetitive design environment as optimi-
zation requires and a sensitivity analysis on important

geometrical quantities, such as bypass diameter t,
arterial diameter D, stenosis length S, graft angle �,
bypass bridge height H, as shown in Fig. 1. See [5] for a
more general framework.

2. Reduced basis technique for Stokes equations in

parametrized domains

The essential properties of a reduced basis method, i.e.
(i) the rapid convergence of global reduced basis
approximations (Galerkin projection onto a space WN

spanned by solutions of the governing partial differential
equations at N selected points in parameter space); (ii)
the off-line/on-line computational procedures which

decouple the generation and projection stages of the
approximation process (for the parameter-affine pro-
blems) and (iii) the operation count for the on-line stage
– given a new parameter value, we calculate the output

of interest – which depends only on N (typically very
small) and the parametric complexity of the problem,
have allowed computational economies of several orders

of magnitude. In the perspective of using low-order
methods for real-time pre-process optimization and then
higher fidelity method in feedback, at this stage we have

adopted the steady Stokes fluid model which provides
good approximation in mid-size arteries with low Rey-
nolds number and low mean velocity. A two-

dimensional parametrized bypass configuration (Fig. 1)
has been built, assembling four simple subdomains. We
build a system of P2DEs depending on a set of geome-
trical parameters (�) as coefficients. The Stokes problem

on a reference domain � in its weak formulation reads:

* Tel.: +41 21693 2733; Fax: +41 21693 2733; E-mail:

Gianluigi.Rozza@epfl.ch

1284

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



find u 2 Y ¼ H1
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F 0, G0 are terms due to non-homogeneous Dirichlet
boundary condition on �in (homogeneous Dirichlet on
�w and Neumann free-stress condition on �N = �out);
�D = �in [ �w (Fig. 1). Fs is a distributed force term. In

our case: � ¼
SR

r¼1 �r, R = 4. The true domain �̂ of
Fig. 1 has been traced back to a reference domain by an
affine mapping of the subdomains �̂r into �r. For any

x̂ 2 �̂r, r = 1, . . ., R, its image x 2 �r is given by x =
Grð�; x̂Þ ¼ Grð�)x̂þ gr; 1 � r � R, we thus write
@
@x̂i
¼ @xj

@x̂i
@
@xj
¼ Gr

jið�Þ @@xj, 1 � i, j � d =2, and in the

reference domain � we have:
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where �̂i,j = ��i,j, gin is the term due to boundary inflow

condition and f̂r the force field. We introduce the

parameter vector �= {t, D, L, S,H, �} 2 D� � R
P, D� is

given by:

tmin; tmax½ � � Dmin;Dmax½ � � Lmin;Lmax½ � � Smin;Smax½ �
� Hmin;Hmax½ � � �min; �max½ �

The transformation tensors for bilinear forms are defined
as follows:

�rijð�Þ ¼ Gr
ii0 ð�Þ�̂i0j0Gr

jj0 ð�ÞdetðGrð�ÞÞ�1; 1 � i; j � 2;

r ¼ 1; . . . ;R

Then in our case:
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t
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� tan � 1þtan2 �
t H

� �
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S
D 0
0 D

S

� �
;

�3 ¼ �
t
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t

� �
; �4 ¼ �

L
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0 D

L

� �
ð5Þ

The tensors for pressure and divergence forms are:

X r
ijð�Þ ¼ Gr

ijdetðGrð�ÞÞ�1; 1 � i; j � 2; r ¼ 1; . . . ;R

and are given by:

X 1 ¼ t�H tan �
0 H

� �
; X2 ¼ S 0

0 D

� �
;

X 3 ¼ t 0
0 D

� �
; X4 ¼ L 0

0 D

� �
ð6Þ

Furthermore, we may define

�qði;j;rÞð�Þ ¼ �rijð�Þ; Aqði;j;rÞ
u;w

D E
¼
Z
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Z
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p
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for 1 � r � R, 1 � i, j � d = 2. So:

Fig. 1. Schematic bypass configuration and reference domain.
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Að�; u;wÞ ¼
XQa

q¼1
�qð�ÞAðu;wÞq;

Bð�; p;wÞ ¼
XQb

s¼1
�sð�ÞBðp;wÞs

in our case Qa = 20 and Qb = 9, in reality max (Qa) =
d � d � d � R = 32 and max (Qb) = d � d � R = 16.

In the reduced basis approximation we take some
suitable samples S�N = {�1, . . ., �N}, where �n 2 D�, n =

1, . . ., N.
The reduced basis pressure space is QN = span {�n,

n = 1, . . ., N}, where �n = p(�n).
The reduced basis velocity space is Y

�
N = span {�n,

n = 1, . . ., 2N} = span {�n, T
� �n, n = 1, . . ., N}, where

�n = u(�n) and T�: Q ! Y is the supremizer operator

(T�q, w)Y = Bð�; q, w;), 8 w 2 Y. Using the affine
dependence of B(q, w, �) on the parameter and the lin-
earity of T� we can write T�� =

PQb

q¼1 �qð�ÞTq� for any
� and �. The problem in reduced basis approximation

reads: find (uN (�), pN(�)) 2 Y
�
N � QN

Að�; uNð�Þ;wÞ þ Bð�; pNð�Þ;wÞ ¼ F;wh i; 8w 2 Y
�
N

Bð�; q; uNð�ÞÞ ¼ G; qh i; 8q 2 QN

�
ð9Þ

The supremizers solutions guarantee the fulfillment of
an equivalent inf-sup (LBB) condition: �N(�) � �(�) �
�0 > 0, 8 � 2 D� where

�Nð�Þ ¼ infq2QN
supw2Y�

N

Bð�;q;wÞ
wk kY qk kQ and

�ð�Þ ¼ infq2Q supw2Y
Bð�;q;wÞ
wk kY qk kQ (see [6]).

For a new sample � we look for a solution

uNð�Þ ¼
X2N
j¼1

uNjð�Þ�j; pNð�Þ ¼
XN
l¼1

pNlð�Þ�l

where the unknown coefficients are found as the solution
of the following reduced basis linear system:P2N

j¼1 A
�
ijuNjð�Þ þ

PN
l¼1 B

�
ilpNlð�Þ ¼ F�i 1 � i � 2NP2N

j¼1 B
�
jluNjð�Þ ¼ G�

l 1 � l � N
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where:

A
�
ij ¼

XQa

k¼1
�kð�ÞAð�i; �jÞk; B�il ¼

XQb

k¼1
�kð�ÞBð�i; �lÞk

F
�
i ¼ F; �ih i; G�

l ¼ G; �lh i; 1 � i; j � 2N; 1 � l � N

For further details on Stokes reduced basis approxima-
tion and other supremizers options see [7]. As a measure
of blood flow perturbation we consider for example the

mean blood velocity:

sð�Þ ¼
XR
r¼1

R
�r

uj jd�R
�r

d�
ð11Þ

3. Some numerical results

With great computational cost savings we can provide

in real time useful clinical indication dealing with a great
number (i.e. hundreds) of bypass configurations and
understand the role of each geometrical parameter and
their reciprocal influence. Numerical results indicate a

very good convergence behaviour and a tight control on
the maximum N, i.e. on the dimension of reduced basis
matrices, whose assembling computational costs are

O(Qa (Qb + 1)24N2) for the sub-matrix A, O((Qb +
1)22N2) for B, O((Qb + 1) N) for F and O(9N3) for the
inversion of the global matrix. Numerical tests on the

bypass configuration (Fig. 1) have been carried out
imposing a mean Reynolds number of 103, a blood
kinematic viscosity � of 4 � 10�6 m2 s�1 and a force field:

f = (0,9.8). Solutions used as basis functions are
obtained by the Galerkin-finite element method with
Taylor–Hood elements (P2 and P1 for velocity and
pressure, respectively). Figure 2 shows good con-

vergence of the errors (H1 for velocity and L2 for
pressure) testing a great number of configurations. We
have carried out three different medical application-

oriented tests by our input–output methodology. Figure
3 shows the first case study where we have investigated
the bypass graft angle perturbation (other parameters

are frozen) measuring the increase of our output of
interest, Eq.(11): varying � from � 0 to �

3 the increase of
the mean blood velocity is very high in the range [0, �/6]
and smoothed in the range [�/6, �/3]. Results are shown

for different N to underline the fidelity of approximation

Fig. 2. Reduced basis convergence results: mean error on

velocity and pressure.
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with a few basis functions. Figure 4 shows the flow
perturbations with respect to the quantity S/D: the ratio
between the stenosis length and the arterial diameter
(best performances when S/D � 1) and the quantity t/D

(improving performances when the ratio is less than
unity, i.e. bypass diameter smaller than arterial
diameter).

4. Conclusion

Development guidelines are devoted to the applica-
tion of reduced basis (i) to Navier–Stokes equations [8]

in parametrized domains, (ii) in problems involving non-

affine mapping dependence (introduction of curved
walls) [9] and (iii) in using a great number of geometrical

parameters.
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Fig. 3. Output s [ms�1�10�2] versus the parameter �.

Fig. 4. Output s [ms�1�10�2] versus the ratios t/D and S/D.
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